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Covariant deformations of GR

The effective quantum Schwarzschild black hole

Charged black holes in cosmological backgrounds

Gravitational collapse: outlining effective LTB models

Outline
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Covariant Deformations of General Relativity
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The derivative structure is the same as in GR

The constraints form an anomaly-free algebra

The theory is embeddable in a 4D manifold

The GR Hamiltonian stands as a particular limit

The model admits matter

There is an explicit vacuum limit

We will demand the following:



Covariant Deformations of General Relativity The Effective Model
The Effective Hamiltonian
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Which are the effects on spacetime?

Derivatives as in GR

Anomaly-free algebra

Embeddable in 4D

GR limit

Admits matter

Vacuum limit

Requirements:



Covariant Deformations of General Relativity The Effective Model
Metric Interpretation
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The effective Hamiltonian satisfies the hypersurface deformation algebra (by construction, questions are welcome!)

with

note that it is nowhere negative!

roots of the cosine are new roots of F GR:  λ → 0



Covariant Deformations of General Relativity The Effective Model
Metric Interpretation

The effective Hamiltonian satisfies the hypersurface deformation algebra (by construction, questions are welcome!)

with

Three assumptions:

(I) The lapse and the shift are defined in the same way as in GR

(II) Gauge transformations describe coordinate changes

(III)The area of the spheres is not affected by the corrections

note that it is nowhere negative!

roots of the cosine are new roots of F GR:  λ → 0
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Condition (ii) is highly non-trivial, but again, by construction, the structure function  satisfies this requirement!F

Covariant Deformations of General Relativity The Effective Model
Metric Interpretation

The effective Hamiltonian satisfies the hypersurface deformation algebra (by construction, questions are welcome!)

with

Three assumptions:

(I) The lapse and the shift are defined in the same way as in GR

(II) Gauge transformations describe coordinate changes

(III)The area of the spheres is not affected by the corrections

given a generic vector

coordinate transformations (Lie derivative) gauge transformations (Poisson bracket)

note that it is nowhere negative!

roots of the cosine are new roots of F GR:  λ → 0
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The “angular component of the 

curvature” shows a reflection

symmetry at π/(2λ)

Leading-order corrections go as λ2

Covariant Deformations of General Relativity The Effective Model
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GR:  λ → 0

the effective Hamiltonian

Roots of Fthe metric



Covariant Deformations of General Relativity The Effective Model

6

There is a simpler way of writing the metric.

We just need to use the mass function (the quantity that is a constant in vacuum):

with

this is the physically meaningful constant of the model
it takes values in  

the limit to 0 corresponds to GR
(0,1)



Homogeneous chart

Schwarzschild-like coordinates

Effective Quantum Schwarzschild Black Hole Spacetime Solutions
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where  is completely determined byr(z)
The covering chart

The positive minimum

of the area-radius function!

Static chart



Effective Quantum Schwarzschild Black Hole Global Structure

mean curvature vector: Hμ = (2/r)∇μr
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Ricci scalar

Curvature scalars attain their maximum at the transition surface

Every definition of mass provides the same exact value in every 

region of the spacetime

Although the transition surface appears always inside the horizon,

the modifications affect the whole spacetime

Quantum effects are measurable! There are already have some 

bounds… 

Characterization of
the new constant

NON-TRAPPED

NON-TRAPPED

TRAPPED

ANTI
TRAPPED



Change of coordinates to static/homogeneous charts:

implicit definition of r(z)

mass function

Charged BHs in Cosmological Backgrounds Spacetime Solutions
The Covering Domain
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Are these spacetimes free of singularities?

[This is a solution to the Hamiltonian equations,
and not just an extension of the vacuum metric]



Ricci scalar

Kretschmann scalar

The singularity is resolved by the appearance

of a positive lower bound for r

Charged BHs in Cosmological Backgrounds Study of Singularity Resolution
Curvature Invariants
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Domain of  restricted by the existence of a solution forr

which is equivalent to a 1D particle with zero total energy

where

Study of singularity resolution = study of the roots of 

Simple roots of : Turning points of 

Multiple roots of : Asymptotic values of 

V(r)

V(r) r(z)

V(r) z
Allowed regions:  and r > 0 2rℓV(r) ≤ 0

Charged BHs in Cosmological Backgrounds Study of Singularity Resolution
Allowed Regions
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The singularity is resolved by the appearance

of a positive lower bound for r



Charged BHs in Cosmological Backgrounds Study of Singularity Resolution
Allowed Regions

for M ≥ 0

Allowed regions:  and r > 0 2rℓV(r) ≤ 0
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Charged BHs in Cosmological Backgrounds Study of Singularity Resolution

for M ≥ 0

ONLY!

Existence of a Positive Infimum

Allowed regions:  and r > 0 2rℓV(r) ≤ 0
12



Charged BHs in Cosmological Backgrounds Study of Singularity Resolution
Existence of a Positive Infimum
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The infimum is a double root

The infimum
is a single root



Ricci scalar

Kretschmann scalar

The singularity is resolved by the appearance

of a positive lower bound for r

Charged BHs in Cosmological Backgrounds Study of Singularity Resolution
Curvature Invariants
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Ricci scalar

Kretschmann scalar

The singularity is resolved by the appearance

of a positive lower bound for r

Charged BHs in Cosmological Backgrounds Study of Singularity Resolution
Curvature Invariants

But we also need a finite upper bound for 

(when )

r
Λ ≠ 0
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Ricci scalar

Kretschmann scalar

The singularity is resolved by the appearance

of a positive lower bound for r

Charged BHs in Cosmological Backgrounds Study of Singularity Resolution
Curvature Invariants

“Replaces zero”

“Replaces infinity”

But we also need a finite upper bound for 

(when )

r
Λ ≠ 0
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Charged BHs in Cosmological Backgrounds Study of Singularity Resolution
Existence of a Positive Infimum
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The infimum is a double root

The infimum
is a single root



The infimum is a double root

The infimum
is a single root

Charged BHs in Cosmological Backgrounds Study of Singularity Resolution
Existence of a Positive Infimum
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Charged BHs in Cosmological Backgrounds Study of Singularity Resolution
Existence of a Positive Infimum

Generic features for SINGULARITY RESOLUTION: ,   ,    and    M > 0 Λ ≥ 0 Q ↓

The infimum is a double root

The infimum
is a single root
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All roots of  at  are null hypersurfaces (horizons)

Simple roots of  at  or  are minimal spacelike hypersurfaces

Double roots of  at  are null (past or future) boundaries at infinity

G(r) r = 2m(r)

V(r) r = r0 r = r∞

V(r) r = r0

The roots of  and  cannot coincideG(r) V(r)

We study the cases that are free of curvature divergences

Norm of the Killing vector:

Charged BHs in Cosmological Backgrounds Global Structure
Causal Structure and Horizons
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Charged BHs in Cosmological Backgrounds Conformal Diagrams

Maximal extension 

Included in 

Domain  covered by 

Null infinities 

Timelike/Spacelike infinities

Constant  hypersurfaces

Critical hypersurfaces [roots of ]

Horizons [roots of ]

Asymptotic ends [ ]

ℳ

𝒰

𝒰 (τ, z)

r

V(r)
G(r)
r → ∞
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Charged BHs in Cosmological Backgrounds Conformal Diagrams

It is the same diagram as in vacuum

Small amounts of charge do not alter the 

causal structure of the spacetime

The singularity (and all structure beyond 

the inner horizon in RN) is replaced by a 

minimal transition surface

Reissner-Nordström and Schwarzschild
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Minimal spacelike hypersurfaces foliated by spheres of 

area  replace the singularity

Minimal spacelike hypersurfaces foliated by spheres of 

area  replace asymptotic infinities

Infinite copies of  along all directions, layering up 

around each ring in a helical (clockwise) manner

4πr2
0

4πr2
∞

𝒰

Charged BHs in Cosmological Backgrounds Conformal Diagrams

Reissner-Nordström-de Sitter

and Schwarzschild-de Sitter
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Same features as before BUT the two horizons 

degenerate into a single one

There are no static regions in : This solution 

represents a periodic bouncing cosmology

The existence of horizons allows accelerating 

observers to decouple from cosmic time and end at 

ℳ

i+

Charged BHs in Cosmological Backgrounds Conformal Diagrams

Reissner-Nordström-de Sitter

(one degenerate horizon)
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Charged BHs in Cosmological Backgrounds Conformal Diagrams

Reissner-Nordström-de Sitter

(no horizons)

All hypersurfaces of constant  are spacelike

This is a cyclic cosmology, oscillating between hypersurfaces 

foliated by spheres of area  and 

The diagram is not compactified. Any observers cross 

infinitely many hypersurfaces of equal 

r

4πr2
0 4πr2

∞

r
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The charge, however, has an upper limit that makes  

unreachable in finite proper time

Although there is no singularity, observers crossing the 

horizon can never leave

Radial travellers move forever towards either  or 

r = r0

r0 ∞

Charged BHs in Cosmological Backgrounds Conformal Diagrams

Reissner-Nordström

(MAX. charge)
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“Extremal” cases



Charged BHs in Cosmological Backgrounds Conformal Diagrams

The diagram for  is finite. Still,  unfolds at 

each ring

Hypersurfaces  become null infinities and 

cannot be crossed

The maximum  of the area radius is a 

reflection-symmetry point

𝒰 ℳ

r = r0

r∞

Reissner-Nordström-de Sitter

(MAX. charge)
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“Extremal” cases



This corresponds to the extremal case of the previous one, 

when both horizons coincide

Homogeneous regions are bounded either by horizons or 
by null infinities foliated by spheres of area 

Only accelerating observers may stay in regions where 

4πr2
0

r > rH

Charged BHs in Cosmological Backgrounds Conformal Diagrams

Reissner-Nordström-de Sitter

(MAX. charge — one degenerate horizon)
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“Extremal” cases



Charged BHs in Cosmological Backgrounds Conformal Diagrams

Reissner-Nordström-de Sitter

(MAX. charge — no horizons)

The universe asymptotically expands from and contracts to a 

null hypersurface of spheres with minimum area

All observers cross the unique  hypersurface, which is a 

reflection-symmetry point

This is a closed cosmology that solves both the Big Bang and 

the Big Crunch, with no need of any Big Bounces

r = r∞
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“Extremal” cases



Work in 
progress

Regular Gravitational Collapse Conformal Diagrams

LTB model (outline)

Regular and analytical bounce on phase space

MAIN PROBLEM: the geometry is singular!

However, it is possible to overcome this situation:                            

we are able to provide a completely regular spacetime                      

for reasonable energy distributions ( , )

The shell-crossing (soft) singularity is still present

The surface  and  might be problematic…                          

(we are working on it)

Each layer of dust has a positive infimum (bigger as we 

move outwards in the star)

m(0) = 0 m′￼(x) > 0

x = 0 r = 0
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x =
0

t =
t0 (0)

x =
0

t =
t 0(

0)

r = 2m(x)

r = 2m(x)

r = 2λm(x)

i0

i0

i+

i−

x
=

0
x

=
0



Concluding Remarks

Effective theory with quantum corrections

Vacuum solution: always free of singularities

Charge and Cosmological constant: , , and 

Minkowski is always a solution for any 

We recover general relativity in the limit        

Dynamical collapse (dust) free of curvature divergences

M > 0 Λ ≥ 0 Q ↓

→ 0

The effective theory provides an entirely regular
description for any spherical astrophysical black hole.

First positive results in the literature.

Covariance and matter
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The effective corrections modify the whole

spacetime, and also at large radii!


