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Context and Motivations

Modified gravity:
@ Parametrizing deviations w.r.t to GR
— early and late cosmology (dark sector) / compact objects

@ Scalar-tensor theories with (guv, ¢) : Horndeski — GLPV — DHOST theories
[Horndeski '74] — [Langlois, Noui '15]
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@ Almost all the investigations focus on the linearized theory
@ How to investigate the fully non-linear regime ? What phenomenolgy at the non-linear level ?
— gravitational memory effects / black hole formation from colliding gravitational waves

Studying the non-linear regime: two approaches
o 1) identify the symmetries at null-infinity in modified gravity and their flux-balance laws
In GR, Bondi mass loss: M(u) = F — BMS flux-balance law
Extension to Brans-Dicke [Tahura, Nichols, Shaffer, Stein, Yagi '20][Hou, Zhu '20][Seraj '21]
@ 2) construct exact non-perturbative radiative solutions :
pp-waves, Kundt, Robinson-Trautman exact solutions in GR — useful laboratory
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« Disformal solution-generating method and Petrov classification
« Exact non-perturbative radiative solution in Horndeski

* Polarizations at the non-perturbative level: Penrose limit
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Disformal solution-generating method and Petrov classification
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Disformal solution-generating method and Petrov classification

Disformal solution-generating map

o Disformal transformation (DT) :

(Guv, @) = (Guv = Aguw + Boudu, @) (1)
with A := A(¢, X), B .= B(¢, X) and X = g*’ ¢, ..
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Provide a solution-generating map to explore the solution space [BA, Mukohyama, Liu '20]

Useful to investigate black hole perturbations [Langlois, Noui, Roussille '22]

@ Remarkably efficient to explore the theory and solution spaces of modified gravity theories
Petrov classification

o Classification from the 60’s based on the algebraic properties (Petrov type) of the Weyl tensor
o Provide general theorems : Petrov type <> behavior of light rays [Goldberg, Sachs '62]

o Provide a guiding map to derive new exact solutions in GR (among which Kerr)

— Can we keep under control how the Petrov type change under disformal transformation 7
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Disformal solution-generating method and Petrov classification

Petrov classification in a nutshell
o Pick up a null tetrad E

0 -1 0 O

-1 0 0 0
Guv = ELEPnas naB = 0 0 o0 1 (2)

0 0 1 0

associated to four null vectors ¢ = Ef, n# = E}f, m* = Ef, mt = E¥
tn,=-1  mtm, =1 (3
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@ Multiplicity of the root b defines the Petrov type: four simple roots — Petrov type |
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Disformal solution-generating method and Petrov classification

Petrov classification: Lorentz invariant formulation

@ Consider the Lorentz invariant spectral index:

v, W3 W,
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If S # 0, then the geometry is not algebraically special: Petrov type |
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Petrov classification: Lorentz invariant formulation

@ Consider the Lorentz invariant spectral index:

v, W3 W,
| = oWy — 4 W3 4 303 J=det| w3 W, W, S=1-27,
vy WV Wy

If S # 0, then the geometry is not algebraically special: Petrov type |
@ The remaining types can be deduced from the quantities
K =WiW; —3W W3y +2W3 [ = W, — W3 N=12L2 — w2 ©)

Type ll: S=0

Type lll: =J=0

Type D: S=K=N=0
TypeN: I =J=K=L=0

@ How does the Petrov type change under a disformal transformation ?

@ Can we get close formula to keep control on this change ?
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Disformal solution-generating method and Petrov classification

Disformal transformation on the tetrad field
@ Usually, DT are written at the level of the metric

(9uv, ®) = (Guv = Aduw + Bdudv, @) (8)
with A 1= A(¢, X), B := B(¢, X) and X = g*¢, ¢, .
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with A 1= A(¢, X), B := B(¢, X) and X = g*¢, ¢, .
@ To understand the change in the Newman-Penrose quantities, implement DT on the tetrad
@ Introduce the J-map

JAB=¢Z(6AB+1_BX¢A¢B) 6:;[1—\/% 9
with ¢4 = EX¢u and X = ad” = puot
@ Allows one to implement DT in a local rest frame:
(Bl = P6E2 Gu = (ScEO(P0ED o = Agus + Bouby (10)
o Close formula for the disformed null directions:
G o B (PAEDUCS) = ] (D)
o Close formula for the disformed optical scalars: expansion ©, twist w, shear o
6= % [@ — MV, (VA D) — @vu (\%e%awﬂ (12)

@ Formula for the change of Weyl scalars and thus of Petrov type :

— guide for new exact solutions [BA, De Felice, Gorji, Mukohyama, Pookilath '22]
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Disformal solution-generating method and Petrov classification

Applications

o Disformed static spherically symmetric spacetime : for example Schwarzschild
ds? = —f(r)dt? 4 g(r)dr? + r?dQ? o(t,r) (13)

Seed is Petrov type D — disformed geometry remains of Petrov type D
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Applications

o Disformed static spherically symmetric spacetime : for example Schwarzschild
ds? = —f(r)dt? + g(r)dr? + r?2d0? o(t, r)

Seed is Petrov type D — disformed geometry remains of Petrov type D
o Disformed Kerr black hole

2
oM 2 2
ds? = ds,,, + Bo <dt + ”r(ArJra)dr> o(t.r)

Seed is Petrov type D — Disformed spectral index is
S=1P 272 =B¥x+0(B})#0

Disformed Kerr geometry becomes of Petrov type |
Loss of symmetry : Killing-Yano tensor only for type D and N
[BA, De Felice, Gorji, Mukohyama, Pookilath '22]

(13)

(14)

(15)
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Disformal solution-generating method and Petrov classification

@ Use disformal solution-generating method to construct exact radiative solutions
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Constructing exact non-perturbative radiative solution in Horndeski
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@ We need to identify a seed solution: consider the Einstein-Scalar system

1
S = > / d*xv/|g] (R — g"* 8,00, ¢)
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o Exact radiative solution of this system [Tahamtan and Svitec '15 "16]

rBuF + K(x,y) r?F2(u) — C§

ds® = ) du? — 2dudr + W(dx2 +dy?)
1 rF(u) — Co
)= 750 |y

where

2

F(u) = ye¥t AK(x,y) = 4C3w? = o®  K(x,y) = P? (82, +82,) log P = Alog P

o Parametrized by three real numbers (v, w, Cp): restrict to w # 0
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)= 750 |y

where

2

F(u) = ye“™ AK(x,y) = 4C3w? = o®  K(x,y) = P? (82, +82,) log P = Alog P
o Parametrized by three real numbers (v, w, Cp): restrict to w # 0
@ a = 0 imposes spherical symmetry

1424y

P
0 2

Ko =1 (16)

@ Cp (or a) encode the scalar charge : scalar profile is a time-dependent monopole
@ What are its properties ?
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o Better described in another coordinate system: (u,r, x,y) — (w, p, x,y)

ds? = —K(x, y)dw? — 2dwdp + 2 = (if ())(dx +dy?)
_ 1 p—x(w)
$=3"% [Hx(w)] e
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ds?

= —K(x, y)dw? 72dwdp+ 52 (if ())(dx +dy?)
_ 1 p—x(w)
0= 518 S ) 4
@ Function x(w) behaves as a pulse:
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The seed
o Better described in another coordinate system: (u, r, x, y) — (w,p,x,y)

ds? = —K(x, y)dw? f2dwdp+ — (W)

P2 (x.y) (dx® + dy?)
_ 1 p—x(w)
¢=5" |:P+X(W)]

@ Function x(w) behaves as a pulse:

(17)

o Asymptotic regimes : when w — £wp, we have X = g"‘ﬁcbad)ﬁ —0
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The seed
o Better described in another coordinate system: (u, r, x, y) —(w,p,x,¥)
ds?

= —K(x,y)dw? f2dwdp+ — (W)

P2 (x.y) (dx® + dy?)
1 p— x(W)]
—
$=3 [p+x(W)
@ Function x(w) behaves as a pulse

(17)

o Asymptotic regimes : when w — £wp, we have X = g"‘ﬁcbad)ﬁ —0

@ In between, when w = 0: scalar energy X — pulse localized on the equator
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@ In between, when w = 0: scalar energy X — pulse localized on the equator
2x*(0)K (x, y)

X(0,p0.x,y) = #0

(p? —x2(0))?

@ This solution describes a scalar pulse localized on the equator

[BA, Gorji, Roussille '23]

(18)

@ What type of gravitational wave propagate in this geometry ?
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Scalar pulse and longitudinal mode

@ Null directions and optical scalars:

P(x.y)

Ly, — HOy = Ow — HOu = e
248, =8, "oy = 0w — K(x,y)0p m*o, = 2002 — x2(w))

(0x + idy) (19)

and

@(p,w):—ﬁm w=0 c=0 (20)

— purely expanding null congruence: no twist and no shear
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Ly, — HOy = Ow — HOu = e
248, =8, "oy = 0w — K(x,y)0p m*o, = 2002 — x2(w))

(0x + idy) (19)

and
@(p,w):—# w=0 c=0 (20)
0% —x2(w)
— purely expanding null congruence: no twist and no shear

@ Petrov type Il : belongs to the family of Robinson-Trautman exact solutions with matter

@ Picture the gravitational wave:
— compute the gaussian curvature K of the topological 2-sphere

a

gez = PP =xPw)
5 PAxy)

— Scalar pulse simply rescales the spatial curvature K(x, y)
— pure longitudinal (breathing) mode

(dx2 + dy2) K(w,x,y)= (21)
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Scalar pulse and longitudinal mode

@ Null directions and optical scalars:

P(x.y)

Ly, — HOy = Ow — HOu = e
248, =8, "oy = 0w — K(x,y)0p m*o, = 2002 — x2(w))

(0x + idy) (19)

and
@(p,w):—# w=0 c=0 (20)
0% —x2(w)
— purely expanding null congruence: no twist and no shear

@ Petrov type Il : belongs to the family of Robinson-Trautman exact solutions with matter

@ Picture the gravitational wave:
— compute the gaussian curvature K of the topological 2-sphere

2 PP —xX*(w) _ X*(WK(x,y)
dsi = W(dx +dy?) K(w,x,y)= T (21)
— Scalar pulse simply rescales the spatial curvature K(x, y)
— pure longitudinal (breathing) mode
@ Expected from a pure monopole scalar source | ¢(w, p) = f log [p+xgw;]
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Scalar pulse in Horndeski theory

@ What radiative gravitational field can be sourced by the same scalar pulse in Horndeski ?
@ How does the mixing from higher order terms manifest at the fully non-linear level ?
@ Accessible by a disformal transformation
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Scalar pulse in Horndeski theory

Disformal map

o Consider the simplest disformal transformation of the Einstein-Scalar system

(guv. ®) = (Guv = Guv + Bodudv, ¢) (22)

15/26



Scalar pulse in Horndeski theory
Disformal map
o Consider the simplest disformal transformation of the Einstein-Scalar system

(Guv. @) = (Guv = Guv + Bodudv, d)
@ The new action is given by an Horndeski theory

(22)
Slau 81 = [ @x/I5] [62(R) + G4(RIR = 264x(X) (Q9)* ~ buwt™)]  (23)
and the two functions (Gaz, Gy):
G2(X) = g Ga(X) = ﬁ (24)
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Disformal map

o Consider the simplest disformal transformation of the Einstein-Scalar system

(guv. ®) = (Guv = Guv + Bodudv, ¢) (22)

@ The new action is given by an Horndeski theory
Slau 81 = [ @x/I5] [62(R) + G4(RIR = 264x(X) (Q9)* ~ buwt™)]  (23)

and the two functions (Gaz, Gy):

1

v1— Bo)?

Go(X) = Ga(X) = (24)

N | X

Key points:
@ DT are a pure field redefinition
o New physics show up by (implicitly) assuming that test fields couple to gu.
— different causal structure
— different principal null directions
— different Petrov type
— different geodesics

o Disformal transformation of the seed solution reveals the effects of the higher order terms
(controlled by Bg) in the presence of a monopole scalar source
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Scalar pulse in Horndeski theory

The new exact solution

@ The scalar profile remains unchanged: scalar monopole

ilog {p—x(W)} 2x(w)

_ _ =2px/(w)
V2 Lo+ x(w) A

dw = e (25)

d(w.p) = 2
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Scalar pulse in Horndeski theory

The new exact solution

@ The scalar profile remains unchanged: scalar monopole

d(w, p) =

V2

@ The new exact radiative solution of Horndeski gravity reads

P+ x(w) P -x? P2 —x?

0? — x*(w)
P2(x,y)

+ Bo (@7, AW’ + 20w ¢p dwdp + ¢ dp?] (26)

ds® = —K(x, y)dw? — 2dwdp + (dx? + dy?)

where the functions x(w), K(x,y) and P(x, y) remain unchanged
Co

VU(w)

where o2 = 4C[2)w2 is again the scalar charge.

x(w) = K(x,y) = Alog P AK(x,y) = 4C3w? = a? (27)
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Scalar pulse in Horndeski theory

The new exact solution

@ The scalar profile remains unchanged: scalar monopole

p—x(w) 2x(w) —2px'(w)
d(w, p) = |og{7} - b = b = X 25
()= 75199 | 5 xw) e e P

@ The new exact radiative solution of Horndeski gravity reads
P> — x> (w)
ds® = —K(x, y)dw? — 2dwdp + ﬁ(dx +dy?)
+ Bo [¢2, dw? + 2¢w ¢, dwdp + ¢2 dp?] (26)
where the functions x(w), K(x,y) and P(x, y) remain unchanged

x(w) = o K(x,y) = Alog P AK(x,y) = 4C3w? = a? (27)

VU(w)
where o2 = 4C[2)w2 is again the scalar charge.

@ What are the properties of this solution ? How does it deviate from the seed one ?
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Scalar pulse in Horndeski theory
Asymptotic regimes w — +wy
@ In the remote past and far future: non-spherically symmetric.

i Q 0
2_ _ ¥ 2 _ 2 2
ngwo ds® = [K(x,y) pQ} dw® — 2dwdp + P2(x.7) (dx* 4+ dy?) (28)
: V2x(w)
wiTwo ¢= f -0 (29)
im X =0 (30)
w—twy

@ Qualitative difference with the GR solution: electric-like charge Q

2 H /\2
Q= WgrEWO4Bo(X)
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Scalar pulse in Horndeski theory

Asymptotic regimes w — +wy
@ In the remote past and far future: non-spherically symmetric.

. Q
2 _ 2 2
ngwo ds® = [K(x,y) 02} dw? — 2dwdp + P2( )(dx +dy) (28)
2
im = Y2XM (29)
w—Ewy o
lim X=0 (30)
w—twy
@ Qualitative difference with the GR solution: electric-like charge Q
2 __ H /N2
Q= lim 4Bo(x)
Maximum of the pusle: w =0
@ The metric and the scalar profile become
) 430C2 02
2 _ 2 _ 2 2
v!/ITO ds® = —K(x, y)dw® — 2dwdp + P Cz)zdp + P2(x.y) (dx* + dy?) (31)
1 —C
lim ¢ = —= log {m] (32)
w0 V2 Vp+Co
o The electric-like charge Q has disappeared but new contribution in gy,
@ Kinetic energy of the scalar:
AyK(x,y)C2
X = KX )G £0 (33)

(0? — C2)? +4BoYCEK(x,y)Bo
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@ What type of gravitational waves propagate ?
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Eh0. = (OB, + 8o VE, + 8] DEL) 0,
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Scalar pulse in Horndeski theory

@ What type of gravitational waves propagate ?
o First step: construct a null tetrad. For simplicity, expand up to second order in By

Eh0. = (OB, + 8o VE, + 8] DEL) 0,
@ Spectral index : Petrov type Il — Petrov type |

S=13—272 =BG+ O(B})#0

New phenomenolgy
@ The optical scalars reveal the non-linear superposition of breathing and shearing modes
6 =0+ ByO; + B2o,

& = B2oa

with
(0* = x?)
96’

If Co = 0, the shear vanishes.

o) = [300°x — 800%x* + 660x° + 15v2(p? — x?)*¢] Wo (34)

@ Mixing between the scalar and tensor sectors generate a shear even in the presence of a pure
scalar monopole

@ Originate from the higher order terms in the dynamics
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Scalar pulse in Horndeski theory

@ What type of gravitational waves propagate ?
o First step: construct a null tetrad. For simplicity, expand up to second order in By

Eh0. = (OB, + 8o VE, + 8] DEL) 0,
@ Spectral index : Petrov type Il — Petrov type |

S=13—272 =BG+ O(B})#0

New phenomenolgy
@ The optical scalars reveal the non-linear superposition of breathing and shearing modes

6 =0+ ByO; + B2o,

&

5(2)0'2
with

N 'S
2 967

If Co = 0, the shear vanishes.

[30p5x —80px> + 66px° + 15v2(p* — x2)3¢] Vo (34)

@ Mixing between the scalar and tensor sectors generate a shear even in the presence of a pure
scalar monopole

@ Originate from the higher order terms in the dynamics
@ Does this effect survive a perturbative analysis ?

18/26



Scalar pulse in Horndeski theory

The non-perturbative origin of the shear
@ Most natural set-up to perform a perturbative approach, take the scalar profile and consider a
small pulse x := €(w)
(w)

d(w,p) ~ =2 (35)
o
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The non-perturbative origin of the shear

@ Most natural set-up to perform a perturbative approach, take the scalar profile and consider a
small pulse x := €(w)

€(w)
d(w, p) ~ —— (35)
0
@ At the linearized level,
o, >~0 (36)
— the generation of shear from the scalar monopole is a purely non-perturbative effect
Further understanding the generation of the shear
@ Newman-Penrose equations for optical scalars in GR:
DO = w? — 82 — g% — Py Raychaudhuri (37)
1
Dw = Eew (38)
Do = —200 + VY (39)
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Scalar pulse in Horndeski theory

The non-perturbative origin of the shear

@ Most natural set-up to perform a perturbative approach, take the scalar profile and consider a
small pulse x := €(w)

€(w)
d(w, p) ~ —— (35)
0
@ At the linearized level,
o, >~0 (36)
— the generation of shear from the scalar monopole is a purely non-perturbative effect
Further understanding the generation of the shear
@ Newman-Penrose equations for optical scalars in GR:
DO = w? — 82 — g% — Py Raychaudhuri (37)
1
Dw = Eew (38)
Do = —200 + VY (39)

@ How are they modified in Horndeski theory ? In modified gravity ? [BA, Roussille - in progress|
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Identifying the polarizations at the non-perturbative level: Penrose limit
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A tool to identify the polarizations: Penrose limit

@ In the linearized theory
Juv = S_]uu + huu (40)
After gauge-fixing, polarization can be read off from hy,. Not available in the fully non-linear
regime.
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ds® = 2dudV + [Ho(X? + Y?) + {H4+(X? = Y?) + He XY }] dv? + dX? + dY? (41)

@ Hy and Hx encode the spin-2 shearing modes / H, is the trace mode
@ Can sum up two wave profiles even at the non-linear level !

Penrose limit

o For a given geometry and a given geodesic (guv,y), the Penrose limit allows one to associate
a pp-wave encoding the leading tidal forces (w.r.t the transverse distance to the observer
geodesic wolrdline) experienced by the observer

(guv. ) — pp-wave geometry (42)
[Penrose '76]
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linearized gravitational waves

ds® = 2dudV + [Ho(X? + Y?) + {H4+(X? = Y?) + He XY }] dv? + dX? + dY? (41)

@ Hy and Hx encode the spin-2 shearing modes / H, is the trace mode
@ Can sum up two wave profiles even at the non-linear level !

Penrose limit

o For a given geometry and a given geodesic (guv,y), the Penrose limit allows one to associate
a pp-wave encoding the leading tidal forces (w.r.t the transverse distance to the observer
geodesic wolrdline) experienced by the observer

(guv. ) — pp-wave geometry (42)

[Penrose '76]
@ Applied to a radiative geometry, it allows one to read the polarizations of the propagating
wave inducing these non-linear tidal effects from (Ho, H+, Hx)
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A tool to identify the polarizations: Penrose limit

@ For our new radiative solution: get a pp-wave profile with (Ho, H+, Hx) non-zero
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A tool to identify the polarizations: Penrose limit

@ For our new radiative solution: get a pp-wave profile with (Ho, H+, Hx) non-zero

o Explicitly, (H+, Hx) take a very simple form for our choice of tetrad
1 1
Hy = ERe(\UO) Hy = §|m(w0) (43)

with the Weyl scalar W given by

Vo — B2X4P(P82§K+26§K62P)
T @ =)

+0(BY) (44)
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A tool to identify the polarizations: Penrose limit

@ For our new radiative solution: get a pp-wave profile with (Ho, H+, Hx) non-zero

o Explicitly, (H+, Hx) take a very simple form for our choice of tetrad
1 1
Hy = ERe(\UO) Hy = Elm(WO) (43)

with the Weyl scalar W given by

Vo — B2X4P(P82§K+26§K62P)
T @ =)

@ Consistent with the non-perturbative shear identified at order O(B%)

+0(BY) (44)

@ Allow to compute and compare the memory effects in the GR and Horndeski solutions
[BA, Gorji, Roussille '23]
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Exploring new exact (radiative) solutions

@ Disformal solution generating : powerful trick to explore the DHOST solution space
[BA, Mukohyama, Liu '20]

@ Disformal Petrov classification : guide to construct new solutions
[BA, De Felice, Gorji, Mukohyama, Pookilath '22]

@ A new non-perturbative exact radiative solution in Horndeski theory
— a scalar pulse generating a non-linear superposition of breathing mode and shear
[BA, Gorji, Roussille '23]

@ Reveal a new phenomenology of a purely non-perturbative origin ...
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@ Exploring the non-perturbative radiative regime of modified gravity
i) construct exact solutions / ii) identify the modified flux-balance laws (symmetries)

Exploring new exact (radiative) solutions

@ Disformal solution generating : powerful trick to explore the DHOST solution space
[BA, Mukohyama, Liu '20]

@ Disformal Petrov classification : guide to construct new solutions
[BA, De Felice, Gorji, Mukohyama, Pookilath '22]

@ A new non-perturbative exact radiative solution in Horndeski theory
— a scalar pulse generating a non-linear superposition of breathing mode and shear
[BA, Gorji, Roussille '23]

@ Reveal a new phenomenology of a purely non-perturbative origin ...

Identifying the modified flux-balance laws/symmetries of modified gravity

@ Apply the Newman-Penrose formalism to DHOST to further understand mixing between
scalar/tensor sectors for GW [BA, Roussille - in progress|

o Fluxes-balance laws by covariant phase space methods in modified gravity
Exist for Brans-Dicke [Tahura, Nichols, Shaffer, Stein, Yagi '20][Hou, Zhu '20][Seraj '21]
What about higher order modified gravity ?
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Singularity and horizons

@ Singularity in the GR solution: p = x(w)
o Additional singularity in the Horndeski solution:

p* —2(0® + BoK(x,y)) x> + x* — 4Bopxx' =0 (45)
At w = 0, singularity located at
C? Cc?
pf:lj:\/l—&-’yg [2BOK(x,y)—Tg (46)
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Singularity and horizons

@ Singularity in the GR solution: p = x(w)
o Additional singularity in the Horndeski solution:

p* =2 (0* + BoK(x,y)) x* + x* — 4Bopxx' =0 (45)
At w = 0, singularity located at

> @ <
pP2=1%+ 1+? 2BoK(x,y)—? (46)

@ Null directions
P(x.y)

49, =8 mto, = —————F
B V200 =)

((Mx + iMy)d, + 8x + i8y) (47)

P(x,y)? [K(X.y) P(x,y)? 2 2
#8, = b, ———(Mx0x + M,d,) — - M. M2)| 9,
MO = Bty MRt MB) — | o Sy (Mt M) 2
(48)
which is orthogonal to the surface p = M(x, y) and satisfies the standard orthogonality
relations
Hn,=-1, mtm, =1 (49)
while *my = n*my = 0.
@ Expansions
AsM — pk(x,y) — 2x(w)x'(w VsM|J?
e P o, AMopkiy) i) _AIVsMIZ_
p? —x(w) 2(p* = x(w)?) 2(p* = x(w)?)

@ Equation for the dynamical apparent horizon ©, =0
@ In general, very hard to solve .... even in GR 25 /26



Penrose limit

@ Concretely, pick up a null geodesic v and construct null Fermi coordinates X# = (U, V, X')
with i € (1,2) adapted to the region around the geodesic

XA = Efx? + E[THpx7x” + O((x)?) (51)
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Penrose limit
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with i € (1,2) adapted to the region around the geodesic
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@ Concretely, pick up a null geodesic v and construct null Fermi coordinates X# = (U, V, X')
with i € (1,2) adapted to the region around the geodesic

XA = Efx? + EJTH 5x7x” + O((x%)?) (51)
@ In the region around the geodesic 7y, the gravitational field can be described as
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4 _ . 1 . .
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+0(X3) (52)

@ Organize this expansion in x? using conformal transformation of the transverse space:
(U, V, X'y = (U, N2V, A X")
o Peeling behavior of the Weyl scalars

v; = O+ for i € (0, ..., 4) (53)
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@ Organize this expansion in x? using conformal transformation of the transverse space:
(U, V, X'y = (U, N2V, A X")
@ Peeling behavior of the Weyl scalars

v, =0 for i€ (0,...,4) (53)
@ Penrose limit amounts at selecting the leading contribution: coincides with a pp-wave
ds? = 2dUdV + A (U)X XIdN2 + §;;d X dX! (54)
with
Ajj(U) = Rujuj(U) = Ruvpo EfEY EJEY (55)

[Penrose '76][Blau '19]
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o Read the polarizations from the matrix A;;(U)
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@ Organize this expansion in x? using conformal transformation of the transverse space:
(U, V, X'y = (U, N2V, A X")
@ Peeling behavior of the Weyl scalars

v, =0 for i€ (0,...,4) (53)
@ Penrose limit amounts at selecting the leading contribution: coincides with a pp-wave
ds? = 2dUdV + A (U)X XIdN2 + §;;d X dX! (54)
with
Ajj(U) = Rujuj(U) = Ruvpo EfEY EJEY (55)

[Penrose '76][Blau '19]
o Read the polarizations from the matrix A;;(U)
Full non-perturbative approach: we never ask that A;(U) be "small"
o Also powerful to compute the memory effects explicitly
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