

Techniques avancées dans l'analyse WH

Jonathan Brown (LPNHE, Paris)

DØ France (Grenoble) 01/042009

Outline

- Testing a new NN structure, trying to discriminate all backgrounds from WH signal,
- M_H = 115 GeV, 2 jets bin,
- Previous results using WH vs. Wbb NN & WH vs. ttbar NN,
- Impact on limit calculation,
- This study has been done with p17 muon channel.
- Use of Matrix Element discriminant (developped by Michigan University) is not used here,
- BDT & Random Forest for WH is recently under development.

Random Forest

Trained with:

- 7 input variables (jet1_pt, jet2_pt, DRjj, Dphijj, ptjj, ellnu_pt, mjj)
- p20 muon samples

ST

DT

CS x BR / SM Exp (Obs) limits CLFAST(no systematics) : 9.14 (6.90)

Tests with SPR and TMVA are performed in parallel by Ken Herner & Hatim Hegab

Training of NN Wbb vs. WH

- 7 input variables (jet1_pt, jet2_pt, DRjj, Dphijj, ptjj, ellnu_pt, mjj),
- 7 hidden nodes,
- 200 epochs,
- Publication NN
- This configuration was chosen because it provides the best limit calculation based on CLFAST

NN Wbb vs. WH

Training of NN ttbar vs. WH

- 17 input variables (Hz, mjj, DRjj, Aplan_jetslep, Dphi_lepjet1, jet1_pt, jet2_pt, ellnu_mt, jet2_E, lep_qeta, Etmiss, sqrts1, sqrts2, DR_ellnujj1, DR_ellnujj2, ptjj, ellnu_pt),
- 20 hidden nodes,
- 200 (300 for ST) epochs,
- This configuration was chosen because it provides the best limit calculation based on CLFAST

NN ttbar vs. WH

1 1.2 1.4 1.6

NN output - 2 tags

DT

Final selection

Events / 20 GeV

0.2 -0 0.2 0.4 0.6 0.8

Wbb	
ttbar	
WH	

<u>M_H = 115 GeV:</u>

CS x BR / SM (Exp limits CLFIT2)			
Dijet Mass	17.5		
NN	22.6		

- Good agreement Data vs. MC but,
- ttbar is well rejected but,
- Wbb is not discriminated → no improvement on limit calculation.

NN Wbb+ttbar vs. WH a.k.a. "SUPERNN"

Trying to discriminate Wbb & ttbar vs. WH, outputs of the Wbb NN and ttbar NN (calculated for each event) are inputs to a new structure.

Training of SUPERNN (1)

- 2 input variables (Wbb NN output {mass} {btag}, tt NN output {mass} {btag}),
- 2 hidden nodes,
- 300 epochs

- Agreement OK,
- Pretty nice shape for background distributions,
- Minimal improvement on the limit

Training of SUPERNN (2)

- 2 input variables (Wbb NN output {mass} {btag}, tt NN output {mass} {btag}),
- 2 hidden nodes,
- 300 epochs,
- 4 mass points for WH are used in the training for M_{H} = 115 GeV: WH105, WH110,

- Agreement OK,
- Pretty nice shape for background distributions,
- Improvement on the limit (~10% compared to Wbb NN only)

Training of SUPERNN (2)

- Same as before +
- Weights for WH samples in training are set to 1 so as not to bias towards low masses cross section ($\sigma \uparrow$ when $M_{_H}\downarrow$)

- Agreement OK,
- Pretty nice shape for background distributions,
- Improvement on limit (~10% compared to Wbb NN only), no changes wrt SuperNN1

Summary

	CS x BR / SM (CLFIT2)		
	expected	observed	
Dijet mass	17.5	12.4	
NN Wbb	15.6	12.7	
NN tt	22.6	15.7	
SuperNN (1)	15.4	13.1	
SuperNN (2)	14.4	10.4	
	Dijet mass NN Wbb NN tt SuperNN (1) SuperNN (2)	CS x BR / SDijet mass17.5NN Wbb15.6NN tt22.6SuperNN (1)15.4SuperNN (2)14.4	

~25% compared to mjj ~15% compared to Wbb NN

Expected limits with systematics (CLFIT2)

<u>SuperNN:</u> ~25% compared to mjj ~15% compared to Wbb NN

Conclusion

- Gain obtained by this new structure is ~25% compared to mjj, ~15% compared to Wbb NN, without adding the Matrix Element yet,
- Next steps :
 - Include the Matrix Element discriminant as an input to the SuperNN,
 - Propagate this tool to p17 electron and p20 (mu + ele),
- Many configurations can be tested once we'll trying to discriminate all backgrounds at the same time against WH,
- Will be tried for the 3 jets sample,
- An alternative from making a 2D histogram ttNN vs. WbbNN,
- Combine NNs, BDT & Matrix Element discrimant