

DARK ENERGY SURVEY

Cosmology from the Measurement of the Baryon Acoustic Oscillations Scale in Large Galaxy Surveys

Juan Mena-Fernández

Thursday 25th January, 2024

- 1 The Standard Cosmological Model
- 2 Baryon Acoustic Oscillations (BAO)
- 3 The Dark Energy Survey (DES)
- Measurement of the BAO Scale in DES Y3
- 5 Conclusions

1 The Standard Cosmological Model

- 2 Baryon Acoustic Oscillations (BAO)
- 3 The Dark Energy Survey (DES)
- Measurement of the BAO Scale in DES Y3
- 5 Conclusions

The standard cosmological model is also known as the **ACDM model**.

• Our Universe is mainly composed of Λ (dark energy) + CDM (cold dark matter)

```
 \label{eq:Energy content} \left\{ \begin{array}{l} \mbox{dark energy - } \Lambda \ (\sim 70\%) \\ \mbox{matter } (\sim 30\%) \\ \mbox{matter } (\sim 30\%) \\ \mbox{baryonic matter } (\sim 25\%) \\ \mbox{baryonic matter } (\sim 5\%) \\ \mbox{non-relativistic neutrinos } (< 1\%) \\ \mbox{radiation } (< 1\%) \\ \mbox{fphotons } (< 1\%) \\ \mbox{relativistic neutrinos } (< 1\%) \end{array} \right.
```

- Main pillars of ΛCDM:
 - Theory of general relativity.
 - The cosmological principle.
 - Vast observational basis, including:
 - Cosmic microwave background (CMB).
 - Primordial nucleosynthesis and abundance of light elements.
 - Large-scale structure (LSS).

4/34

The Universe is undergoing an accelerated expansion phase (Perlmutter et al. 1999):

- the expansion is such that the velocity at which a distant galaxy is receding from the observer is continuously increasing with time.
- this is **caused by dark energy**. Observations tell us that dark energy = cosmological constant.

There are several probes of dark energy, and the measurement of the **baryon acoustic** oscillations (BAO) scale is one of the most important ones. Their study was one of the main goals of my thesis.

1 The Standard Cosmological Model

2 Baryon Acoustic Oscillations (BAO)

3 The Dark Energy Survey (DES)

4 Measurement of the BAO Scale in DES Y3

Baryon Acoustic Oscillations (BAO) are fluctuations in the density of the baryonic matter of the Universe caused by acoustic density waves in the **primordial plasma of the early Universe**.

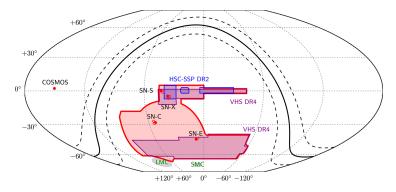
The BAO provides a **standard ruler** given by the maximum distance r_d these acoustic waves could travel in the primordial plasma before recombination,

$$r_d = \int_{z_d}^\infty rac{c_s(z)}{H(z)} dz pprox 150$$
 Mpc.

It gives us information about $d_M(z)$ and/or H(z).

Credits: Eisenstein et al 2006

The BAO plays a crucial role as a cosmological probe because of


- its significance in measuring the expansion history of the Universe.
- its significance constraining cosmological parameters (Bassett et al. 2010).
- its consistency with the high-z results from Planck (Planck Collaboration 2020).
- its robustness against systematics.

Source: https://www.youtube.com/watch?v=jpXuYc-wzk4

- 1 The Standard Cosmological Model
- 2 Baryon Acoustic Oscillations (BAO)
- 3 The Dark Energy Survey (DES)
 - Measurement of the BAO Scale in DES Y3
- Conclusions

The Dark Energy Survey (DES)

- DES is a visible and near-infrared photometric survey that aims to probe the physical nature of dark energy.
- It studies the dynamics of the expansion of the Universe and the growth of large-scale structure.
- It has imaged about 5,000 deg² of the southern sky in a 6-year photometric survey from Cerro Tololo (Chile).

- 4 main probes of DES:
 - Number of clusters as a function of redshift (CL).
 - Weak lensing (WL) effect in the distribution of galaxies $3 \times 2pt$ probe.
 - The BAO measurement.
 - Hubble diagram of type la supernovae.

٠	Periods of	time spanned	by	the data	in	each	DES	analysis:
---	------------	--------------	----	----------	----	------	-----	-----------

Name	Period	Area (deg ²)	Depth (<i>i</i> band)	Objects
SV	Nov. 2012 - Feb. 2013	250	23.68	25M
Y1	Aug. 2013 - Feb. 2014	1,800	23.29	137M
Y3	Aug. 2013 - Feb. 2016	5,000	23.44	399M
Y6	Aug. 2013 - Jan. 2019	5,000	23.80	691M

• We are still analyzing the Y6 data.

- 1) The Standard Cosmological Model
- 2 Baryon Acoustic Oscillations (BAO)
- 3 The Dark Energy Survey (DES)

Measurement of the BAO Scale in DES Y3

The Standard Cosmological Model

Baryon Acoustic Oscillations (BAO)

3 The Dark Energy Survey (DES)

Measurement of the BAO Scale in DES Y3 Introduction

- The Y3 BAO Sample
- Simulations: the COLA Mocks
- The BAO-Fitting Pipeline
- Testing the BAO-Fitting Pipeline
- BAO Measurement on the Y3 Data

• Blind analysis. To avoid confirmation bias, the analysis is performed blind:

- the angular correlation function of the data is blinded. Only three pre-unblinding points below 1 deg are computed to calibrate the simulations.
- we require to pass several tests before unblinding our measurements.

• **Photometric redshifts**. Photo-*z* are estimated from magnitudes (we do not have a direct measurement of redshift).

The Standard Cosmological Model

Baryon Acoustic Oscillations (BAO)

3 The Dark Energy Survey (DES)

Measurement of the BAO Scale in DES Y3

Introduction

• The Y3 BAO Sample

- Simulations: the COLA Mocks
- The BAO-Fitting Pipeline
- Testing the BAO-Fitting Pipeline
- BAO Measurement on the Y3 Data

The Y3 BAO sample is a photometric red galaxy sample that is

• selected using the *griz* bands and a photometric redshift estimate (z_{ph}) .

• built looking for a good compromise between $z_{\rm ph}$ accuracy and number density. Its selection cuts are given by

1.7 < i - z + 2(r - i)	(color selection),
$17.5 < i < 19 + 3z_{\rm ph}$	(flux selection),
$0.6 < z_{ m ph} < 1.1$	(photo-z range).

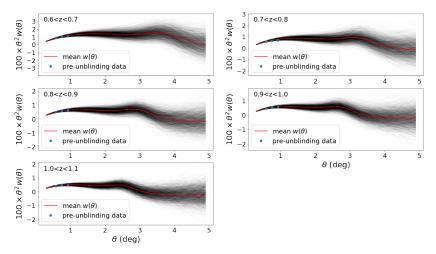
- It is divided in **5 redshift bins** with $\Delta z_{\rm ph} = 0.1$.
- The effective redshift of the sample is $z_{\rm eff} = 0.835$.
- It has a total of ${\sim}7$ million galaxies over ${\sim}4{,}100~\text{deg}^2.$

The Standard Cosmological Model

Baryon Acoustic Oscillations (BAO)

3 The Dark Energy Survey (DES)

Measurement of the BAO Scale in DES Y3


- Introduction
- The Y3 BAO Sample

Simulations: the COLA Mocks

- The BAO-Fitting Pipeline
- Testing the BAO-Fitting Pipeline
- BAO Measurement on the Y3 Data

Simulations: the COLA Mocks

1,952 mocks that **resemble the Y3 BAO sample**. Underlying cosmology: Mice $(\Omega_b = 0.044, \Omega_c = 0.206, h = 0.7, \sigma_8 = 0.8, n_s = 0.95)$.

The Standard Cosmological Model

Baryon Acoustic Oscillations (BAO)

3 The Dark Energy Survey (DES)

Measurement of the BAO Scale in DES Y3

- Introduction
- The Y3 BAO Sample
- Simulations: the COLA Mocks
- The BAO-Fitting Pipeline
- Testing the BAO-Fitting Pipeline
- BAO Measurement on the Y3 Data

- Development of a **BAO-fitting pipeline to measure the BAO signal** from the DES data.
- The pipeline uses a template-based method.
- The position of the BAO peak is encoded in *α*, which measures the shift in the position of the BAO peak between the data and the template, and is defined by

$$lpha(z_{
m eff}) = rac{d_M(z_{
m eff})}{r_d} \left[rac{d_M^{
m ref}(z_{
m eff})}{r_d^{
m ref}}
ight]^{-1}$$

The distance measurement is computed from $\boldsymbol{\alpha}$ as

$$\frac{d_M(z_{\rm eff})}{r_d} = \frac{d_M^{\rm ref}(z_{\rm eff})}{r_d^{\rm ref}} \alpha(z_{\rm eff}).$$

The χ^2 to be minimized is

$$\chi^2(\mathbf{\Theta}) = \sum_{\mathrm{zbin}_1, \mathrm{zbin}_2} \sum_{i,j} \Delta w^{\mathrm{zbin}_1}(heta_i, \mathbf{\Theta}) (\mathrm{cov}^{-1})^{\mathrm{zbin}_1, \mathrm{zbin}_2}_{i,j} \Delta w^{\mathrm{zbin}_2}(heta_j, \mathbf{\Theta}),$$

where

$$\Delta w^{\mathrm{zbin}}(heta, oldsymbol{\Theta}) = w^{\mathrm{zbin}}_{\mathrm{data}}(heta) - w^{\mathrm{zbin}}_{\mathrm{model}}(heta, oldsymbol{\Theta}).$$

The model is given by

$$w_{\mathrm{model}}^{\mathrm{zbin}}(heta, \mathbf{\Theta}) = B^{\mathrm{zbin}} w_{\mathrm{ref}}^{\mathrm{zbin}}(lpha heta) + \sum_{i} A_{i}^{\mathrm{zbin}} heta^{-i}.$$

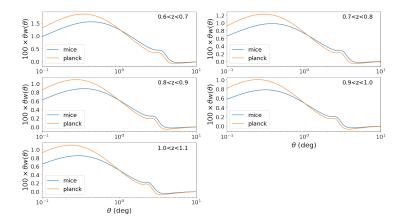
For the fiducial analysis, we compute the covariance matrices with COSMOLIKE (Krause et al. 2016).

$$w_{\text{model}}^{\text{zbin}}(\theta, \mathbf{\Theta}) = B^{\text{zbin}} w_{\text{ref}}^{\text{zbin}}(\alpha \theta) + \sum_{i} A_{i}^{\text{zbin}} \theta^{-i}.$$

The minimization algorithm has four steps:

• The A_i^{zbin} are fit analytically, following Cowan 1998. This leaves us with

$$\chi^2(\alpha, B^{\mathrm{zbin}}, A^{\mathrm{zbin}}_i) \to \chi^2(\alpha, B^{\mathrm{zbin}}, A^{\mathrm{zbin}}_{i,\mathrm{bf}}).$$


Numerically search for the best-fit B^{zbin} with the prior B^{zbin} > 0. This leaves us with

$$\chi^2(\alpha, \mathcal{B}^{\mathrm{zbin}}, \mathcal{A}^{\mathrm{zbin}}_{i,\mathrm{bf}}) \to \chi^2(\alpha, \mathcal{B}^{\mathrm{zbin}}_{\mathrm{bf}}, \mathcal{A}^{\mathrm{zbin}}_{i,\mathrm{bf}}).$$

- **(a)** The χ^2 is then sampled as a function of α . We find the best-fit α , α_0 .
- The 1σ region of α is obtained with the $\Delta \chi^2 = 1$ rule.

The BAO-Fitting Pipeline: the BAO Template

	Ω_b	Ω_c	h	σ_8	ns
Mice cosmology	0.044	0.206	0.7	0.8	0.95
Planck cosmology	0.048	0.262	0.676	0.8	0.97

The Standard Cosmological Model

Baryon Acoustic Oscillations (BAO)

3 The Dark Energy Survey (DES)

Measurement of the BAO Scale in DES Y3

- Introduction
- The Y3 BAO Sample
- Simulations: the COLA Mocks
- The BAO-Fitting Pipeline

• Testing the BAO-Fitting Pipeline

• BAO Measurement on the Y3 Data

Tests on Simulations: Reference Cosmology

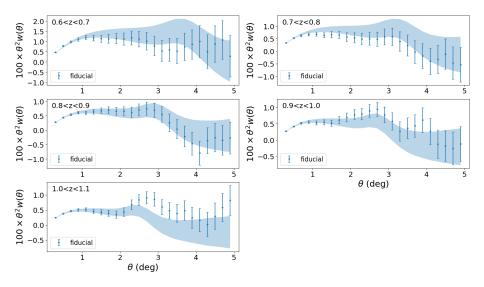
Bins	$\langle \alpha \rangle$	$\sigma_{ m std}$	$\langle \sigma_{\alpha} \rangle$	$\langle \chi^2 \rangle / dof$				
Mice template								
All	1.005	0.024	0.022	93.2/89				
1	1.002	0.051	0.049	17.7/17				
2	1.002	0.049	0.046	17.0/17				
3	1.002	0.046	0.041	17.5/17				
4	1.005	0.045	0.040	17.8/17				
5	1.008	0.049	0.044	18.3/17				
	Planck template							
All	0.966	0.023	0.021	93.6/89				
1	0.964	0.050	0.048	17.9/17				
2	0.965	0.047	0.045	17.2/17				
3	0.966	0.044	0.040	17.5/17				
4	0.970	0.044	0.039	17.9/17				
5	0.976	0.048	0.042	18.3/17				

• For the "All" case, $\langle \sigma_{lpha}
angle / \langle lpha
angle \sim$ 2.4% for both Mice and Planck.

• Using $d_M^{\rm Mice}(z_{\rm eff})/r_d^{\rm Mice} = 19.31$ and $d_M^{\rm Planck}(z_{\rm eff})/r_d^{\rm Planck} = 20.11$, we find

$$\left\langle rac{d_M(z_{\mathrm{eff}})}{r_d}
ight
angle = 19.41 \pm 0.42$$
 (Mice), $\left\langle rac{d_M(z_{\mathrm{eff}})}{r_d}
ight
angle = 19.42 \pm 0.42$ (Planck).

• Removing redshift bins gives larger $\sigma_{\rm std}$ and $\langle \sigma_{\alpha} \rangle$.


The Standard Cosmological Model

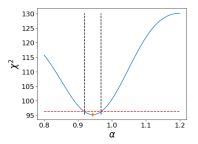
Baryon Acoustic Oscillations (BAO)

3 The Dark Energy Survey (DES)

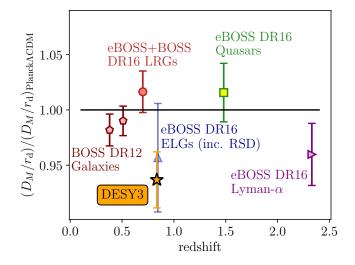
Measurement of the BAO Scale in DES Y3

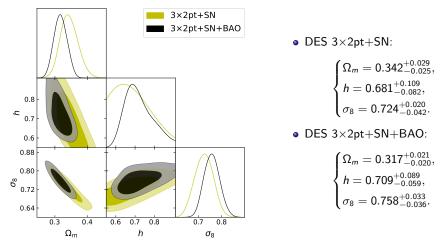
- Introduction
- The Y3 BAO Sample
- Simulations: the COLA Mocks
- The BAO-Fitting Pipeline
- Testing the BAO-Fitting Pipeline
- BAO Measurement on the Y3 Data

BAO Measurement on the Y3 Data: BAO-Fit Results


α	σ_{lpha}	$\chi^2/{ m dof}$	p-value
0.942	0.024	95.0/89	0.313
-	-	-	-
1.000	0.050	10.2/17	0.895
0.978	0.047	19.7/17	0.288
0.978	0.040	23.2/17	0.143
0.903	0.036	10.8/17	0.865
	0.942 - 1.000 0.978 0.978	0.942 0.024 1.000 0.050 0.978 0.047 0.978 0.040	0.942 0.024 95.0/89 1.000 0.050 10.2/17 0.978 0.047 19.7/17 0.978 0.040 23.2/17

Using $d_M^{\rm Planck}(z_{\rm eff})/r_d^{\rm Planck} = 20.11$,


$$rac{d_M(z_{
m eff})}{r_d} = (0.942{\pm}0.024){ imes}20.11 = 18.94{\pm}0.48.$$


Our measurement is

- consistent with Planck at the 2.5σ level.
- the most precise from a photometric survey ever, and competitive with spectroscopic.

The posterior in *h* is more symmetrical, with a gain in constraining power of ~20%; the error in Ω_m is reduced by ~25%; and the constraining power in σ_8 improves by ~16% when including the BAO!

- 1 The Standard Cosmological Model
- 2 Baryon Acoustic Oscillations (BAO)
- 3 The Dark Energy Survey (DES)
- 4 Measurement of the BAO Scale in DES Y3
- 5 Conclusions

- We developed a BAO-fitting pipeline for DES:
 - It was tested and validated using the Y3 COLA mocks: robust results when changing the cosmology of the template and the settings for the fits.
 - It was run on the DES Y3 data, for which we obtained

$$d_M(0.835)/r_d = 18.94 \pm 0.48.$$

This result is consistent with Planck at the 2.5σ level, and represents the most precise measurement from a photometric galaxy survey up to date, with a relative error of 2.6%.

• We combined our BAO likelihood with DES 3×2pt and SN, finding better constraints in h, Ω_m and σ_8 .

Thank You!