Using the LHC Computing Grid for the Measurement of the Top Quark Mass in the Dilepton Channel with the Matrix Element Method

Aurélien Croc

2 avril 2009

CEA Saclay centre - DSM/Irfu/SPP

Aurélien Croc – 1 / 19

Outline

lrfu

œ

Outline

- Why?
- The Grid
- The MEM

■ Why do we need the grid?

How can we use the LCH Computing Grid?

The matrix element method

- What is the method I'm working on?
- The Moriond results for the dilepton channel
- My first results
- Conclusion

lrfu CCCI saclay	
Outline Why? The MEM The Grid The MEM	
	Why Do we Need the Grid?

The Matrix Element Method

Issue:

Why? The MEM

The Grid

The MEM

The Matrix Element Method requires multi-dimensional integrations with Monte-Carlo method which is *very CPU consuming*.

The study needs to integrate (for $\mu\mu$ channel):

- Approximately 1000 Monte-Carlo events
- **5** simulated input top quark masses
- 15 tested masses values
- The background & the data
- The same amount of events for systematics (more than **5** systematics)
- ⇒ More than **500 000** events to integrate (for **one** decay channel)

Time needed to integrate an event:

approximately **20** minutes

⇒ More than **160 000 CPU hours** needed On CAB with 600 CPUs, it would take more than **11 days!**

Aurélien Croc - 4 / 19

The MEM	The LCG G
Some statistics 2/2	The LCG G
Some statistics 1/2	
JJS at DØ	
JJS	
The WMS	
Offical tools	
In picture	
The Grid	
Why?	
Outline	
saclay	
lrfu	
1 6	

The LCG Grid and How to Manage it

Irfu CCCC

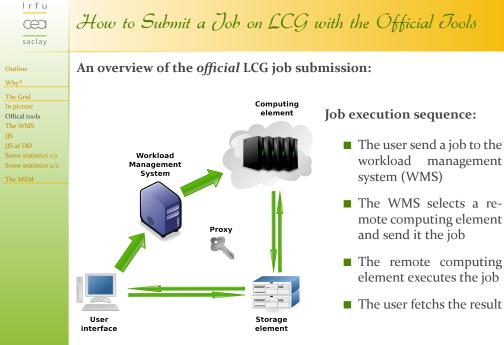
The Grid in Picture

saclay

Outline

Why?

The Grid In picture Offical tools The WMS JJS JJS at DØ Some statistics Some statistics


A grid = multiple computing elements linked together by a network

A part of the LHC Computing Grid (LCG)

CEA Saclay centre - DSM/Irfu/SPP

Aurélien Croc - 6 / 19

All the job management is done through the *GLite* tools

Aurélien Croc - 7 / 19

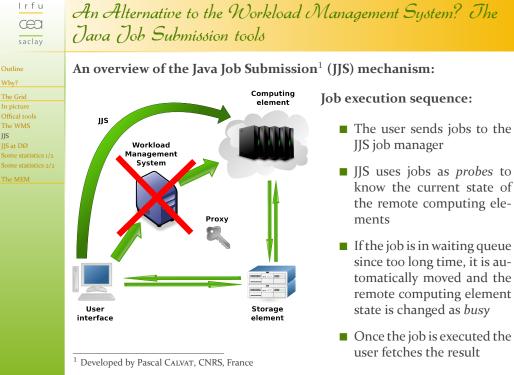
Submit a Job on Grid through a Workload Management System

Outline

Why?

The Grid In picture Offical tools The WMS JJS JJS at DØ Some statistics 1/ Some statistics 2/

The MEM


The aim of the Workload Management System (WMS) is to send the submitted jobs to the best remote computing elements (environment, resources) in order to be executed.

Common issues:

- From our experience, the choice of the remote computing element where the job will be sent isn't the best (jobs are always sent on the same remote computing elements whereas other with free CPU are available but are not used for unknown reasons)
- There is no way to know the status of each queue for each remote computing element in real time
- The workload management system can be easily overloaded when several thousand of jobs have to be managed

Solution:

Don't use the workload management system! We are using another job management system which will be shown in the next slides.

Outline

Why?

The Grid In picture Offical tools The WMS JJS JJS at DØ Some statistics 1/ Some statistics 2/

The MEM

My Work on JJS and its future for the DO collaboration

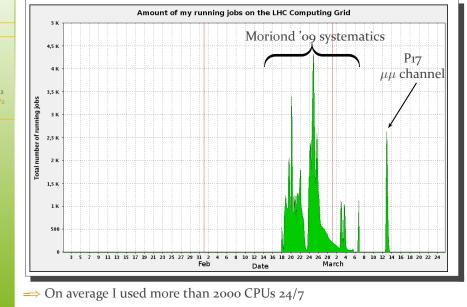
JJS has not been developed for long-time jobs. Thus I've done modifications for that. It is now *almost ready* to use.

A non-exhaustive list of my contributions:

- Jobs submission algorithm improved
- Job resubmission algorithm improved
- File transfer improved (to prevent from overloaded storage element)
- Monitoring interface developed
- Debugging of the LCG to OSG bridge to submit job on the Open Science Grid (still working on it)
- bug solved

Outlook:

I am working to provide it to the DØ collaboration very soon.


Irfu CECI saclay

Some JJS Statistics 1/2

Why?

The Grid In picture Offical tools The WMS JJS JJS at DØ Some statistics 1/2 Some statistics 2/2

Some JJS Statistics 2/2

Number of successful jobs for the last campain of job submission:

More than **99%** of successful jobs after my modifications (< 80% for WMS).

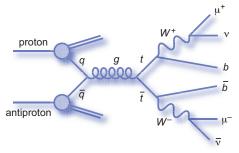
This is the consequence of the JJS job manager policy which resubmit jobs on other remote computing elements if their transfer failed.

Most of these problems come from maximum CPU time exceeded (the correct amount of needed CPU time is quite hard to determine.)

CEA Saclay centre - DSM/Irfu/SPP

Aurélien Croc - 12 / 19

Outline


Why?

The Grid

The MEM

The technique In practice The calibration Moriond result: First results Conclusion

The Measurement of the Top Quark Mass with the Matrix Element Method in the Dilepton Channel

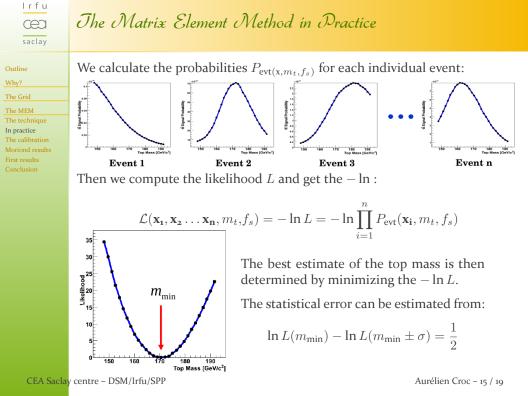
lrfu (CE) saclav

- The Grid
- The MEM The technique The calibration

Description of the Matrix Element Method

The aim: Create a likelihood function depending on the top quark mass which have a maximum for its most probable value

The method: We calculate the probability that an event is either signal or background as a function of the top quark mass:


$$\begin{split} P_{\text{evt}}(\mathbf{x}, m_t, f_s) &= f_s P_s(\mathbf{x}, m_t) + (1 - f_s) P_{\text{bkg}}(\mathbf{x}) \\ P_{\text{s,bkg}}(\mathbf{x}, m_t) &= \frac{1}{\sigma_{\text{acc}}} \int \underbrace{\mathsf{d}^6 \sigma_{\text{s,bkg}}(\mathbf{y}, m_t)}_{\text{differential cross-section:}} \times \underbrace{W(\mathbf{x}, \mathbf{y}) \mathrm{d}y}_{\text{transfer function:}} \times \underbrace{f(q_1) f(q_2)}_{\text{parton distribution function}} \mathrm{d}q_1 \mathrm{d}q_2 \\ P_{\text{s,bkg}} \quad \text{signal or background probability per event} \end{split}$$

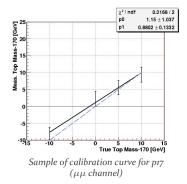
- signal fraction
- \mathbf{x} measured parameters (angles, energy) m_t tested top quark mass

 - fraction of momentum of initial parton

 \Rightarrow The integration is done on the remaining degrees of freedom (underconstrained kinematics) in n-dimensional space by Monte Carlo method.

Aurélien Croc - 14 / 19

Outline


- Why?
- The Grid
- The MEM The technique In practice The calibration Moriond results First results Conclusion

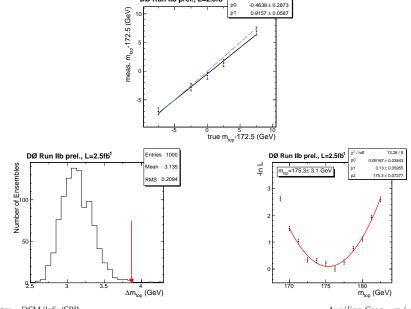
The Calibration of the Method

The optimum of the likelihood is not exactly the mass used in the generator. \implies Calibration of the method

Generation of the calibration:

- Monte-Carlo events are generated with different top quark mass
- Ensembles are created with randomly chosen events following the number of expected signal and background events in the data sample
- In each ensembles the optimal value of the likelihood (*m*_{min}) is calculated
- The average of the *m*_{min} found in each of the ensembles is computed and compared to the input mass

Irfu CEO saclay


Application of the Method for the $e\mu$ Channel (Moriond 2009)

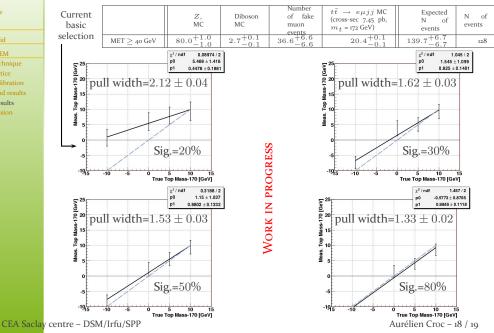
DØ Run IIb prel., L=2.5fb¹

 χ^2 / ndf

1.76/3

Why? The Grid The MEM The technique In practice The calibration Moriond results First results Conclusion

Aurélien Croc - 17 / 19

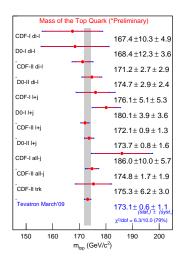

lrfu œ saclav

Work in Progress for the $\mu\mu$ Channel: Calibration for Different Ratio of Signal and Background

Why?

The Grid The MEM

The calibration First results



Outline

- Why?
- The Grid
- The MEM The technique In practice The calibration Moriond results First results Conclusion

Conclusion

- We now have a solution to submit jobs on the LHC Computing Grid
- This solution has already been used to integrate events for the Moriond conference
- It is currently used to measure the top quark mass in the μμ channel
- Some improvement need to be done in the JJS code yet
- It will be available to the DØ collaboration very soon
- We are working on the μμ selection

