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Context and Motivations
Modified gravity:
Parametrizing deviations w.r.t to GR
→ early and late cosmology (dark sector) / compact objects
Scalar-tensor theories with (gµν , φ) : Horndeski → GLPV → DHOST theories
[Horndeski ’74] → [Langlois, Noui ’15]

Impact on gravitational wave production and propagation ?
Effect 1: new scalar polarization and mixing between scalar/tensor sectors
[Kobayashi, Yamaguchi, Yokoyama ’11][Dalang, Fleury, Lombriser ’ 19][Creminelli,Tambalo,
Vernizzi, Yingcharoenrat ’19 ][Kubota, Arai, Mukohyama ’23]
→ Damped amplitude / change of the phase velocity on cosmological distance
→ Constraints from BBH mergers [Arai, Nishizawa ’18] [Takeda, Morisaki, Nishizawa ’22]
Effect 2: Modified quasi-normal modes spectrum for black holes

Almost all the investigations focus on the linearized theory
How to investigate the fully non-linear regime ? What phenomenolgy at the non-linear level ?
→ gravitational memory effects / black hole formation from colliding gravitational waves

Studying the non-linear regime: two approaches
1) identify the symmetries at null-infinity in modified gravity and their flux-balance laws
In GR, Bondi mass loss: Ṁ(u) = F → BMS flux-balance law
Extension to Brans-Dicke [Tahura, Nichols, Shaffer, Stein, Yagi ’20][Hou, Zhu ’20][Seraj ’21]
2) construct exact non-perturbative radiative solutions :
pp-waves, Kundt, Robinson-Trautman exact solutions in GR → useful laboratory
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In GR, Bondi mass loss: Ṁ(u) = F → BMS flux-balance law
Extension to Brans-Dicke [Tahura, Nichols, Shaffer, Stein, Yagi ’20][Hou, Zhu ’20][Seraj ’21]

2) construct exact non-perturbative radiative solutions :
pp-waves, Kundt, Robinson-Trautman exact solutions in GR → useful laboratory

1 / 26



Context and Motivations
Modified gravity:
Parametrizing deviations w.r.t to GR
→ early and late cosmology (dark sector) / compact objects
Scalar-tensor theories with (gµν , φ) : Horndeski → GLPV → DHOST theories
[Horndeski ’74] → [Langlois, Noui ’15]

Impact on gravitational wave production and propagation ?
Effect 1: new scalar polarization and mixing between scalar/tensor sectors
[Kobayashi, Yamaguchi, Yokoyama ’11][Dalang, Fleury, Lombriser ’ 19][Creminelli,Tambalo,
Vernizzi, Yingcharoenrat ’19 ][Kubota, Arai, Mukohyama ’23]
→ Damped amplitude / change of the phase velocity on cosmological distance
→ Constraints from BBH mergers [Arai, Nishizawa ’18] [Takeda, Morisaki, Nishizawa ’22]
Effect 2: Modified quasi-normal modes spectrum for black holes

Almost all the investigations focus on the linearized theory
How to investigate the fully non-linear regime ? What phenomenolgy at the non-linear level ?
→ gravitational memory effects / black hole formation from colliding gravitational waves

Studying the non-linear regime: two approaches
1) identify the symmetries at null-infinity in modified gravity and their flux-balance laws
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Outlines

• Disformal solution-generating method and Petrov classification

• Exact non-perturbative radiative solution in Horndeski

• Polarizations at the non-perturbative level: Penrose limit
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Disformal solution-generating method and Petrov classification
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Disformal solution-generating method and Petrov classification

Disformal solution-generating map

Disformal transformation (DT) :

(gµν , φ)→ (g̃µν = Agµν + Bφµφν , φ) (1)

with A := A(φ,X), B := B(φ,X) and X = gµνφµφν .

Degenerate higher order scalar-tensor theories are organized into equivalent classes under DT
[BA, Langlois, Noui ’16]

Provide a solution-generating map to explore the solution space [BA, Mukohyama, Liu ’20]

Useful to investigate black hole perturbations [Langlois, Noui, Roussille ’22]

Remarkably efficient to explore the theory and solution spaces of modified gravity theories

Petrov classification

Classification from the 60’s based on the algebraic properties (Petrov type) of the Weyl tensor

Provide general theorems : Petrov type ↔ behavior of light rays [Goldberg, Sachs ’62]

Provide a guiding map to derive new exact solutions in GR (among which Kerr)

→ Can we keep under control how the Petrov type change under disformal transformation ?
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Disformal solution-generating method and Petrov classification
Petrov classification in a nutshell
Pick up a null tetrad EµA

gµν = EAµE
B
ν ηAB ηAB =


0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

 (2)

associated to four null vectors `µ = Eµ0 , n
µ = Eµ1 , m

µ = Eµ2 , m̄
µ = Eµ3

`µnν = −1 mµm̄µ = 1 (3)

Explicitly introduce a congruence of null rays: implicitly a light-like observer.
Decompose the Weyl tensor into 5 complex scalars

Ψ0 = CABCD`
AmB`CmD Ψ2 = CABCD`

AmBm̄CnD Ψ4 = CABCDn
Am̄BnCm̄D (4)

The Ψi are spacetime scalars but defined up to Lorentz transformations : (E′)Aµ = ΛABE
B
µ

How many Ψ’s can we set to zero by a set of Lorentz transformations ?
Lorentz transformation parametrized by b a complex function

(`, n,m, m̄)→ (`+ b∗m + bm̄ + bb∗n, n,m + bn, m̄ + b∗n) (5)

Ψ0 → Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4 (6)

Can set Ψ0 = 0 in a suitable frame by solving for b.
Multiplicity of the root b defines the Petrov type: four simple roots → Petrov type I
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Disformal solution-generating method and Petrov classification

Petrov classification: Lorentz invariant formulation

Consider the Lorentz invariant spectral index:

I = Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2 J = det

 Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

 S = I3 − 27J2

If S 6= 0, then the geometry is not algebraically special: Petrov type I

The remaining types can be deduced from the quantities

K = Ψ2
4Ψ1 − 3Ψ4Ψ3Ψ2 + 2Ψ3

3 L = Ψ4Ψ2 −Ψ2
3 N = 12L2 −Ψ2

4I (7)

Type II: S = 0

Type III: I = J = 0

Type D: S = K = N = 0

Type N: I = J = K = L = 0

How does the Petrov type change under a disformal transformation ?

Can we get close formula to keep control on this change ?
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Disformal solution-generating method and Petrov classification
Disformal transformation on the tetrad field
Usually, DT are written at the level of the metric

(gµν , φ)→ (g̃µν = Agµν + Bφµφν , φ) (8)

with A := A(φ,X), B := B(φ,X) and X = gµνφµφν .

To understand the change in the Newman-Penrose quantities, implement DT on the tetrad
Introduce the J-map

JAB =
√
A

(
δAB +

β

1− βX
φAφB

)
β =

1

X

[
1−

√
A

√
A+ BX

]
(9)

with φA = EµAφµ and X = φAφ
A = φµφµ

Allows one to implement DT in a local rest frame:

ẼAµ = JABE
B
µ g̃µν = (JACE

C
µ )(JBDE

D
ν )ηCD = Agµν + Bφµφν (10)
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Disformal solution-generating method and Petrov classification

Applications

Disformed static spherically symmetric spacetime : for example Schwarzschild

ds2 = −f (r)dt2 + g(r)dr2 + r2dΩ2 φ(t, r) (13)

Seed is Petrov type D → disformed geometry remains of Petrov type D

Disformed Kerr black hole

ds2 = ds2
Kerr + B0

(
dt +

√
2Mr(r2 + a2)

∆
dr

)2

φ(t, r) (14)

Seed is Petrov type D → Disformed spectral index is

S = I3 − 27J2 = B2
0χ+O(B3

0) 6= 0 (15)

Disformed Kerr geometry becomes of Petrov type I
Loss of symmetry : Killing-Yano tensor only for type D and N
[BA, De Felice, Gorji, Mukohyama, Pookilath ’22]
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Disformal solution-generating method and Petrov classification

Use disformal solution-generating method to construct exact radiative solutions
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Constructing exact non-perturbative radiative solution in Horndeski
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The seed

We need to identify a seed solution: consider the Einstein-Scalar system

S =
1

2

∫
d4x

√
|g| (R− gµν∂µφ∂νφ)

Exact radiative solution of this system [Tahamtan and Svitec ’15 ’16]

ds2 = −
r∂uF +K(x, y)

F (u)
du2 − 2dudr +

r2F 2(u)− C2
0

F (u)P 2(x, y)
(dx2 + dy2)

φ(u, r) =
1
√

2
log

[
rF (u)− C0

rF (u) + C0

]
where

F (u) = γeω
2u2

∆K(x, y) = 4C2
0ω

2 = α2 K(x, y) = P 2
(
∂2
xx + ∂2

yy

)
logP = ∆ logP

Parametrized by three real numbers (γ, ω, C0): restrict to ω 6= 0

α = 0 imposes spherical symmetry

P0 =
1 + x2 + y2

2
K0 = 1 (16)

C0 (or α) encode the scalar charge : scalar profile is a time-dependent monopole

What are its properties ?
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The seed
Better described in another coordinate system: (u, r, x, y)→ (w, ρ, x, y)

ds2 = −K(x, y)dw2 − 2dwdρ+
ρ2 − χ2(w)

P 2(x, y)
(dx2 + dy2)

φ =
1
√

2
log

[
ρ− χ(w)

ρ+ χ(w)

]
(17)

Function χ(w) behaves as a pulse:

−w0 0 w0

w

0

C0√
γ

χ
(w

)

1Asymptotic regimes : when w → ±w0, we have X = gαβφαφβ → 0

In between, when w = 0: scalar energy X → pulse localized on the equator

X(0, ρ, x, y) =
2χ2(0)K(x, y)

(ρ2 − χ2(0))2
6= 0 (18)

This solution describes a scalar pulse localized on the equator
[BA, Gorji, Roussille ’23]
What type of gravitational wave propagate in this geometry ?
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Scalar pulse and longitudinal mode

Null directions and optical scalars:

`µ∂µ = ∂ρ nµ∂µ = ∂w −K(x, y)∂ρ mµ∂µ =
P (x, y)√

2(ρ2 − χ2(w))
(∂x + i∂y ) (19)

and

Θ(ρ, w) = −
ρ

ρ2 − χ2(w)
ω = 0 σ = 0 (20)

→ purely expanding null congruence: no twist and no shear

Petrov type II : belongs to the family of Robinson-Trautman exact solutions with matter

Picture the gravitational wave:
→ compute the gaussian curvature K of the topological 2-sphere

ds2
B =

ρ2 − χ2(w)

P 2(x, y)
(dx2 + dy2) K(w, x, y) =

χ2(w)K(x, y)

C2
0

(21)

→ Scalar pulse simply rescales the spatial curvature K(x, y)

→ pure longitudinal (breathing) mode

Expected from a pure monopole scalar source ! φ(w, ρ) = 1√
2

log
[
ρ−χ(w)
ρ+χ(w)

]
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→ pure longitudinal (breathing) mode

Expected from a pure monopole scalar source ! φ(w, ρ) = 1√
2

log
[
ρ−χ(w)
ρ+χ(w)

]

13 / 26



Scalar pulse and longitudinal mode
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Scalar pulse in Horndeski theory

What radiative gravitational field can be sourced by the same scalar pulse in Horndeski ?

How does the mixing from higher order terms manifest at the fully non-linear level ?

Accessible by a disformal transformation

14 / 26



Scalar pulse in Horndeski theory
Disformal map

Consider the simplest disformal transformation of the Einstein-Scalar system

(gµν , φ)→ (g̃µν = gµν + B0φµφν , φ) (22)

The new action is given by an Horndeski theory

S̃[g̃µν , φ] =

∫
d4x
√
|g|
[
G2(X̃) + G4(X̃)R− 2G4X(X̃)

(
(�φ)2 − φµνφµν

)]
(23)

and the two functions (G2, G4):

G2(X̃) =
X̃

2
G4(X̃) =

1√
1− B0X̃

(24)

Key points:

DT are a pure field redefinition

New physics show up by (implicitly) assuming that test fields couple to g̃µν
→ different causal structure
→ different principal null directions
→ different Petrov type
→ different geodesics

Disformal transformation of the seed solution reveals the effects of the higher order terms
(controlled by B0) in the presence of a monopole scalar source
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Scalar pulse in Horndeski theory

The new exact solution

The scalar profile remains unchanged: scalar monopole

φ(w, ρ) =
1
√

2
log

[
ρ− χ(w)

ρ+ χ(w)

]
→ φρ =

2χ(w)

ρ2 − χ2
φw =

−2ρχ′(w)

ρ2 − χ2
(25)

The new exact radiative solution of Horndeski gravity reads

ds2 = −K(x, y)dw2 − 2dwdρ+
ρ2 − χ2(w)

P 2(x, y)
(dx2 + dy2)

+ B0

[
φ2
w dw2 + 2φw φρ dwdρ+ φ2

ρ dρ2
]

(26)

where the functions χ(w), K(x, y) and P (x, y) remain unchanged

χ(w) =
C0√
U(w)

K(x, y) = ∆ logP ∆K(x, y) = 4C2
0ω

2 = α2 (27)

where α2 = 4C2
0ω

2 is again the scalar charge.

What are the properties of this solution ? How does it deviate from the seed one ?
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Scalar pulse in Horndeski theory
Asymptotic regimes w → ±w0

In the remote past and far future: non-spherically symmetric.

lim
w→±w0

ds2 = −
[
K(x, y)−

Q

ρ2

]
dw2 − 2dwdρ+

ρ2

P 2(x, y)
(dx2 + dy2) (28)

lim
w→±w0

φ =

√
2χ(w)

ρ
→ 0 (29)

lim
w→±w0

X = 0 (30)

Qualitative difference with the GR solution: electric-like charge Q

Q2 = lim
w→±w0

4B0(χ′)2

Maximum of the pusle: w = 0

The metric and the scalar profile become

lim
w→0

ds2 = −K(x, y)dw2 − 2dwdρ+
4B0C

2
0

γ(γρ2 − C2
0 )2

dρ2 +
ρ2

P 2(x, y)
(dx2 + dy2) (31)

lim
w→0

φ =
1
√

2
log

[√
γρ− C0√
γρ+ C0

]
(32)

The electric-like charge Q has disappeared but new contribution in gρρ
Kinetic energy of the scalar:

X =
4γK(x, y)C2

0

(ρ2 − C2
0 )2 + 4B0γC

2
0K(x, y)B0

6= 0 (33)
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Scalar pulse in Horndeski theory
What type of gravitational waves propagate ?

First step: construct a null tetrad. For simplicity, expand up to second order in B0

EµA∂µ =
(

(0)EµA + B0
(1)EµA + B2

0
(2)EµA

)
∂µ

Spectral index : Petrov type II → Petrov type I

S = I3 − 27J2 = B2
0G +O(B3

0) 6= 0

New phenomenolgy
The optical scalars reveal the non-linear superposition of breathing and shearing modes

Θ̃ = Θ + B0Θ1 + B2
0Θ2

σ̃ = B2
0σ2

with

σ2 =
(ρ2 − χ2)

96χ7

[
30ρ5χ− 80ρ3χ3 + 66ρχ5 + 15

√
2(ρ2 − χ2)3φ

]
Ψ0 (34)

If C0 = 0, the shear vanishes.
Mixing between the scalar and tensor sectors generate a shear even in the presence of a pure
scalar monopole
Originate from the higher order terms in the dynamics
Does this effect survive a perturbative analysis ?
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Scalar pulse in Horndeski theory

The non-perturbative origin of the shear

Most natural set-up to perform a perturbative approach, take the scalar profile and consider a
small pulse χ := ε(w)

φ(w, ρ) '
ε(w)

ρ
(35)

At the linearized level,
σ2 ' 0 (36)

→ the generation of shear from the scalar monopole is a purely non-perturbative effect

Further understanding the generation of the shear

Newman-Penrose equations for optical scalars in GR:

DΘ = ω2 −Θ2 − σ2 −Φ00 Raychaudhuri (37)

Dω =
1

2
Θω (38)

Dσ = −2Θσ + Ψ0 (39)

How are they modified in Horndeski theory ? In modified gravity ? [BA, Roussille - in progress]
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Identifying the polarizations at the non-perturbative level: Penrose limit
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A tool to identify the polarizations: Penrose limit
In the linearized theory

gµν = ḡµν + hµν (40)

After gauge-fixing, polarization can be read off from hµν . Not available in the fully non-linear
regime.

Mimicking linearized waves at the non-linear level ...
Exact plane wave solution, i.e. pp-wave are non-linear radiative geometries the closest from
linearized gravitational waves

ds2 = 2dudV +
[
H◦(X

2 + Y 2) +
{
H+(X2 − Y 2) +H×XY

}]
du2 + dX2 + dY 2 (41)

H+ and H× encode the spin-2 shearing modes / H◦ is the trace mode
Can sum up two wave profiles even at the non-linear level !

Penrose limit
For a given geometry and a given geodesic (gµν , γ), the Penrose limit allows one to associate
a pp-wave encoding the leading tidal forces (w.r.t the transverse distance to the observer
geodesic wolrdline) experienced by the observer

(gµν , γ) → pp-wave geometry (42)

[Penrose ’76]
Applied to a radiative geometry, it allows one to read the polarizations of the propagating
wave inducing these non-linear tidal effects from (H◦, H+, H×)
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wave inducing these non-linear tidal effects from (H◦, H+, H×)
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gµν = ḡµν + hµν (40)

After gauge-fixing, polarization can be read off from hµν . Not available in the fully non-linear
regime.

Mimicking linearized waves at the non-linear level ...
Exact plane wave solution, i.e. pp-wave are non-linear radiative geometries the closest from
linearized gravitational waves

ds2 = 2dudV +
[
H◦(X

2 + Y 2) +
{
H+(X2 − Y 2) +H×XY

}]
du2 + dX2 + dY 2 (41)

H+ and H× encode the spin-2 shearing modes / H◦ is the trace mode
Can sum up two wave profiles even at the non-linear level !

Penrose limit
For a given geometry and a given geodesic (gµν , γ), the Penrose limit allows one to associate
a pp-wave encoding the leading tidal forces (w.r.t the transverse distance to the observer
geodesic wolrdline) experienced by the observer

(gµν , γ) → pp-wave geometry (42)

[Penrose ’76]
Applied to a radiative geometry, it allows one to read the polarizations of the propagating
wave inducing these non-linear tidal effects from (H◦, H+, H×)

21 / 26



A tool to identify the polarizations: Penrose limit

For our new radiative solution: get a pp-wave profile with (H◦, H+, H×) non-zero

Explicitly, (H+, H×) take a very simple form for our choice of tetrad

H+ =
1

2
Re(Ψ0) H× =

1

2
Im(Ψ0) (43)

with the Weyl scalar Ψ0 given by

Ψ0 = B2
0

χ4P (P∂z̄ z̄K + 2∂z̄K∂z̄P )

(ρ2 − χ2)5
+O(B3

0) (44)

Consistent with the non-perturbative shear identified at order O(B2
0)

Allow to compute and compare the memory effects in the GR and Horndeski solutions
[BA, Gorji, Roussille ’23]
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Conclusion and perspectives
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Conclusion

Exploring the non-perturbative radiative regime of modified gravity
i) construct exact solutions / ii) identify the modified flux-balance laws (symmetries)

Exploring new exact (radiative) solutions

Disformal solution generating : powerful trick to explore the DHOST solution space
[BA, Mukohyama, Liu ’20]

Disformal Petrov classification : guide to construct new solutions
[BA, De Felice, Gorji, Mukohyama, Pookilath ’22]

A new non-perturbative exact radiative solution in Horndeski theory
→ a scalar pulse generating a non-linear superposition of breathing mode and shear
[BA, Gorji, Roussille ’23]

Reveal a new phenomenology of a purely non-perturbative origin ...

Identifying the modified flux-balance laws/symmetries of modified gravity

Apply the Newman-Penrose formalism to DHOST to further understand mixing between
scalar/tensor sectors for GW [BA, Roussille - in progress]

Fluxes-balance laws by covariant phase space methods in modified gravity
Exist for Brans-Dicke [Tahura, Nichols, Shaffer, Stein, Yagi ’20][Hou, Zhu ’20][Seraj ’21]
What about higher order modified gravity ?
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Singularity and horizons
Singularity in the GR solution: ρ = χ(w)

Additional singularity in the Horndeski solution:

ρ4 − 2
(
ρ2 + B0K(x, y)

)
χ2 + χ4 − 4B0ρχχ

′ = 0 (45)

At w = 0, singularity located at

ρ2
∗ = 1±

√
1 +

C2
0

γ2

[
2B0K(x, y)−

C2
0

γ2

]
(46)

Null directions

`µ∂µ = ∂ρ mµ∂µ =
P (x, y)√

2(ρ2 − χ2(w))
((Mx + iMy )∂ρ + ∂x + i∂y ) (47)

nµ∂µ = ∂w +
P (x, y)2

ρ2 − χ(w)2
(Mx∂x +My∂y )−

[
K(x, y)

2
−

P (x, y)2

2(ρ2 − χ(w)2)

(
M2
x +M2

y

)]
∂ρ

(48)

which is orthogonal to the surface ρ = M(x, y) and satisfies the standard orthogonality
relations

`µnµ = −1 , mµm̄µ = 1 (49)
while lµmµ = nµmµ = 0.
Expansions

Θ` =
ρ

ρ2 − χ(w)2
, Θn =

∆SM − ρk(x, y)− 2χ(w)χ′(w)

2(ρ2 − χ(w)2)
−

ρ‖∇SM‖2

2(ρ2 − χ(w)2)2
(50)

Equation for the dynamical apparent horizon Θn = 0

In general, very hard to solve .... even in GR
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Penrose limit
Concretely, pick up a null geodesic γ and construct null Fermi coordinates XA = (U, V,X i )

with i ∈ (1, 2) adapted to the region around the geodesic

XA = EAa x
a + EAµ Γ̄µabx

axb +O((xa)3) (51)

In the region around the geodesic γ, the gravitational field can be described as

ds2 = 2dUdV + δi jdX idX j − R̄λiλj (U)X iX jdU2

−
4

3
R̄λjik(U)X jXkdUdX i −

1

3
R̄i jk`(U)XkX`dX idX j

+O(X3) (52)

Organize this expansion in xa using conformal transformation of the transverse space:
(U, V,X i )→ (U, λ2V, λX i )

Peeling behavior of the Weyl scalars

Ψi = O(λ4−i ) for i ∈ (0, ..., 4) (53)

Penrose limit amounts at selecting the leading contribution: coincides with a pp-wave

ds2 = 2dUdV + Ai j (U)X iX jdλ2 + δi jdX idX j (54)

with
Ai j (U) = R̄UiUj (U) = R̄µνρσE

µ
UE

ν
i E

ρ
UE

σ
j (55)

[Penrose ’76][Blau ’19]
Read the polarizations from the matrix Ai j (U)

Full non-perturbative approach: we never ask that Ai j (U) be "small"
Also powerful to compute the memory effects explicitly
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