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Gravitational perturbations

◗ Since the first detection of gravitaional waves in 2015, black holes perturbations
have regain a lot of interest.

◗ Once the two black holes have merged, one is left with a very perturbed black hole
which keeps emitting gravitational waves until it reaches an equilibrium state.
This phase is called ringdown and is characterized by frequencies called Quasi
Normal Modes (QNM).

◗ As we have a dissipative system, the ringdown signal is damped and the QNM are
complex: ω = ωR + iωI .
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spin s field perturbations

◗ Gravitational perturbations are studied by linearising Einstein equations.

◗ It is also possible to study the perturbations of a black hole due to a field of spin s,
by looking at the propagation of a spin s field on a black hole.

◗ For a Schwarzschild black hole, we can summurize the perturbations of all spins in
one equation:

∂2
x ψ + (ω2 − V (r ))ψ = 0,

with

V (r ) := r−rs
r

[
ℓ(ℓ+1)

r2 + rs(1−s2)
r3

]
.
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Boundary conditions for QNM

◗ The effective potential V (r ) typically
have the shape of a barrier, decaying
at the horizon and at infinity:
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Figure: Typical shape of the effective potential
V(r)

◗ It follows that the main equation reduces to a plane-wave equation both at the
horizon and at infinity. Imposing only ingoing waves at the horizon and outgoing
waves at infinity, we get the following asymptotic behaviour for Schwarzshild
perturbations:

ψ ∼
x→+∞

eiωx ∼ eiωr r iωrs ,

ψ ∼
x→−∞

e−iωx ∼ (r − rs)−iωrs .
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Continued fraction method

◗ Using this asymptotic behaviour we can construct an ansatz in the form of a
power series satisfying the QNM border conditions:

ψ(r ) =
(

r−rs
r2

)−iωrs
eiω(r−rs)

∞
∑

n=0
an

( r−rs
r

)n .

We see that QNM are frequencies such that
∞
∑

n=0
an converges.

◗ Inserting it in the main equation, we obtain a recurrence relation, which is of order
two for Schwarzshild:

c0(1, ω)a1 + c1(1, ω)a0 = 0,

c0(n, ω)an + c1(n, ω)an−1 + c2(n, ω)an−2 = 0 for n < 1.
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Continued fraction method

◗ Defining the ratio Rn = − an
an−1

and inserting it in the recurrence relation, we obtain
a continued fraction:

Rn = c2(n+1,ω)
c1(n+1,ω)−c0(n+1,ω)Rn+1

= c2(n+1,ω)

c1(n+1,ω)−c0(n+1,ω)
c2(n+2,ω)

c1(n+2,ω)−c0(n+2,ω)
c2(n+3,ω)

c1(n+3,ω)−...

.

◗ On one side we have R1 = c1(1,ω)
c0(1,ω)

and on the other

R1 = c2(2,ω)

c1(2,ω)−c0(2,ω)
c2(3,ω)

c1(3,ω)−c0(3,ω)
c2(4,ω)

c1(4,ω)−...

.

Equalizing the two gives:

c1(1, ω)− c0(1, ω) c2(2,ω)

c1(2,ω)−c0(2,ω)
c2(3,ω)

c1(3,ω)−c0(3,ω)
c2(4,ω)

c1(4,ω)−...

= 0.

Then the QNM correspond to the roots of this equation and can be computed
numerically.
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Schwarzschild QNM
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Figure: scalar, electromagnetic and gravitational (s=0,1,2 and l=2) QNM for a Schwarzshild black
hole.
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scalar perturbations

◗ We will focus on scalar perturbations for the rest of the talk and consider static
black holes having spherical symmetry:

ds2 = −f (r )dt2 + dr2

g(r ) + h(r )dΩ2,

◗ It has been shown that it is always possible to obtain a wave equation for the radial
scalar perturbations of a static black hole having spherical symmetry:

∂2
x ψ + (ω2 − V (r ))ψ = 0.

◗ x is called the turtoise coordinate and is defined as:
dx
dr = 1√

f (r )g(r )
,

◗ The potential can be directly written in terms of the metric functions:

V (r ) = l(l + 1) f (r )
h(r ) +

1
2

√
f (r )g(r )

h(r )

(
f (r )g(r )

h(r ) h′(r )
)′
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Modesto metric

◗ One of the first loop quantum black hole metric, developed by Modesto in 2008.

◗ The metric functions can be written in the Reisser-Nordström form:

f (r ) = (r−r+)(r−r−)
r4+a2

0
(r + r0)2,

g(r ) = (r−r+)(r−r−)
r4+a2

0

r4

(r+r0)2 ,

h(r ) = r2 +
a2

0
r2 .

r+ = 2M
(1+P)2 is the outer horizon radius, r− = 2MP2

(1+P)2 and r0 = 2MP
(1+P)2 .

◗ a0 is related to the minimum area gap of LQG and P is called the polymeric
function.

◗ P is a free parameter but it has been constrained by astrophysical data.
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Modesto metric - Potential behaviour

V (r ) =
(r−rs)(2l(l+1)r2+r (r0+2rs)−3r0rs)
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(b) a0 = 0

Figure: Effective potential versus the radial coordinate for 2M = 1, l = 0 and several values of a0
and P. The blue curve corresponds to the Schwarzshild potential.
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Brizuela metric

◗ A recently obtained loop quantum metric black hole, obtained by Brizuela in 2022.

◗ The metric functions stands as:

f (r ) = r−rs
r ,

g(r ) = r−r0
r f (r ),

h(r ) = r2.

where r0 < 2M.

◗ The horizon is located at 2M, similarly to what we have for Schwarzshild black
hole.

◗ M is related to the ADM mass by MADM = M + r0
2 . We will scale the QNM with 2M.

Clara MONTAGNON Quasi-Normal Modes of LQG Black Holes 11



LQG INSPIRED BLACK HOLES — Laboratoire de Physique de l’ENS de Lyon

Brizuela metric - potential behaviour
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Figure: Effective potential versus the radial coordinate for 2M = 1, l = 0 and several values of r0.
The blue curve corresponds to the Schwarzshild potential.
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Results for the Brizuela metric

◗ The ansatz with correct asymptotic behaviour is:

ψ(r ) = eirω(r − r0)
ir0ω

2 +irsω−1
(

r − rs
r − r0

)− irs ω√
1− r0

rs

∞

∑
n=0

a[n]
(

r − rs
r − r0

)n

◗ We obtain a four terms recurrence relation,
α0a1 + β0a0 = 0,

α1a2 + β1a1 + γ1a0 = 0,
αnan+1 + βnan + γnan−1 + δnan−2 = 0 for n ≥ 2.

which can be reduced to a three terms one using Gauss reduction:{
α̃0a1 + β̃0a0 = 0,

α̃nan+1 + β̃nan + γ̃nan−1 = 0 for n ≥ 1,
where: 

α̃0 = α0, β̃0 = β0, γ̃0 = γ0,
α̃1 = α1, β̃1 = β1, γ̃1 = γ1;
α̃n = αn,

β̃n = βn − α̃n−1
γ̃n−1

δn,

γ̃n = γn − β̃n−1
γ̃n−1

δn for n ≥ 2.
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Results for the Brizuela metric
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Results for the Brizuela metric
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Figure: QNM frequencies for s = 0, l = 1 and r0 = 0.1, 0.2, 0.3, 0.4.
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Results for the Brizuela metric
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Figure: QNM frequencies for s = 0, l = 1, r0 = 0.5.
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Results for the Modesto metric

◗ The ansatz with correct asymptotic behaviour is:

Ψ(r ) = eiω(r−r+)(r − r−)iω(r−+r+)
(

r − r+
r − r−

)iω
a2

0+r4
+

(r−−r+)r2
+

∞

∑
n=0

an

(
r − r+
r − r−

)n
.

◗ We obtain a fifteen terms recurrence equation, which I won’t detail here...

◗ We use Gauss reduction to reduce it to three terms.
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Results for the Modesto metric
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Figure: QNM frequencies for a0 = 0 and P = 0.02 (s = 0, l = 1)
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Results for the Modesto metric
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Figure: QNM frequencies for a0 = 0.05 and P = 0 (s = 0, l = 1)
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Results for the Modesto metric
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Figure: QNM frequencies for a0 = 0.05 and P = 0.05 (s = 0, l = 2)
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