

CLUSTER OF EXCELLENCE

Bundesministerium für Bildung und Forschung

Matthias Schröder (Universität Hamburg) LPSC Grenoble Colloquium | February 1, 2024

Fundamental question:

If the electron was massless, there would be no stable atoms!

February 1, 2024

Interaction with Higgs field $\phi \rightarrow$ particle mass

February 1, 2024

Universe at minimum of $V(\phi)$

Excitation of ϕ around minimum \rightarrow **Higgs boson H** (necessary consequence!)

February 1, 2024

Scalar particle (spin 0, CP even)

Couples in a unique way to other particles:

- to bosons $\propto m_V^2$
- to fermions $\propto m_{\rm f}$

Once Higgs-boson mass is known: All other properties and interactions precisely defined

Higgs boson: excellent probe of the Higgs sector and window to new physics!

Where do we stand?

Why is the top-Higgs coupling exciting?

Interesting on ist own: property of the Higgs boson

```
Special: y<sub>t</sub> ≈ 1 (only "natural" quark mass)
By far the largest Higgs-fermion coupling
```

→ strong impact on SM physics e.g. dominant contributions to quantum corrections to the Higgs-boson mass and self-coulping

Decides (in part) if the vacuum is stable!

 \rightarrow strong impact on BSM physics, e.g. *fine tuning in MSSM*

tt associated Higgs-boson production (ttH): **best direct probe of top-Higgs coupling**

Outline:

- Experimental tools
- Indirect measurements
- Status of ttH measurements
- New ttH result with $H \rightarrow bb$
- What is next? Future of ttH measurements

* Will focus here on CMS, but similar results by ATLAS

Higgs-boson production at the LHC

February 1, 2024

Higgs-boson production at the LHC

February 1, 2024

Higgs-boson decay channels

Branching ratios for $m_{\rm H}$ = 125 GeV [arXiv: 1610.07922]

Higgs-boson candidate events

$H \rightarrow \gamma \gamma$ candidate

ttH with $\rm H \rightarrow bb$ candidate

All detector components needed in Higgs analyses Very different signatures depending on the production and decay modes

February 1, 2024

The CMS Detector

All detector components needed in Higgs analyses Very different signatures depending on the production and decay modes

Higgs boson studied from all angles

Each production x decay channel: information on signal strength $\mu_i^f = (\sigma_i \cdot BR^f) / (\sigma_i \cdot BR^f)_{SM}$ Combination of many measurements: information on Higgs boson couplings

February 1, 2024

Combination of coupling measurements

Couplings scale with particle mass

Unique characteristic of Higgs boson expected in Standard Model

February 1, 2024

Coupling to top quarks

February 1, 2024

Coupling to top quarks

February 1, 2024

Universität Hamburg

Phys. Rev. Lett. 120 (2018) 231801

Small production cross-section: 0.5 pb at 13 TeV [arXiv: 1610.07922] Phys. Lett. B 784 (2018) 173 Multitude of possible final states with many objects 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 35.9 fb⁻¹ (13 TeV) Observed CMS $\pm 1\sigma$ (stat \oplus syst) ±1σ (syst) tt decay channels Higgs boson decay channels – ±2σ (stat ⊕ syst) ttH(WW*) $H \rightarrow bb$ 1 lepton ttH(ZZ*) 2 leptons $H \rightarrow WW^* / \tau \tau / ZZ^*$ purity yield Х tīH(γγ) all jets "multi-lepton analysis" bb ttH(τ+τ) $H \rightarrow \gamma \gamma$ ttH(bb) lepton: electron, muon $H \to ZZ^* \to 4I$ 7+8 TeV Combination of all channels: 13 TeV ttH observation in 2018 by ATLAS and CMS Collaborations 5.2σ significance Combined Milestone in understanding fermion masses 3 6 $\mu_{t\bar{t}H}$

February 1, 2024

channel		dataset	$\mu = \tfrac{\sigma}{\sigma_{\rm SM}}$	significance	add. results	
$\begin{array}{c} \mbox{H} \rightarrow \mbox{b} \overline{\mbox{b}} & \mbox{ATLAS} & 139 \mbox{ fb}^{-} \\ \mbox{CMS} & 138 \mbox{ fb}^{-} \end{array}$	ATLAS	$139{\rm fb}^{-1}$	$0.35\substack{+0.36 \\ -0.34}$	1.0σ (2.7 exp.)	STXS, CP	[JHEP 06 (2022) 097] [arXiv:2303.05974, subm. to PLB]
	$138{\rm fb}^{-1}$	$0.33_{-0.26}^{+0.26}$	1.3σ (4.1 exp.)	STXS, CP	[CMS-PAS-HIG-19-011]	
$H \rightarrow VV^*/\tau\tau$	ATLAS	$80{ m fb}^{-1}$	$0.58^{+0.26}_{-0.25}$	1.8σ (3.1 exp.)		[ATLAS-CONF-2019-045]
	CMS	$137{ m fb}^{-1}$	$0.92\substack{+0.25 \\ -0.23}$	4.7σ (5.2 exp.)	CP	[Eur. Phys. J. C 81 (2021) 378] [JHEP 07 (2023) 092]
$\begin{tabular}{c} H \rightarrow \gamma \gamma & & ATLAS & 1 \\ CMS & 1 \end{tabular} \end{tabular}$	ATLAS	$139{\rm fb}^{-1}$	$1.43_{-0.34}^{+0.39}$	5.2σ (4.4 exp.)	STXS, CP	[Phys. Rev. Lett. 125 (2020) 061802] [JHEP 07 (2023) 088]
	$137{ m fb}^{-1}$	$1.38^{+0.36}_{-0.29}$	6.6σ (4.7 exp.)	STXS, CP	[Phys. Rev. Lett. 125 (2020) 061801] [JHEP 07 (2021) 027]	
$H \to ZZ^* \to 4l$	ATLAS	$139\mathrm{fb}^{-1}$	$1.7^{+1.7}_{-1.1}$		STXS	[Eur. Phys. J. C 80 (2020) 957]
	CMS	$137{ m fb}^{-1}$	$0.17\substack{+0.98 \\ -0.17}$	—	STXS	[Eur. Phys. J. C 81 (2021) 488]

ttH results with **full Run-2 dataset** in (almost) all channels **Major improvements in sensitivity & extended interpretations**

February 1, 2024

ttH with H $\rightarrow \gamma \gamma$

Very clean channel:

clear signature + excellent mass resolution (1%)
 → reconstruct Higgs boson from photons

But tiny rate: limited by statistical uncertainties

Benefit from large $H \rightarrow bb$ branching ratio of 58 %

But challenging final state:

- Many jets: no unambiguous event reconstruction
- Large (irreducible) background due to tt+jets production with large uncertainties

Benefit from large $H \rightarrow bb$ branching ratio of 58 %

Here: new CMS result with 138 fb⁻¹ of data at 13 TeV [CMS-PAS-HIG-19-011]

Channel	BR	Background
Fully hadronic (FH)	45%	QCD, tt+jets
Single lepton (SL)	30%	tt+jets
Dilepton (DL)	5%	tt+jets

Leptons: e or μ (no explicit τ reconstruction or veto)

Distribution in template fit, event yield (Y), ANN output (O), likelihood ratio of ANN outputs (R)

February 1, 2024

Categorisation by lepton multiplicity (=tt decay mode) and jets + b-tagged jets multiplicity

Distribution in template fit, event yield (Y), ANN output (O), likelihood ratio of ANN outputs (R)

February 1, 2024

Categorisation by lepton multiplicity (=tt decay mode) and jets + b-tagged jets multiplicity

Distribution in template fit, event yield (Y), ANN output (O), likelihood ratio of ANN outputs (R)

February 1, 2024

Categorisation by lepton multiplicity (=tt decay mode) and jets + b-tagged jets multiplicity

Typical machine-learning based analysis

Various input variables \rightarrow single discriminating observable

- Kinematic properties of jets and leptons, b-tagging information, event topology...
- Additional information from correlations

Example: Artifical Neural Network

(feed-forward fully-connected network)

Output values

Application in ttH single-lepton channel

ANN architecture

- 4 hidden layers
- 512-2048 nodes per layer
- categorical cross-entropy loss

Artificial Neural Network (ANN) for multi-classification

Several output values: how compatible is event with certain process? → categorise Final discriminant: constructed from ANN output in chosen process category

Typical analysis strategy nowadays at the LHC – pioneered among others by CMS ttH analyses

February 1, 2024

February 1, 2024

Final discriminant

February 1, 2024

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20-30% [arXiv:2309.14442, subm. to JHEP]

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20−30% [arXiv:2309.14442, subm. to JHEP]

Different **approaches** to simulate events include:

- tt ME at NLO + PS g \rightarrow bb splitting (5FS)
- tt+bb ME at NLO (4FS)

ME: matrix element, PS: parton shower, FS: flavour scheme

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20−30% [arXiv:2309.14442, subm. to JHEP]

Different **approaches** to simulate events include:

- tt ME at NLO + PS g \rightarrow bb splitting (5FS)
- tt+bb ME at NLO (4FS)

ME: matrix element, PS: parton shower, FS: flavour scheme

expect better description of kinematics and better defined uncertainties

February 1, 2024

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20-30% [arXiv:2309.14442, subm. to JHEP]

Different **approaches** to simulate events include:

- tt ME at NLO + PS g \rightarrow bb splitting (5FS)
- ttbb ME at NLO (4FS)

ME: matrix element, PS: parton shower, FS: flavour scheme

expect better description of kinematics and better defined uncertainties

tt+bb background

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20-30% [arXiv:2309.14442, subm. to JHEP]

Different **approaches** to simulate events include:

- tt ME at NLO + PS g \rightarrow bb splitting (5FS)
- ttbb ME at NLO (4FS)

ME: matrix element, PS: parton shower, FS: flavour scheme

expect better description of kinematics and better defined uncertainties

tt+bb background

tt+bb difficult to model and to measure

- Complex multi-parton final state
- Multiple, very different scales (bb, tt)
- Simulations typically underpredict cross section by ≈20-30% [arXiv:2309.14442, subm. to JHEP]

Major improvement in background model: tt+bb background from new state-of-the-art Powheg ttbb 4FS simulation [Eur. Phys. J. C78 (2018) 502]

- Improved description of jet kinematics
- Embedded into Powheg tt 5FS sample to cover full phase space
- Overall tt+bb normalisation freely-floating

February 1, 2024

Modelling uncertainties

- Freely-floating norm.
- $\mu_{R/F}$ scale
- PS scale (ISR/FSR)
- Collinear gluon-splitting
- ME-PS matching
- PDF

Model flexibility extensively validated with pseudo experiments

	me	ean value \pm RMS			
$t\bar{t}B$ component in pseudo data	$\mu_{t\bar{t}H}$	ttB norm	t t C norm		
tt+bb cross section in toy data incre	ased by 20%	1.01 ± 0.09	1.01 ± 0.18		
ttbb sample, ttB \times 1.2	1.03 ± 0.32	1.21 ± 0.15	1.01 ± 0.18		
tt+bb in toy data from different gen	erator : 0.30	1.03 ± 0.11	0.77 ± 0.18		
tt sample, ttB $ imes$ 1.2	1.06 ± 0.32	1.18 ± 0.12	0.85 ± 0.20		

Injected signal strength (1.0) and background normalisation (1.2) recovered

Are the ANN inputs well-modelled?

									2
		-	FH			iL.	C E	۱L	
		b tags	tags)	tags)	b tags	tags)	ib tags	(ss	
		VÍ.	4b	4 b	_√i	4 b	_N €	b tag	
		jets	∧i %	∧i sî	jets	∧i %	jets.	s, 31	
	Observable	Ň	(8jel	(7jel	<u>^</u>	(5jel	Ă.	(3 jet	
MEM	matrix element method discriminant	-	-	-	-	-	-		-
BLR	b tagging likelihood ratio discriminant	•	•	•	•	•	2		
ln (BLR	transformed b tagging likelihood ratio discriminant				1	1			
$n \left(1-BLR\right)$ $n = (i^2)$	n- of second loading int ranked in n-				•	•	1		
$p_{T}(j^{3})$	p_{Γ} of third leading jet, ranked in p_{Γ}						·		
$p_{T(j)}$ $n_{-}(i^{7})$	$p_{\rm T}$ of seventh leading jet, ranked in $p_{\rm T}$							•	
$p_{T}(\mathbf{b}^{i})$	$p_{\rm T}$ of $j^{\rm th}$ $i = 1-4$ leading b-tagged jet ranked in $p_{\rm T}$	•							
$p_{1}(b)$	p_1 of i^{th} $i = 1-2$ leading jet ranked in b tagging discriminant value			./			•	ſ	
(d. (i))	average b tagging discriminant value of all jets	•	•	•					
(d, (b))	average b tagging discriminant value of all b-tagged jets								
(ab (b))	third highest h tagging discriminant value of all inte								
$u_{\rm b}(\mathbf{j})$ $Var(d_{\rm c}(\mathbf{i}))$	variance of h tagging discriminant values of all jots								
$\langle AR(bb) \rangle$	average of A P between two h-tagged jets				v	v	1		
(AR(00))	average of AR between two jots	1	1				·		
min AP(ii)	minimum of AR botwoon two jets	v						1	
max AR(ij)	minimum of AR between two jets							v	
/Au(bb))	average of Att between two b-tagged lets	v	v	v	1				
(Au(ii))	average of Ar between two b-tagged jets		/	/	•	•			
(24/(JJ))/	average of 21/ between two jets	v	v	v	*	*			v
(m(b))	average invariant mass of all into				*	*			v
(m(j)) (hh	average invariant mass of an jets				*	*			
$m(DD_{\min \Delta R})$	invariant mass of pair of b-tagged jets closest in ΔR				v	v	*		
$m(JD_{\min \Delta R})$	invariant mass of pair of jet and b-tagged jet closest in ΔR	,					*		
m(JJ ₁₂₅ GeV)	invariant mass of pair of jets with mass closest to 125 Gev	*	/						
m(DD _{max m})	maximum invariant mass of pairs of b-tagged jets	v	v				*	v	
$(JDD_{max p_T})$	invariant mass of jet and pair of b-tagged jets with highest pT				/	/	*		
(PT())/	average p _T of all jets				*	*			
(p _T (D))	average p_T or all D-tagged jets				1	1			
$p_T(BD_{\min \Delta R})$	p_T of pair of b-tagged jets closest in ΔR				~	~	*	1	
$p_T(\bigcup_{\min \Delta R})$	$p_{\rm T}$ of pair of jets closest in ΔR								
$p_T(D_{\min \Delta R})$	PT of pair of jet and b-tagged jet closest in XK				/	/	,	v	
HT(J)	scalar sum of p _T of all jets				1	1	*		
M _T (D)	scalar sum of p _T of an b-tagged jets				*	v	*		
N(Lloose)	number of jets				v				
A (L tHW)+	humber of jets with loose b tag				/	/	*		
u _b (D _{top})	reconstruction				v	v			
$ \eta(q^{tHq}) ^{\dagger}$	$ \eta $ of light-quark jet from tHq reconstruction				~	~			
$m(t_{lep}^{ttH})^{\dagger}$	inv. mass of leptonically decaying t quark from $\ensuremath{t\overline{t}}\xspace H$ reconstruction				~	~			
BDT ⁱ †	reconstruction BDT output for tHq, ttH, tt hypotheses				\checkmark	\checkmark			
A, S	event aplanarity and sphericity [76]	\checkmark	\checkmark	\checkmark					
H_i^{FW}	i th , i =0-5, Fox-Wolfram moment [77]	\checkmark	~	\checkmark					i
HFW / HFW	notio of Eou Wolfram momento i -1 4	1		1					

Supervised learning with simulated data: rely on MC simulation of observables and their correlations

Are the ANN input variables well modelled?

Strategy in ttH:

Goodness-of-fit test for all variables and pairs of variables

Key aspect in many machine-learning applications at the LHC! Different to many industry applications where labelled data is available

Final discriminant

February 1, 2024

Final discriminant

February 1, 2024

Results: ttH production with H \rightarrow bb

Universität Hamburg

CMS-PAS-HIG-19-011

ttH signal strength μ_{ttH} = 0.33 +/-0.26 SM compatibility p-value: 2% Agreement with ATLAS result: $0.35^{+0.36}_{-0.34}$ [JHEP 06 (2022) 97]

Uncertainties

Uncertainty source	$\Delta \mu_{t\bar{t}H}$ (observed)	$\Delta \mu_{t\bar{t}H}$ (expected)
Total experimental	+0.10/-0.10	+0.11/-0.10
jet energy scale and resolution	+0.08 / -0.07	+0.09/-0.09
b tagging	+0.07/-0.06	+0.06/-0.02
luminosity	+0.02/-0.02	+0.01/-0.01
Total theory	+0.16 / -0.16	+0.18/-0.14
t $ar{\mathrm{t}}+\mathrm{jets}\mathrm{background}$	+0.15/-0.16	+0.12/-0.11
signal modelling	+0.06/-0.01	+0.13/-0.06
Size of the simulated event samples	+0.13/-0.12	+0.10/-0.10
Total systematic	+0.20/-0.21	+0.23/-0.19
Statistical	+0.17/-0.16	+0.17/-0.17
background normalisation	+0.13 / -0.13	+0.13/-0.13
$t\bar{t}B$ and $t\bar{t}C$ normalisation	+0.12/-0.12	+0.12/-0.12
QCD normalisation	+0.01/-0.01	+0.01/-0.01
Total	+0.26/-0.26	+0.28/-0.25

Sensitivity limited by systematic uncertainties

Jet energy calibration & b-tagging

tt+bb modelling uncertainties

Size of simulated event samples

Results on tH production

CMS-PAS-HIG-19-011

February 1, 2024

Coupling interpretation

CMS-PAS-HIG-19-011

February 1, 2024

Coupling interpretation

February 1, 2024

CP interpretation

CP-odd component in top-Higgs interaction? In principle allowed at tree level!

$$\mathcal{A}(\mathrm{Htt}) = -\frac{m_{\mathrm{t}}}{v}\overline{\psi}_{\mathrm{t}}\left(\kappa_{\mathrm{t}} + \mathrm{i}\tilde{\kappa}_{\mathrm{t}}\gamma_{5}\right)\psi_{\mathrm{t}}$$

CP-even/CP-odd Yukawa coupling (SM: $\kappa_t = 1$, $\kappa_t = 0$)

→ can modify ttH and tH rates and kinematics differently

Simultaneoulsy floating ttH and tH contributions \rightarrow constraints on CP-odd top-Higgs coupling κ_t

Beyond inclusive measurements

New physics might modify kinematics → measure differentially! ("Simplified Template Cross Section", STXS)

February 1, 2024

Beyond inclusive measurements

New physics might modify kinematics → measure differentially! ("Simplified Template Cross Section", STXS)

February 1, 2024

ttH production in bins of $p_T(H)$

Distribution in template fit, event yield (Y), ANN output (O), likelihood ratio of ANN outputs (R)

February 1, 2024

ttH production in bins of $p_T(H)$

CMS-PAS-HIG-19-011

Sensitivity still limited but **interesting for future measurements and combination** with other channels

February 1, 2024

ttH production in bins of $p_T(H)$

CMS-PAS-HIG-19-011

February 1, 2024

February 1, 2024

Higgs-boson self-coupling

Universität Hamburg

The Higgs boson is special! Has properties and interactions never seen before

Yukawa couplings deeply connected to fermion masses Coupling to top quark particularly exciting – measurement via ttH production

Observation of ttH production in 2018, since then much improved results in all channels

■ New CMS result in H → bb channel: very powerful but limited by tt+bb modelling

Extended interpretations of ttH measurements

- Coupling and CP interpretations
- STXS results as first step towards differential measurements

ttH has a huge potential:

The measurements are challenging but give us a powerful probe of the SM and possible new physics

LHC Run 2 analyses have paved the way ahead

Additional material

In the Standard Model (SM) of particle physics, the Higgs boson is deeply related to the mechanism that creates the masses of elementary particles and, as such, has very characteristic properties, which are different from any other known particle. The large data samples collected at the LHC, together with new analysis techniques, allow measurements of Higgs boson production and properties at unprecedented precision. The results play a crucial role in probing the SM and provide a unique window to revealing potential new physics effects.

The coupling of the Higgs boson to the heaviest known quark, the top quark, is particularly exciting because it is large and, therefore, has a strong impact on the SM or possible new physics. The best direct measurement of the top-Higgs coupling is achieved in events where a top quark-antiquark pair is produced in association with a Higgs boson (ttH production). In the presentation, I will review the status of ttH measurements, and I will present a new result by the CMS Collaboration in the bb decay channel of the Higgs boson. The analysis benefits from improved modelling of the challenging background due to tt+bb production as well as refined analysis methods exploiting advanced machine-learning techniques. Finally, I will outline prospects for future ttH measurements at the ongoing LHC Run 3 and the High-Luminosity LHC.

Special, unlike anything we have seen before!

February 1, 2024

The CMS detector

February 1, 2024

The CMS Detector

All detector components needed in Higgs analyses Very different signatures depending on the production and decay modes

CMS-PAS-HIG-19-011

	tī sample	$t\bar{t}b\bar{b}$ sample
POWHEG version	Powheg v2	Powheg-Box-Res
PYTHIA version	8.230	8.230
Flavour scheme	5	4
PDF set	NNPDF3.1	NNPDF3.1
m _t	172.5 GeV	172.5 GeV
m _b	0	4.75 GeV
$\mu_{ m R}$	$\sqrt{\frac{1}{2}\left(m_{\mathrm{T,t}}^2+m_{\mathrm{T,\bar{t}}}^2\right)}$	$\frac{1}{2}\sqrt[4]{m_{\mathrm{T,t}}\cdot m_{\mathrm{T,\bar{t}}}\cdot m_{\mathrm{T,b}}\cdot m_{\mathrm{T,\bar{b}}}}$
$\mu_{ m F}$	$\mu_{ m R}$	$\frac{1}{4}\left[m_{\mathrm{T,t}} + m_{\mathrm{T,\bar{t}}} + m_{\mathrm{T,b}} + m_{\mathrm{T,\bar{b}}} + m_{\mathrm{T,g}}\right]$
h _{damp}	$1.379 \cdot m_{\rm t}$	$1.379 \cdot m_{\rm t}$
Tune	CP5	CP5

February 1, 2024

Analysis strategy in FH channel

Closure test in data in VR

QCD-background estimation

CMS-PAS-HIG-19-011

- In CR: ANN_{QCD} = ANN_{data} − ANN_{non-QCD bkg. (from MC)} → shape of ANN distribution
- Normalisation in SR freely-floating in final fit
 - Independently per N_{jets} category and year: 9 QCD normalisation parameters

Systematic uncertainties

CMS-PAS-HIG-19-011

Source	Туре	Correlation	Remarks				
Renorm./fact. scales	R	correlated	Scale uncertainty of (N)NLO prediction, indepen- dent for tīH, tHq, tHW, tī, t, V+jets, VV				
PDF+ $\alpha_{\rm S}$ (gg)	R	correlated	PDF uncertainty for gg initiated processes, independent for $t\bar{t}H$, tHq , tHW , and others				
PDF+ $\alpha_{\rm S}$ (q $\overline{\rm q}$)	R	correlated	PDF uncertainty of $q\overline{q}$ initiated processes (t $\bar{t}W$,W,Z) except tHq	PS scale FSR ⁺	s	correlated	Final state radiation uncertainty of the PS
PDF+ $\alpha_{\rm S}$ (qg)	R	correlated	PDF uncertainty of qg initiated processes (single t) except tHW				(PYTHIA), independent for $t\bar{t}H$, $t\bar{t}B$ ($t\bar{t}b\bar{b}$ sample), other $t\bar{t}$ ($t\bar{t}$ sample)
Collinear gluon splitting [†]	S	correlated	Additional 100% rate uncertainty on $t\bar{t}+2b$ component of $t\bar{t}B$ background	ME-PS matching $(t\bar{t})^{\dagger}$	R	correlated	NLO ME-PS matching (for $t\bar{t}$ + jets events), independent for $t\bar{t}B$, $t\bar{t}C$, $t\bar{t}LF$
$\mu_{\rm R}$ scaleScorrelatedRenormalisation scale uncertainty of the ME generator, independent for tTH, tHq, tHW, tTB (tTbb sample), other tT (tT sample) $\mu_{\rm F}$ scaleScorrelatedFactorisation scale uncertainty of the ME generator, independent for tTH, tHq, tHW, tTB (tTbb sample), other tT (tT sample)PDF shapeScorrelatedFrom NNPDF variations, independent for tHq, tHW, tTHq, tHW, tHW, tTHq, tHW, tTHq, tHW, tHW, tHW, tHW, tHW, tHW, tHW, tHW	Renormalisation scale uncertainty of the ME gen-	Underlying event $(t\bar{t})$	R	correlated	Underlying event (for all $t\bar{t} + jets$ events)		
	erator, independent for ttH, tHq, tHW, ttB (ttbb	STXS migration	R	correlated	Signal, only in STXS measurement		
	STXS acceptance	S	correlated	Signal, only in STXS measurement			
			ator, independent for $t\bar{t}H$, tHq , tHW , $t\bar{t}B$ ($t\bar{t}b\bar{b}$	Integrated luminosity	R	partially	Signal and all backgrounds
	sample), other tt (tt sample)	Lepton ID/Iso (2 sources)	S	uncorrelated	Signal and all backgrounds		
	5	correlated	From NNPDF variations, independent for tHq, tHW, ttB (ttbb sample), other tt (tt sample) and	Trigger efficiency (4 sources)	S	uncorrelated	Signal and all backgrounds
				L1 prefiring correction	S	uncorrelated	Signal and all backgrounds
PS scale ISR ⁺	S	correlated	Initial state radiation uncertainty of the PS	Pileup	S	correlated	Signal and all backgrounds
	-		(PYTHIA), independent for $t\bar{t}H$, $t\bar{t}B$ ($t\bar{t}b\bar{b}$ sample), other $t\bar{t}$ ($t\bar{t}$ sample)	Jet energy scale (11 sources)	S	partially	Signal, $t\bar{t} + jets$ and single t
				Jet energy resolution	S	uncorrelated	Signal, $t\bar{t} + jets$ and single t
				b tag bkg. contam. (2 sources)	S	partially	Signal and all backgrounds
				b tag bkg. contam. stat. (4 sources)	S	uncorrelated	Signal and all backgrounds
				b tag charm (2 sources)	S	partially	Signal and all backgrounds
				TF _{loose} correction	S	uncorrelated	QCD background estimate
				Size of the MC samples	S	uncorrelated	Statistical uncertainty of signal and background prediction due to limited sample size

Systematic uncertainties

CMS-PAS-HIG-19-011

February 1, 2024

Background validation

CMS-PAS-HIG-19-011

Post-fit background model obtained from main analysis fit to data

February 1, 2024

tH and ttH cross sections

February 1, 2024
CP interpretation

CP-odd component in top-Higgs interaction? In principle allowed at tree level!

$$\mathcal{A}(\mathrm{Htt}) = -\frac{m_{\mathrm{t}}}{v}\overline{\psi}_{\mathrm{t}}\left(\kappa_{\mathrm{t}} + \mathrm{i}\tilde{\kappa}_{\mathrm{t}}\gamma_{5}\right)\psi_{\mathrm{t}}$$

CP-even/CP-odd Yukawa coupling (SM: $\kappa_t = 1$, $\kappa_t = 0$)

→ can modify ttH and tH rates and kinematics differently

Simultaneoulsy floating ttH and tH contributions \rightarrow constraints on CP-odd top-Higgs coupling κ_t

February 1, 2024

Matthias Schröder | The Higgs Boson with Toppings

Higgs-boson self-coupling

February 1, 2024

Higgs-boson self-coupling

February 1, 2024

Matthias Schröder | The Higgs Boson with Toppings