Singularity-Free Spherical Black Holes with LQG corrections

Asier Alonso-Bardaji

Grenoble — Dec 12, 2023

Outline

- Covariant deformations of GR
- The effective quantum Schwarzschild black hole
- Charged black holes in cosmological backgrounds
- Gravitational collapse: outlining effective LTB models

 \sum

We will demand the following:

• The derivative structure is the same as in GR

• The constraints form an anomaly-free algebra

• The theory is embeddable in a 4D manifold

• The GR Hamiltonian stands as a particular limit

• The model admits matter

• There is an explicit vacuum limit

```
brackets[expr1_, expr2_] :=
Module[{table1variables, table1moments, table2variables,
   table2moments},
  table1variables =
    Sum[(-1) ^ n D[D[expr1, D[variables[i]], {x, n}]], {x, n}],
   Table[
     {n, 0, derorder}], {i, 1, variablesnumber}];
   table1moments =
    Table[Sum[(-1) ^ n D[D[expr1, D[moments[i], {x, n}]],
        {x, n}], {n, 0, derorder}], {i, 1, variablesnumber}];
   table2variables =
     Sum[(-1) ^nD[D[expr2, D[variables[[i]], {x, n}]], {x, n}],
    Table[
      {n, 0, derorder}], {i, 1, variablesnumber}];
    table2moments =
     Sum[(-1) ^ n D[D[expr2, D[moments[i], {x, n}]], {x, n}],
     Table[
       {n, 0, derorder}], {i, 1, variablesnumber}];
    -(Dot[table1variables, table2moments] -
       Dot[table1moments, table2variables])]
  var[expr_, f_] :=
   Module[
     {order =
       Max[Join[{0}, Map[(# // Head // Head)[[1]] &,
          Cases[expr, Derivative[_][f][x], Infinity]]]]},
     Sum[(-1) ^ n D[D[expr, D[f[x], {x, n}]],
        {x, n}], {n, 0, order}]]
   onshell = {diff ↔ (0 &) , ham ↔ (0 &) };
```


Requirements:

Derivatives as in GR

• Anomaly-free algebra

• Embeddable in 4D

• GR limit

O Admits matter

• Vacuum limit

 $\mathcal{D} = -K_x E^{x\prime} + \mathcal{K}'_{\varphi} \mathcal{E}^{\varphi},$

Which are the effects on spacetime?

The Effective Hamiltonian

$$\{K_x(x_1), E^x(x_2)\} = \{\mathcal{K}_{\varphi}(x_1), \mathcal{E}^{\varphi}(x_2)\} = \delta(x_1)$$

$$\left(+ \frac{\sin^2\left(\lambda \mathcal{K}_{\varphi}\right)}{\lambda^2} \right) - \sqrt{E^x} K_x \frac{\sin\left(2\lambda \mathcal{K}_{\varphi}\right)}{\sqrt{1 + \lambda^2}\lambda} \left(1 + \left(\frac{\lambda E^{x'}}{2\mathcal{E}^{\varphi}}\right)^2 \right)$$

$$E^{x'} \mathcal{E}^{\varphi'} + \frac{\sqrt{E^x}}{2\mathcal{E}^{\varphi}} E^{x''} \right) \frac{\cos^2\left(\lambda \mathcal{K}_{\varphi}\right)}{\sqrt{1 + \lambda^2}} + \frac{\sqrt{E^x}\mathcal{E}^{\varphi}}{2\sqrt{1 + \lambda^2}} \left(\Lambda + \frac{Q^2}{(E^x)^2}\right) \right)$$

The effective Hamiltonian satisfies the hypersurface deformation algebra (by construction, questions are welcome!)

$$\{D[s_1], D[s_2]\} = D[s_1s'_2 - s'_1s_2],$$

$$\{D[s_1], H[s_2]\} = H[s_1s'_2],$$

$$\{H[s_1], H[s_2]\} = D[F(s_1s'_2 - s'_1s_2)].$$

Metric Interpretation

with
$$F = \frac{\cos^2\left(\lambda \mathcal{K}_{\varphi}\right)}{1+\lambda^2} \left(1 + \left(\frac{\lambda E^{x\prime}}{2\mathcal{E}^{\varphi}}\right)^2\right) \frac{E^x}{\mathcal{E}^{\varphi 2}}$$

note that it is nowhere negative! roots of the cosine are new roots of F

Δ

The effective Hamiltonian satisfies the hypersurface deformation algebra (by construction, questions are welcome!)

$$\{D[s_1], D[s_2]\} = D[s_1s'_2 - s'_1s_2],$$

$$\{D[s_1], H[s_2]\} = H[s_1s'_2],$$

$$\{H[s_1], H[s_2]\} = D[F(s_1s'_2 - s'_1s_2)].$$

Three assumptions:

- (I) The lapse and the shift are defined in the same way as in GR
- (II) Gauge transformations describe coordinate changes
- (III) The area of the spheres is not affected by the corrections

Metric Interpretation

with

$$F = \frac{\cos^2\left(\lambda \mathcal{K}_{\varphi}\right)}{1+\lambda^2} \left(1 + \left(\frac{\lambda E^{x'}}{2\mathcal{E}^{\varphi}}\right)^2\right) \frac{E^x}{\mathcal{E}^{\varphi^2}}$$

note that it is nowhere negative!

roots of the cosine are new roots of ${\cal F}$

$$<$$
 GR: $\lambda \rightarrow 0$

$$ds^{2} = -N(t,x)^{2}dt^{2} + \frac{1}{F}(dx^{2} + N^{x}(t,x)dt^{2}) + r(t,x)^{2}dt^{2}$$

The effective Hamiltonian satisfies the hypersurface deformation algebra (by construction, questions are welcome!)

$$\{D[s_1], D[s_2]\} = D[s_1s'_2 - s'_1s_2],$$

$$\{D[s_1], H[s_2]\} = H[s_1s'_2],$$

$$\{H[s_1], H[s_2]\} = D[F(s_1s'_2 - s'_1s_2)].$$

Three assumptions:

- (I) The lapse and the shift are defined in the same way as in GR
- (II) Gauge transformations describe coordinate changes
- (III) The area of the spheres is not affected by the corrections

Condition (ii) is highly non-trivial, but again, by construction, the structure function *F* satisfies this requirement!

given a generic vector $\xi^A \partial_A = \xi^t \partial_t + \xi^x \partial_x$

$$\xi^t \partial_t \left(\frac{1}{F}\right) + \xi^x \partial_x \left(\frac{1}{F}\right) + \frac{2}{F} \left(N^x \partial_x \xi^t + \partial_x \xi^x\right) = \left\{\frac{1}{F}, H[\xi^t N] + D[\xi^t N^x + \xi^x]\right\}$$

coordinate transformations (Lie derivative)

Metric Interpretation

GR: $\lambda \to 0$

with
$$F = \frac{\cos^2\left(\lambda \mathcal{K}_{\varphi}\right)}{1+\lambda^2} \left(1 + \left(\frac{\lambda E^{x\prime}}{2\mathcal{E}^{\varphi}}\right)^2\right) \frac{E^x}{\mathcal{E}^{\varphi 2}}$$

note that it is nowhere negative! roots of the cosine are new roots of F

$$ds^{2} = -N(t,x)^{2}dt^{2} + \frac{1}{F}(dx^{2} + N^{x}(t,x)dt^{2}) + r(t,x)^{2}dt^{2}$$

gauge transformations (Poisson bracket)

the effective Hamiltonian

$$\mathcal{D} = -K_x E^{x'} + \mathcal{K}'_{\varphi} \mathcal{E}^{\varphi},$$

$$\mathcal{H} = -\frac{\mathcal{E}^{\varphi}}{2\sqrt{1+\lambda^2}\sqrt{E^x}} \left(1 + \frac{\sin^2\left(\lambda\mathcal{K}_{\varphi}\right)}{\lambda^2}\right) - \gamma$$

$$+ \left(\frac{(E^{x'})^2}{8\sqrt{E^x}\mathcal{E}^{\varphi}} - \frac{\sqrt{E^x}}{2\mathcal{E}^{\varphi 2}}E^{x'}\mathcal{E}^{\varphi'} + \frac{\sqrt{E^x}}{2\mathcal{E}^{\varphi}}E^{x''}\right)$$

$$\{K_x(x_1), E^x(x_2)\} = \{\mathcal{K}_{\varphi}(x_1), \mathcal{E}^{\varphi}(x_2)\} = \delta(x_1, x_2)$$

$$\label{eq:star} ds^2 = -N(t,x)^2 dt^2 + \frac{1}{F} \bigl(dx^2 + N^x(t,x) dt^2 \bigr) + r(t,x)^2 d\Omega$$
 the metric

There is a simpler way of writing the metric.

We just need to use the mass function (the quantity that is a constant in vacuum):

$$F = \frac{\cos^2(\lambda \mathcal{K}_{\varphi})}{1+\lambda^2} \left(1 + \left(\frac{\lambda E^{x'}}{2\mathcal{E}^{\varphi}}\right)^2 \right) \frac{E^x}{\mathcal{E}^{\varphi 2}} = \left(1 - \frac{2\lambda r}{\sqrt{E}} \right)^2 \left(1 + \frac{2\lambda r}{\sqrt{E}} \right)^2 \left(1 + \frac{\lambda E^{x'}}{2\mathcal{E}^{\varphi}} \right)^2 \right) \frac{E^x}{\mathcal{E}^{\varphi 2}} = \left(1 - \frac{2\lambda r}{\sqrt{E}} \right)^2 \left(1 + \frac{\lambda E^{x'}}{2\mathcal{E}^{\varphi}} \right)^2 \left(1 + \frac{\lambda E^{x'}}{2\mathcal{E}^{\varphi}} \right)^2 \right) \frac{E^x}{\mathcal{E}^{\varphi 2}} = \left(1 - \frac{2\lambda r}{\sqrt{E}} \right)^2 \left(1 + \frac{\lambda E^{x'}}{2\mathcal{E}^{\varphi}} \right)^2 \left(1 + \frac{\lambda E^{x'}}{2\mathcal{E}^{\varphi}} \right)^2 \right) \frac{E^x}{\mathcal{E}^{\varphi 2}} = \left(1 - \frac{2\lambda r}{\sqrt{E}} \right)^2 \left(1 + \frac{\lambda E^{x'}}{2\mathcal{E}^{\varphi}} \right)^2 \left(1 + \frac{\lambda E^{x'}}{2\mathcal{E}^{\varphi}} \right)^2 \right) \frac{E^x}{\mathcal{E}^{\varphi 2}} = \left(1 - \frac{2\lambda r}{\sqrt{E}} \right)^2 \left(1 + \frac{\lambda E^{x'}}{2\mathcal{E}^{\varphi}} \right)^2 \left(1 + \frac{\lambda E^{x'}}{2\mathcal{$$

$$ds^2 = -N^2 dt^2 + \left(1 - \frac{2\lambda m}{\sqrt{E^x}}\right)^{-1} \frac{\mathcal{E}^{\varphi 2}}{E^x} \left(dx + N^x dt\right)^2 + E^x d\Omega^2$$

$$m := \frac{\sqrt{E^x}}{2} \left(1 + \frac{\sin^2(\lambda \mathcal{K}_{\varphi})}{\lambda^2} - \left(\frac{E^{x'}}{2\mathcal{E}^{\varphi}}\right)^2 \cos^2(\lambda \mathcal{K}_{\varphi}) \right)$$

$$\lambda := \frac{\lambda^2}{1 + \lambda^2}$$

this is the physically meaningful constant of the model it takes values in (0,1)the limit to 0 corresponds to GR

Effective Quantum Schwarzschild Black Hole

$$ds^{2} = -\left(1 - \frac{2M}{\tilde{r}}\right)d\tilde{t}^{2} + \left(1 - \frac{2\chi M}{\tilde{r}}\right)^{-1}\left(1 - \frac{2M}{\tilde{r}}\right)^{-1}\left(1 - \frac{2$$

$$ds^{2} = -\left(1 - \frac{2\lambda M}{T}\right)^{-1} \left(\frac{2M}{T} - 1\right)^{-1} dT^{2} + \left(\frac{2M}{T} - 1\right)^{-1} dT^{$$

The covering chart

where r(z) is completely determined by

$$ds^{2} = -\left(1 - \frac{2M}{r(z)}\right) d\tau^{2} + 2\sqrt{\frac{2M}{r(z)}} d\tau dz + dz^{2} + r(z)^{2} d\Omega^{2}$$

$$\frac{dr(z)}{dz} = \operatorname{sgn}(z) \sqrt{1 - \frac{2 \chi M}{r(z)}},$$

$$r_0 := 2\lambda M$$

The positive minimum
of the area-radius function!

Effective Quantum Schwarzschild Black Hole

- Curvature scalars attain their maximum at the transition surface 0
- Every definition of mass provides the *same* exact value in every 0 region of the spacetime
- Although the transition surface appears always inside the horizon, 0 the modifications affect the whole spacetime
- Quantum effects are measurable! There are already have some 0 bounds...

Ricci scalarCharacterization of
the new constant
$$\chi = \lim_{r \to \infty} \frac{\Lambda}{\Lambda}$$
 $\mathcal{R} = \frac{6\chi M^2}{r^4}$ mean curvature vector: $H^{\mu} = (2/r) \nabla^{\mu}$ $H^{\mu}\partial_{\mu} = \operatorname{sgn}(z) \frac{2}{r} \sqrt{1 - \frac{2\chi M}{r}} \left(\sqrt{\frac{2M}{r}} \partial_{\tau} + \left(1 - \frac{2M}{r}\right) \partial_{z} \right)$

Global Structure

$$ds^{2} = -\left(1 - \frac{2M}{r(z)}\right)d\tau^{2} + 2\sqrt{\frac{2M}{r(z)}} d\tau dz + dz^{2} + r(z)^{2} d\Omega^{2}$$

$$d\tau = dT + \left(1 - \frac{2m(r(z))}{r(z)}\right)^{-1}\sqrt{\frac{2m(r(z))}{r(z)}} d\tau dz + dz^{2} + r(z)^{2} d\Omega^{2}$$

mass function

$$m(r) := M - \frac{Q^2}{2r} + \frac{\Lambda}{6}r^3 \qquad \left(\frac{dr(z)}{dz}\right)^2 = 1 - \frac{2\lambda m(r(z))}{r(z)}$$

implicit definition of r(z)

The Covering Domain

Change of coordinates to static/homogeneous charts:

$$d\tau = dT + \left(1 - \frac{2m(r(z))}{r(z)}\right)^{-1} \sqrt{\frac{2m(r(z))}{r(z)}} dz$$

[This is a solution to the Hamiltonian equations, and not just an extension of the vacuum metric]

Are these spacetimes free of singularities?

Ricci scalar 0

$$\mathcal{R} = 4\Lambda \left(1 + \frac{\lambda}{2}\right) + 2\lambda \left(\frac{3M^2}{r^4} + \frac{Q^2}{r^4} \left(1 - \frac{4M}{r} + \frac{Q^2}{r^2}\right) + \frac{M^2}{r^2}\right) + \frac{M^2}{r^2} \left(1 - \frac{M^2}{r} + \frac{M^2}{r^2}\right) + \frac{M^2}{r^2} \left(1 - \frac{M^2}{r^2} + \frac{M^2}{r^2}\right) + \frac{M^2}{r^2} \left(1 - \frac{M^2}{r} + \frac{M^2}{r^2}\right) + \frac{M^2}{r^2} \left(1 - \frac{M^2}{r^2} + \frac{M^2}{r^2}\right) + \frac{M^2}{r^2} \left(1 - \frac{M^2}{r^2}$$

The singularity is resolved by the appearance of a positive lower bound for *r*

$$\begin{aligned} \mathcal{R}_{abcd} \mathcal{R}^{abcd} &= \frac{8\Lambda^2}{3} (1+\lambda) + \frac{48M^2}{r^6} - \frac{96MQ^2}{r^7} + \frac{56Q^4}{r^8} - \lambda \left(\frac{8}{3}\Lambda^3 r^2 - \frac{152Q^6}{r^{10}} - \frac{240M^3}{r^7} + \frac{P_8(r)}{r^9}\right) \\ &+ \lambda^2 \left(\frac{20}{27}\Lambda^4 r^4 - \frac{40}{27}\Lambda^3 r^2 + \frac{16}{3}M\Lambda^3 r + \frac{108Q^8}{r^{12}} + \frac{324M^4}{r^8} + \frac{P_{10}(r)}{r^{11}}\right) \end{aligned}$$

Study of Singularity Resolution

Curvature Invariants

$$\left(\frac{4M}{r} + \Lambda r^2\right) + \frac{4\Lambda Q^2}{3r^2}\right)$$

Domain of *r* restricted by the existence of a solution for

which is equivalent to a 1D particle with zero total energy

$$\frac{1}{2}(r')^2 + V(r) = 0 \quad \text{ where } \quad V(r) = -\frac{1}{2}$$

Allowed regions: r > 0 and $2r^{\ell}V(r) \le 0$

Study of Singularity Resolution

Allowed Regions

$$\left(\frac{dr(z)}{dz}\right)^2 = 1 - \frac{2\lambda m(r(z))}{r(z)}$$

The singularity is resolved by the appearance

of a positive lower bound for *r*

Study of singularity resolution = study of the roots of V(r)• Simple roots of V(r): Turning points of r(z)• Multiple roots of V(r): Asymptotic values of z

Study of Singularity Resolution

Allowed Regions

Study of Singularity Resolution

Existence of a Positive Infimum

Study of Singularity Resolution

Existence of a Positive Infimum

Ricci scalar 0

$$\mathcal{R} = 4\Lambda \left(1 + \frac{\lambda}{2}\right) + 2\lambda \left(\frac{3M^2}{r^4} + \frac{Q^2}{r^4} \left(1 - \frac{4M}{r} + \frac{Q^2}{r^2}\right) + \frac{M^2}{r^2}\right) + \frac{M^2}{r^2} \left(1 - \frac{M^2}{r} + \frac{M^2}{r^2}\right) + \frac{M^2}{r^2} \left(1 - \frac{M^2}{r^2} + \frac{M^2}{r^2}\right) + \frac{M^2}{r^2} \left(1 - \frac{M^2}{r} + \frac{M^2}{r^2}\right) + \frac{M^2}{r^2} \left(1 - \frac{M^2}{r^2} + \frac{M^2}{r^2}\right) + \frac{M^2}{r^2} \left(1 - \frac{M^2}{r^2}$$

The singularity is resolved by the appearance of a positive lower bound for *r*

$$\begin{aligned} \mathcal{R}_{abcd} \mathcal{R}^{abcd} &= \frac{8\Lambda^2}{3} (1+\lambda) + \frac{48M^2}{r^6} - \frac{96MQ^2}{r^7} + \frac{56Q^4}{r^8} - \lambda \left(\frac{8}{3}\Lambda^3 r^2 - \frac{152Q^6}{r^{10}} - \frac{240M^3}{r^7} + \frac{P_8(r)}{r^9}\right) \\ &+ \lambda^2 \left(\frac{20}{27}\Lambda^4 r^4 - \frac{40}{27}\Lambda^3 r^2 + \frac{16}{3}M\Lambda^3 r + \frac{108Q^8}{r^{12}} + \frac{324M^4}{r^8} + \frac{P_{10}(r)}{r^{11}}\right) \end{aligned}$$

Study of Singularity Resolution

Curvature Invariants

$$\left(\frac{4M}{r} + \Lambda r^2\right) + \frac{4\Lambda Q^2}{3r^2}\right)$$

Ricci scalar 0

$$\mathcal{R} = 4\Lambda \left(1 + \frac{\lambda}{2}\right) + 2\lambda \left(\frac{3M^2}{r^4} + \frac{Q^2}{r^4} \left(1 - \frac{4M}{r} + \frac{Q^2}{r^2}\right)\right)$$

The singularity is resolved by the appearance of a positive lower bound for *r*

$$\begin{aligned} \mathcal{R}_{abcd} \mathcal{R}^{abcd} &= \frac{8\Lambda^2}{3} (1+\lambda) + \frac{48M^2}{r^6} - \frac{96MQ^2}{r^7} + \frac{56Q^4}{r^8} - \lambda \left(\frac{8}{3}\Lambda^3 r^2 \right) + \frac{152Q^6}{r^{10}} - \frac{240M^3}{r^7} + \frac{P_8(r)}{r^9} \right) \\ &+ \lambda^2 \left(\frac{20}{27}\Lambda^4 r^4 - \frac{40}{27}\Lambda^3 r^2 \right) + \frac{16}{3}M\Lambda^3 r + \frac{108Q^8}{r^{12}} + \frac{324M^4}{r^8} + \frac{P_{10}(r)}{r^{11}} \right) \end{aligned}$$

Study of Singularity Resolution

Curvature Invariants

$$\Lambda \left(\frac{4M}{r} + \Lambda r^2 \right) + \frac{4\Lambda Q^2}{3r^2} \right)$$

But we also need a finite upper bound for r (when $\Lambda \neq 0$)

Ricci scalar 0

Curvature Invariants

Study of Singularity Resolution

Existence of a Positive Infimum

Study of Singularity Resolution

Existence of a Positive Infimum

Study of Singularity Resolution

Existence of a Positive Infimum

We study the cases that are free of curvature divergences

 $G := -\tau^{\mu} \tau_{\mu} = 1 - \frac{2m(r)}{r}$ Norm of the Killing vector:

- All roots of G(r) at r = 2m(r) are null hypersurfaces (horizons) 0
- Simple roots of V(r) at $r = r_0$ or $r = r_\infty$ are minimal spacelike hypersurfaces 0
- Double roots of V(r) at $r = r_0$ are null (past or future) boundaries at infinity 0

Causal Structure and Horizons

$\lambda G(r) + 2V(r) = \lambda - 1$

The roots of G(r) and V(r) cannot coincide

Reissner-Nordström and Schwarzschild

- It is the same diagram as in vacuum
- Small amounts of charge do not alter the causal structure of the spacetime
- The singularity (and all structure beyond the inner horizon in RN) is replaced by a minimal transition surface

 \mathcal{M}

Conformal Diagrams

Reissner-Nordström-de Sitter

and Schwarzschild-de Sitter

- O Minimal spacelike hypersurfaces foliated by spheres of area $4\pi r_0^2$ replace the singularity
- O Minimal spacelike hypersurfaces foliated by spheres of area $4\pi r_{\infty}^2$ replace asymptotic infinities
- Infinite copies of \mathcal{U} along all directions, layering up around each ring in a helical (clockwise) manner

Reissner-Nordström-de Sitter (one degenerate horizon)

- Same features as before BUT the two horizons degenerate into a single one
- There are no static regions in \mathcal{M} : This solution represents a periodic bouncing cosmology
- The existence of horizons allows accelerating observers to decouple from cosmic time and end at i^+

Reissner-Nordström-de Sitter (no horizons)

• All hypersurfaces of constant *r* are spacelike

• This is a cyclic cosmology, oscillating between hypersurfaces foliated by spheres of area $4\pi r_0^2$ and $4\pi r_\infty^2$

• The diagram is not compactified. Any observers cross infinitely many hypersurfaces of equal r

Conformal Diagrams

"Extremal" cases

Conformal Diagrams

"Extremal" cases

Reissner-Nordström-de Sitter

(MAX. charge)

- ${\ensuremath{\circ}}$ The diagram for ${\ensuremath{\mathcal{U}}}$ is finite. Still, ${\ensuremath{\mathcal{M}}}$ unfolds at each ring
- Hypersurfaces $r = r_0$ become null infinities and cannot be crossed
- The maximum r_{∞} of the area radius is a reflection-symmetry point

Conformal Diagrams

"Extremal" cases

Reissner-Nordström-de Sitter

(MAX. charge — one degenerate horizon)

• This corresponds to the extremal case of the previous one, when both horizons coincide

• Homogeneous regions are bounded either by horizons or by null infinities foliated by spheres of area $4\pi r_0^2$

• Only accelerating observers may stay in regions where $r > r_H$

r

"Extremal" cases

Reissner-Nordström-de Sitter

(MAX. charge – no horizons)

• The universe asymptotically expands from and contracts to a null hypersurface of spheres with minimum area

- All observers cross the unique $r = r_{\infty}$ hypersurface, which is a reflection-symmetry point
- This is a closed cosmology that solves both the Big Bang and the Big Crunch, with no need of any Big Bounces

A

Regular Gravitational Collapse

- Regular and analytical bounce on phase space
- MAIN PROBLEM: the geometry is singular!
- However, it is possible to overcome this situation: we are able to provide a completely regular spacetime for reasonable energy distributions (m(0) = 0, m'(x) > 0)
- The shell-crossing (soft) singularity is still present
- The surface x = 0 and r = 0 might be problematic... (we are working on it)
- Each layer of dust has a positive infimum (bigger as we move outwards in the star)

Conformal Diagrams

Concluding Remarks

- Vacuum solution: always free of singularities
- Charge and Cosmological constant: M > 0, $\Lambda \ge 0$, and $Q \downarrow$
- Minkowski is always a solution for any λ
- We recover general relativity in the limit $\lambda \to 0$
- Operation of the second sec

The effective theory provides an entirely regular description for any spherical astrophysical black hole.

First positive results in the literature.

Covariance and matter

The effective corrections modify the whole

spacetime, and also at large radii!

IS