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and De Lorenzo, Perez 2018
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LIGHT-CONE THERMODYNAMICS

The conformal group is isomorphic to SO(5,1).

Any generator  defines a Conformal Killing Field 
such that

ξ

Light-cones in 4D Minkowski spacetime are 
conformal Killing horizons

T De Lorenzo and A Perez. Light Cone Thermodynamics. 
Phys. Rev. D, 97(4):044052, 2018 

ℒξημν =
ψ
2

ημν,

ψ = ∇μξμ
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LIGHT-CONE THERMODYNAMICS
The only generators that don’t contain angular 
components are

T De Lorenzo and A Perez. Light Cone Thermodynamics. 
Phys. Rev. D, 97(4):044052, 2018 

D = r∂r + t∂t

P0 = ∂t

K0 = − 2tD − (r2 − t2)P0

The most general radial MCKF is

ξ = − aK0 + bD + cP0

= (av2 + bv + c)∂v + (au2 + bu + c)∂u u = t − r, v = t + r
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LIGHT-CONE THERMODYNAMICS

T De Lorenzo and A Perez. Light Cone Thermodynamics. 
Phys. Rev. D, 97(4):044052, 2018 

The norm of ξ = (av2 + bv + c)∂v + (au2 + bu + c)∂u

is given by ξ ⋅ ξ = − (av2 + bv + c)(au2 + bu + c)

It’s null along the light cones given by
u = u± =

−b ± b2 − 4ac
2a

,

v = v± = u±

 vanishes at the intersection of ξ u = u−, v = v+

rH :=
v+ − u−

2
=

b2 − 4ac
2a

tH := −
b

2a
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LIGHT-CONE THERMODYNAMICS

T De Lorenzo and A Perez. Light Cone Thermodynamics. 
Phys. Rev. D, 97(4):044052, 2018 

•  defines two Conformal Killing Horizons at the past 
and future light cones of 

• Each horizon has constant (conformally invariant) 
surface gravity defined via 

• Events in spacetime are separated as in a spherical 
charged black hole.

ξ
O± = (t = v±, r = 0)

∇μ(ξ ⋅ ξ)=̂ − 2κημνξν

O+

O−

I II
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Martinetti, Rovelli (2003)
Kay, Wald (1991)

Hislop, Longo (1982)
Jacobson, Visser (2022)



LAWS OF LIGHT-CONE THERMODYNAMICS
 from T De Lorenzo, A Perez (2018) 

1. under conformally-invariant matter 
perturbations 

2.

3. extremal radial MCKFs have vanishing 
“temperature” and vanishing “entropy”

δM =
κ

2π
δA
4

+ δM∞

δA ≥ 0

0.   constant surface gravity                    
.     on the conformal Killing horizon

κ𝒥+ 𝒥+
δA δA

δM

δM∞δM∞

M := ∫Σ
TμνξμdΣν

δA := ΔA − ΔAvac
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LIGHT-CONE THERMODYNAMICS

how to characterize positive frequency solutions of the 
KG equation with respect to inertial time on a light cone?

decomposition of the Minkowski vacuum
A Perez, SR 2023

Goal: writing the Minkowski vacuum  as a superposition of 

particle states associated to  

0⟩
M

ξ

□ Φ =
1
−g

∂μ ( −ggμν∂ν) Φ = 0

= (−
∂2

∂t2
+

1
r2

∂
∂r (r2 ∂

∂r ) +
1

r2 sin θ
∂
∂θ (sin θ

∂
∂θ ) +

1
r2 sin2 θ

∂2

∂φ2 ) Φ(x)
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Unruh 1976



LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Φ(x) = e−iωtYℓm(θ, φ)Rℓ(r)

(ω2 +
∂2

∂r2
+

2
r

∂
r

−
ℓ(ℓ + 1)

r2 ) Rℓ = 0KG equation:

Rℓ(r) = jℓ(ωr)
solved by the spherical Bessel functions 

Solutions are completely characterized in the union of the 
past and future light cone.
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LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Φ = e−iω( v + rH
2 )Yℓm jℓ (ω

v − rH

2 ),

By means of a coordinate transformation we can set ,   b = 0 v± := ± rH

Φ(x) = e−iωtYℓm(θ, φ)jℓ(ωr) t =
v + u

2
, r =

v − u
2

u = rH

v = rH

at u = rH, v > rH

Φ = e−iω( u + rH
2 )Yℓm jℓ (ω

rH − u
2 ),at v = rH, u < rH

which can be written in terms of a single variable which 
covers the whole real line.
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LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Φ = e−iω( z + v+
2 )Yℓm jℓ (ω

z − v+

2 ),

u = rH

v = rH

In terms of a single null variable  spanning from  to , 
solutions of the KG equation take the form

z −∞ +∞
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 is analytic. We want to characterize  solutions. 
Let us look where they are bounded. For large  :
Φ ω > 0

z



LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Φ ≈ e−iω( z + rH
2 )Yℓm sin (ω

z − rH

2
−

ℓπ
2 )/(ω (z − rH)),

u = rH

v = rH

 is analytic. We want to characterize  solutions. 
Let us look where they are bounded. For large  :
Φ ω > 0

z

= Yℓm
A

z − rH
e−iωz

bounded for  Im(z) < 0

 solutions are analytic functions of  bounded  in the 
lower-half complex plane 

ω > 0 z
Im(z)
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LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

t =
rH sinh(κτ)

cosh(κρ) − cosh(κτ)

u = rH

v = rH

Consider this coordinate transformation 

What are the positive-frequency solutions associated to  ?ξ

r = −
rH sinh(κρ)

cosh(κρ) − cosh(κτ)

u = − rH coth ( κũ
2 )

v = − rH coth ( κṽ
2 )

ds2
M = ΩII(τ, ρ)(−dτ2 + dρ2 + κ−2 sinh2(κρ)dS2)

I II
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LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

u = rH

v = rH

ds2
M = ΩII(τ, ρ)(−dτ2 + dρ2 + κ−2 sinh2(κρ)dS2)

I II

Under a conformal transformation  ,

solutions of  are mapped via .

gμν → g′ μν = C2gμν

( □ −
1
6

R) U = 0 Φ → C−1Φ

Uωℓm = e−iωτYℓm
Rωℓ±(ρ)
sinh(κρ)

Solutions take the form:
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LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

u = rH

v = rH

I II

Uωℓm = e−iωτYℓm
Rωℓ±(ρ)
sinh(κρ)

KG equation: ( ∂2

∂ρ2
+ ω2 −

ℓ(ℓ + 1)κ2

sinh2(κρ) ) Rωℓ±(ρ) = 0

Near the past boundary of region II ( )  and the 
effective potential vanishes. Thus

v = rH ρ → + ∞

Uωℓm = e−iω(τ ± ρ) Yℓm

sinh(κρ)
14



LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

u = rH

v = rH

I II
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Φωℓm
II = Ω−1

II Uωℓm =
1
r

Yℓme−iω(τ − ρ)

=
1

rH − u
Yℓme−i ω

κ log( u − rH
u + rH )

studying solutions near the light cone in 
region  (and ) givesII III

Similarly 

Φωℓm
I =

1
rH − u

Yℓme−i ω
κ log( rH + u

rH − u ) at v = rH



LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

u = rH

v = rH

I II
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Φωℓm
II =

1
rH − z

Yℓme−i ω
κ log( z − rH

z + rH )

Φωℓm
I =

1
rH − z

Yℓme−i ω
κ log( rH + z

rH − z )

z < − rH, z > rH

−rH < z < rH

Fω =
1

rH − z
e−i ω

κ log( z − rH
z + rH )evaluate the complex function 

at  z = x − iϵ, ϵ > 0



LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Fω =
1

rH − x + iϵ
e−i ω

κ log( x − rH − iϵ
x + rH + iϵ )
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for  we get −rH < x < rH

log ( x − rH − iϵ
x + rH − iϵ ) = log ( rH − x − iϵ

x + rH − iϵ
e−i(π − 𝒪(ϵ))) = log ( rH − x − iϵ

x + rH − iϵ ) − iπ

Fω ≈
e− πω

κ

rH − x
e−i ω

κ log( x − rH
x + rH ) = e− πω

κ Φω
I

−rH rH

x − iϵ



LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Fω = Φω
II + e− πω

κ Φω
I

similarly

u = rH

v = rH

I II

III

F′ ω = Φω
I + e− πω

κ Φω
II

are analytic and bounded in the 
lower-half plane in terms of the 
Minkowski coordinate, thus positive 
frequency solutions.

(aIIω + e− πω
κ a†

Iω) 0⟩
M

= 0, (aIω + e− πω
κ a†

IIω) 0⟩
M

= 0

U 0⟩
M

= ∏
i (∑

n

e− nπωi
κ n, ωi⟩I

⊗ n, ωi⟩II)
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Fulling 1973, Davies 1975, Unruh 1976



PERSPECTIVES 
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reading the signs
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“Humility is a virtue, but not on a resume”



PERSPECTIVES 

20

reading the signs

RIBISI

SALVATORE’S

APPLICATIONS



PERSPECTIVES 

• The same result can be obtained in (A)dS spacetime, 
relating (A)dS vacua to modes living in causally-
disconnected regions of spacetime.

• We know the solutions of the Klein-Gordon equation 
in spherical coordinates, and the spherical trajectories 
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H

causal diamond in the static patch 
of deSitter spacetime. The 
boundary  is the cosmological 
horizon. In blue the trajectories of 
the CKF. (Jacobson, Visser 2019)

H

leading to a thermal decomposition 
of the vacuum. We can use this 
knowledge to build 4D spherically 
symmetric moving mirror models. 
(You’re welcome)



• Under a family of conformal transformations,  is mapped 
into an actual Killing field. Our result straightforwardly 
translates to this class of spacetimes, among which we have 
deSitter and near-horizon near-extremal RN. The light 
cones are mapped into Killing horizons.

ξ

I

I

III

VI

V

III

IV

courtesy of T De Lorenzo and A Perez

II III

VI

V

III

IV

near-horizon 
near-extremal RN

deSitter 
spacetime

PERSPECTIVES 
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