

Stefan Zatschler University of Toronto, LPSC Grenoble

Shedding light on Dark Matter with SuperCDMS at SNOLAB

Postdoc seminar // LPSC, January 25th 2024

Personal introduction

PhD in Neutrino group at IKTP, TU Dresden, Germany "Pulse-shape studies with coplanar grid CdZnTe detectors and searches for rare nuclear decays with the COBRA experiment"

Postdoctoral research

- SuperCDMS (University of Toronto, Canada) → today!
 - Searching for low-mass Dark Matter particles with cryogenic Si and Ge detectors at SNOLAB
- Ricochet (LPSC, Neutrino group)
 - High-precision measurement of CEvNS reactor v-spectrum
 - Located at ILL research reactor in Grenoble

- Dark Matter in a nutshell
- SuperCDMS at SNOLAB
- Summary & Takeaways
- Bonus: Ricochet at ILL

Dark Matter in a nutshell

What do we know about Dark Matter?

The true nature of Dark Matter (DM) remains a mystery to the present day!

DM is (likely) <u>not</u> ordinary matter

- ► Atoms, known particles, black holes^{*a*}, etc.
- DM is (almost) invisible → "dark"
 - Does not interact via electromagnetism
 - New elusive particle(s)? Dark sector?

Best guess: ACDM model of cosmology

- Non-baryonic = no "known" particle
- Cold = non-relativistic velocity distribution
- Collisionless = interaction mainly via gravity (and possible weak force)

■ Alternatives to ∧CDM?

Modified Newtonian Dynamics (MOND)

 a except for (hypothetical) primordial black holes

ACDM cosmology in a nutshell

Cosmological evidence for Dark Matter

Astrophysical observations provide strong evidence for Dark Matter (DM).

CMB surveys

Large-scale structures

Galaxy rotation curves

And many more... But no direct detection (yet)!

How to search for Dark Matter?

Three ways to look for DM

Collider search

- DM production in SM interactions
- Signal: "missing" momentum (p_T , E_T)

Indirect detection

- DM annihilation into SM particles
- Signal: Excess in cosmic rays (e⁺, p, γ-rays)

■ Direct detection → today's topic!

- DM scattering off of target (atoms)
- ► Signal: recoiling nucleus / *e*⁻
- ► Challenge: *O*(eV-keV) of energy deposit

DM candidates, anomalies & detection methods

Dark Matter direct detection

Dark Matter direct detection

Principal idea: DM is made of particles which interact with atoms in different ways.

Any observable interaction counts!

- NR = nuclear recoil
- ER = electronic recoil

Estimate of DM flux on Earth

- \rightarrow 110 000 DM particles per cm² per s
 - DM Density: 0.3 GeV/cm³
 - DM Mass: 60 GeV
 - Relative velocity: 220 km/s

Dark Matter detection techniques

DM interactions fall into two categories:

Nuclear recoils (NR)

- Interaction with atomic nucleus
- Traditional WIMP channel
- Neutron and neutrino backgrounds

Electron recoils (ER)

- Interaction with atomic electron
- Light DM interactions and absorption
- Most background sources (γ , e^-)

Experimental requirements

- Ultra sensitive detectors
- Low backgrounds
- Long exposure

SuperCDMS uses Phonon-only ("HV") as well as Phonon + Charge devices ("iZIP")

Evolution of DM exclusion curves

Credits: T. Saab (UF)

SuperCDMS @ SNOLAB LPSC // Stefan Zatschler January 25, 2024

Typical DM exclusion curve

- DM-SM cross-section vs. DM mass
- Parameter space above curve is excluded at a certain confidence level
- For more than two decades, DM exclusion curves were quasi time-invariant
 - Limits get lower but so do theory predictions (mainly driven by MSSM models)
- Neutrino floor as definite target
 - ► Time for more nuanced treatment of v-BG!
- Beyond SUSY theories expand parameter space to lower DM masses
 - ► To be covered by next-generation experiments with ultra-low thresholds!

Evolution of DM exclusion curves

Credits: T. Saab (UF)

LPSC.

Typical DM exclusion curve

- DM-SM cross-section vs. DM mass
- Parameter space above curve is excluded at a certain confidence level
- For more than two decades, DM exclusion curves were quasi time-invariant
 - Limits get lower but so do theory predictions (mainly driven by MSSM models)
- Neutrino floor as definite target
 - ► Time for more nuanced treatment of v-BG!
- Beyond SUSY theories expand parameter space to lower DM masses
 - ► To be covered by next-generation experiments with ultra-low thresholds!

The "Big Picture"

SuperCDMS @ SNOLAB LPSC // Stefan Zatschler January 25, 2024

14/28

SNOLAB infrastructure

Let's do a virtual visit at SNOLAB!

- Rock overburden of 2 km (6000 m.w.e.)
 - Cosmic muon flux reduced by 50 millions
- \blacksquare Large lab space ($\sim 5000\,m^2$)
 - Cleanroom (class 2000 or better)
 - Surface facilities with support staff (>100)

SuperCDMS @ SNOLAB LPSC // Stefan Zatschler January 25, 2024

16/28

- Dilution refrigerator with a closed-loop cryogenics system
- Initial payload: 24 detectors
 - ► iZIP towers: 10 Ge + 2 Si crystals
 - HV towers: 8 Ge + 4 Si crystals
 - Complementary science reach!
- Collaboration with CUTE
 - Cryogenic Underground TEst facility
 - Full-scale tower 3 testing under way right now!

SuperCDMS infrastructure is under construction!

- Dilution refrigerator with a closed-loop cryogenics system
- Initial payload: 24 detectors
 - ► iZIP towers: 10 Ge + 2 Si crystals
 - HV towers: 8 Ge + 4 Si crystals
 - Complementary science reach!
- Collaboration with **CUTE**
 - Cryogenic Underground TEst facility
 - Full-scale tower 3 testing under way right now!

SuperCDMS infrastructure is under construction!

SuperCDMS @ SNOLAB LPSC // Stefan Zatschler January 25, 2024

17/28

- Dilution refrigerator with a closed-loop cryogenics system
- Initial payload: 24 detectors
 - ► iZIP towers: 10 Ge + 2 Si crystals
 - HV towers: 8 Ge + 4 Si crystals
 - Complementary science reach!
- Collaboration with **CUTE**
 - Cryogenic Underground TEst facility
 - Full-scale tower 3 testing under way right now!

SuperCDMS infrastructure is under construction!

Status of Construction

SuperCDMS science reach

- Aiming for world-leading sensitivity to low-mass WIMPs
- Unique approach with complementary detector designs
 - Ge/Si iZIP & HV detectors
 - ▶ **iZIP**: NR/FR discrimination \rightarrow background studies
 - HV: low-threshold \rightarrow low-mass sensitivity

Challenges

- Understanding detector response down to semiconductor bandgap
 - Dominating backgrounds
 - Low-energy calibration
 - Detector response modeling

SuperCDMS detector technology

Setting: Low-energy deposit of DM particle recoiling on detector lattice

- \blacksquare Cryogenic calorimeters at temperatures ~ 10 $15\,mK$
- Athermal phonon sensors Transition Edge Sensors (TES)

- Energy deposit creates e⁻/h⁺ pairs and prompt phonons in crystal
- Charges drift in external electric field
- Drifting charges emit Luke phonons
 - Signal amplification
 - Sensitivity to single e^-/h^+ pairs
- Phonon collection with TES
 - Pulse reconstruction
 - Measure of energy deposit

Setting: Low-energy deposit of DM particle recoiling on detector lattice

- \blacksquare Cryogenic calorimeters at temperatures ~ 10 $15\,mK$
- Athermal phonon sensors Transition Edge Sensors (TES)

- Energy deposit creates e⁻/h⁺ pairs and prompt phonons in crystal
- Charges drift in external electric field
- Drifting charges emit Luke phonons
 - Signal amplification
 - Sensitivity to single e^-/h^+ pairs
- Phonon collection with TES
 - Pulse reconstruction
 - Measure of energy deposit

Setting: Low-energy deposit of DM particle recoiling on detector lattice

- Cryogenic calorimeters at temperatures ~ 10 15 mK
- Athermal phonon sensors Transition Edge Sensors (TES)

- Energy deposit creates e^{-}/h^{+} pairs and prompt phonons in crystal
- Charges drift in external electric field
- Drifting charges emit Luke phonons
 - Signal amplification
 - Sensitivity to single e^{-}/h^{+} pairs
- Phonon collection with TES
 - Pulse reconstruction
 - Measure of energy deposit

Setting: Low-energy deposit of DM particle recoiling on detector lattice

- \blacksquare Cryogenic calorimeters at temperatures ~ 10 $15\,mK$
- Athermal phonon sensors Transition Edge Sensors (TES)

- Energy deposit creates e⁻/h⁺ pairs and prompt phonons in crystal
- Charges drift in external electric field
- Drifting charges emit Luke phonons
 - Signal amplification
 - Sensitivity to single e^-/h^+ pairs
- Phonon collection with TES
 - Pulse reconstruction
 - Measure of energy deposit

SuperCDMS detectors

$\underline{\text{HV detector}} \rightarrow \text{low threshold}$

- Drifting charge carriers (e^-/h^+) across a potential (V_b) generates a large number of Luke phonons (NTL effect)
- Trade-off: no NR/ER discrimination $E_t = E_r + (N_{eh} \cdot e \cdot V_b)$

total phonon primary energy recoil energy

Luke phonon energy

$\underline{\textbf{iZIP detector}} \rightarrow \textbf{low background}$

- Interleaved Z-sensitive Ionization and Phonon detector
- Prompt phonon and ionization signals allow for NR/ER event discrimination

Luke phonons

SuperCDMS detectors

$\underline{\text{HV detector}} \rightarrow \text{low threshold}$

- Drifting charge carriers (e^-/h^+) across a potential (V_b) generates a large number of Luke phonons (NTL effect)
- Trade-off: no NR/ER discrimination $E_t = E_r + (N_{eb} \cdot e \cdot V_b)$

total phonon primary energy recoil energy

Luke phonon energy

$\underline{\text{iZIP detector}} \rightarrow \text{low background}$

- Interleaved Z-sensitive Ionization and Phonon detector
- Prompt phonon and ionization signals allow for NR/ER event discrimination

Detector response modeling

SuperCDMS phonon sensor – QET

QET – Quasiparticle trap assisted Electrothermal feedback Transition edge sensor

Sophisticated GEANT4-based framework to model crystal and sensor response

- ► Crystal dynamics: lattice definition, charge and phonon scattering → G4CMP!
- ► Impurity effects: Charge Trapping, Impact Ionization
- ► TES configuration: physical layout, circuitry and electro-thermodynamics
- ► Goal: same reconstruction path for real and simulated data!

SuperCDMS phonon sensor – QET

 $\mathsf{QET}-\mathbf{Q}\mathsf{uasiparticle}\ \mathsf{trap}\ \mathsf{assisted}\ \mathbf{E}\mathsf{lectrothermal}\ \mathsf{feedback}\ \mathbf{T}\mathsf{ransition}\ \mathsf{edge}\ \mathsf{sensor}$

https://figueroa.physics.northwestern.edu

Sophisticated GEANT4-based framework to model crystal and sensor response

- ► Crystal dynamics: lattice definition, charge and phonon scattering → G4CMP!
- ► Impurity effects: Charge Trapping, Impact Ionization
- ► TES configuration: physical layout, circuitry and electro-thermodynamics
- ► Goal: same reconstruction path for real and simulated data!

PRD 104, 032010 (2021)

Si-HVeV = prototype HV detector with eV-scale resolution (one-sided QET readout)
Tracking of single e⁻/h⁺ pair created at center in electric field of O(10) V/cm

- ► About ~5-10k steps for charge tracks in this configuration (mainly Luke scattering)
- About ~50k phonon tracks with O(100) O(1000) steps each (mainly surface reflections)

Si-HVeV = prototype HV detector with eV-scale resolution (one-sided QET readout)

- **Tracking of single** e^-/h^+ **pair** created at center in electric field of O(10) V/cm
 - ▶ About ~5-10k steps for charge tracks in this configuration (mainly Luke scattering)
 - About ~50k phonon tracks with O(100) O(1000) steps each (mainly surface reflections)

PRD 104, 032010 (2021)

Si-HVeV = prototype HV detector with eV-scale resolution (one-sided QET readout)
Tracking of single e⁻/h⁺ pair created at center in electric field of O(10) V/cm

- ► About ~5-10k steps for charge tracks in this configuration (mainly Luke scattering)
- About ~50k phonon tracks with O(100) O(1000) steps each (mainly surface reflections)

Si-HVeV = prototype HV detector with eV-scale resolution (one-sided QET readout)

- **Tracking of single** e^-/h^+ **pair** created at center in electric field of O(10) V/cm
 - ► About ~5-10k steps for charge tracks in this configuration (mainly Luke scattering)
 - About ~50k phonon tracks with O(100) O(1000) steps each (mainly surface reflections)

G4DMC parameter tuning for Si-HVeV

Goal: Match experimental phonon pulse template with G4DMC simulation

- Multi-dimensional parameter tuning of CrystalSim + TESSim
 - ▶ TES characteristics (T_C , T_W , circuitry), impurity densities, etc.
- Ongoing data-taking at cryogenic test facilities (CUTE, NEXUS)
 - ► It is about time to see first light with SuperCDMS detectors... stay tuned!

Summary & Takeaways

- SuperCDMS is well-suited for sub-GeV DM searches
 - Complementary detector technology (iZIP, HV)
 - Infrastructure at SNOLAB under construction
- SuperCDMS full-tower testing underway at CUTE and SLAC
 - > Detector performance, reconstruction, simulation validation
- Very successful HVeV R&D detector program
 - ► Moving underground HVeV run in CUTE at SNOLAB in 2024!

PSC.

SuperCDMS @ SNOLAB LPSC // Stefan Zatschler January 25, 2024

28/28

Bonus: Ricochet at ILL

SuperCDMS @ SNOLAB LPSC // Stefan Zatschler January 25, 2024

COMS

Shedding light on the "neutrino fog"

30/45

Shedding light on the "neutrino fog"

■ v-fog is composed of:

- Solar neutrinos
- Geo + reactor neutrinos
- Diffuse SN neutrinos
- Atmospheric neutrinos
- v-floor defined as $n_{\nu} \geq 2$
- Uncertainties in σ_{ν}
 - Nuclear form factors
 - Neutrino physics
- Takeaway message: v-floor is not the limit!
- New technologies needed to discriminate NR types (neutrons, vs, WIMPs)

Coherent Elastic v-Nucleus Scattering – CEvNS

CEvNS in a nutshell

- Well-understood process in SM (weak interaction)
- First observed by COHERENT at SNS (Science, Vol 357, 6356, 2017)

- Recoil energy can be calculated exactly like Compton scattering $E_r = \frac{E_{\nu}^2(1-\cos\vartheta)}{M_N+E_{\nu}(1-\cos\vartheta)}$
- **Trade-off between** $\sigma_{\nu} \sim N^2 E_{\nu}^2$ and $E_r^{\max} \approx \frac{2E_{\nu}^2}{M_N}$

CEVNS at reactors – New Physics potential

- Lower E_ν at reactor compared to SNS
 - Almost purely coherent (no form factor required)
- Higher sensitivity to New Physics
 - Neutrino magnetic moment
 - BSM light mediators
 - Sterile neutrino oscillations
- But: more backgrounds...
 - Muons, γ -rays, neutrons

CEVNS at reactors – New Physics potential

- Lower E_ν at reactor compared to SNS
 - Almost purely coherent (no form factor required)
- Higher sensitivity to New Physics
 - Neutrino magnetic moment
 - BSM light mediators
 - Sterile neutrino oscillations
- But: more backgrounds...
 - Muons, γ -rays, neutrons

CEVNS at reactors – New Physics potential

- Lower E_ν at reactor compared to SNS
 - Almost purely coherent (no form factor required)
- Higher sensitivity to New Physics
 - Neutrino magnetic moment
 - BSM light mediators
 - Sterile neutrino oscillations
- But: more backgrounds...
 - Muons, γ -rays, neutrons

Ricochet at ILL

Low-energy reactor neutrino observatory at the ILL reactor in Grenoble, France

Cryogenic detector payload

- Modular kg-scale detector
- CryoCube (Ge crystals)
- Q-Array (superconducting crystals)

• **Complementary technologies** with ER / NR discrimination

- Challenging radiation environment (reactorgenics, radiogenics, cosmics)
- First phase of data-taking in 2024!

Active R&D for TESSERACT DM program

SuperCDMS Collaboration

✓@SuperCDMS

Supercdms.slac.stanford.edu

The famous "WIMP miracle"

- **Thermal equilibrium** in early universe $\chi + \chi \longleftrightarrow SM + SM$
- Boltzmann equation
 - $\frac{dn}{dt} = -3Hn \langle \sigma_A v \rangle \left(n^2 n_{\rm eq}^2 \right)$
 - DM "gas" becomes dilute as universe expands and cools down
 - DM "freezes out" when $n \langle \sigma_A v \rangle \approx H$
- Miracle: freeze-out happens "naturally" around the weak scale with the required relic density of $\Omega_{DM} \approx 0.23$
 - Mass $m_{\chi} \sim \mathcal{O}(100) \, \text{GeV} \mathcal{O}(1) \, \text{TeV}$

CMB – Cosmic Microwave Background

Planck

WMAP

Precisely studied by satellite missions (WMAP, Planck)

- Consistency in observed patterns and features!
- Fluctuations around $\langle T \rangle \approx 2.7$ K can be expressed in form of **power spectrum** (to be fit with Λ CDM model)
- Build your own universe with planckapps on the web :)

CMB – Cosmic Microwave Background

WMAP

Precisely studied by satellite missions (WMAP, Planck)

- Consistency in observed patterns and features!
- Fluctuations around $\langle T \rangle \approx 2.7$ K can be expressed in form of **power spectrum** (to be fit with Λ CDM model)
- Build your own universe with planckapps on the web :)

History of direct DM searches

- Crystal and cryogenic detectors started the "WIMP hunt" more than 30 years ago
 - Nal: DAMA (DM modulation claim)
 - Ge/Si: CDMS, SuperCDMS
 - ► Ge: Edelweiss, CDMS-II, CDMSlite
- Breakthrough: particle discrimination in cryogenic detectors
 - Combine detection channels (e.g. charge + heat, light + heat)
 - Powerful background suppression
- Up-scaling of target mass
 - Xe: XENON-1T, LZ
 - Ar: DarkSide, DEAP

SuperCDMS detectors: Ge/Si HV & iZIP

Made of high-purity Ge and Si crystals

- Si detectors (0.6 kg each) provide sensitivity to lower DM masses
- Ge detectors (1.4 kg each) provide sensitivity to lower DM cross-sections

\blacksquare Low operation temperature: $\sim 15\,mK$

- Phonon measurement with TESs (HV, iZIP)
- Ionization measurement with HEMTs (iZIP)

Two-sided readout with multiple channels to identify event position

Low-threshold vs. low-background modes

HV detectors - low threshold

- High resolution total phonon measurement
- No yield or surface discrimination
- Typical thresholds below 0.1 keV (4 eV_{ee})!

PRD 99, 062001, 2019 - - Total Compton ³H ^{71}Ge 68 C .. vents/keVee/kg/day 10^{1} Surf Ce Surf. H Surf. TI 10 10^{-1} 0.5 1.5 Energy [keVee]

iZIP detectors - low background

- High resolution phonon and charge readout
- Discrimination of surface and ER backgrounds from NR signal region

Nuclear recoil ionization yield measurement

- Ionization yield (Y) measurement down to 100 eV with Si-HVeV prototype detector in a neutron beam
 - HVeV = HV prototype detector with eV-scale resolution
 - No indication for ionization threshold in Si!
- Ge yield measurement in preparation

Total phonon energy and yield $E_t = E_r + (N_{eh} \cdot e \cdot V_b)$ $= E_r \cdot (1 + e \cdot V_b / \varepsilon_{pair} \cdot Y(E_r))$

Highlights of HVeV R&D detector program

PRD 102, 091101(R), 2020

HVeV Run 2

- Detection and study of Coincidence measure- $1 e^{-}/h^{+}$ burst events
- Hypothesis: originate Confirmed in PCB holder

HVeV Run 3

- ment with HVeVs
- origin of burst events

HVeV Run 4

- Replaced PCB + coincidence measurement
- external Elimination of higherorder e^{-}/h^{+} peaks

Latest performance

- V3 of HVeV detectors
- Achieved lowest baseline resolution in class!
- $\rightarrow \sigma_{h} = 1.097 \pm 0.003 \, \text{eV}$

SuperCDMS: A broadband DM search

Absorption (Dark Photon, ALP): Electron Recoil: Migdal & Bremsstrahlung: HV Detectors: Low Threshold (LT): Traditional Nuclear Recoil: $\label{eq:constraint} \begin{array}{l} \sim \ 1 \ eV - 0.5 \ MeV \\ \sim \ 0.5 \ MeV - 10 \ GeV \\ \sim \ 0.01 - 10 \ GeV \\ \sim \ 0.3 - 10 \ GeV \\ \gtrsim 1 \ GeV \\ \gtrsim 5 \ GeV \end{array}$

peak search (HV) no NR/ER discrim. (HV) no NR/ER discrim. (HV + iZIP) no NR/ER discrim. (HV) limited NR/ER discrim. (iZIP) full NR/ER discrim. (iZIP)

SuperCDMS: A broadband DM search

Absorption (Dark Photon, ALP): Electron Recoil: Migdal & Bremsstrahlung: HV Detectors: Low Threshold (LT): Traditional Nuclear Recoil: $\label{eq:constraint} \begin{array}{l} \sim \ 1 \ eV - 0.5 \ MeV \\ \sim \ 0.5 \ MeV - 10 \ GeV \\ \sim \ 0.01 - 10 \ GeV \\ \sim \ 0.3 - 10 \ GeV \\ \gtrsim 1 \ GeV \\ \gtrsim 5 \ GeV \end{array}$

peak search (HV) no NR/ER discrim. (HV) no NR/ER discrim. (HV + iZIP) no NR/ER discrim. (HV) limited NR/ER discrim. (iZIP) full NR/ER discrim. (iZIP)

G4CMP – "in-house" physics library

G4CMP – Condensed Matter Physics library for GEANT4

1) Production of e^-/h^+ pairs and phonons from O(keV) GEANT4 energy deposits

- 2) Transport of eV-scale (conduction band) electrons and holes in crystals
 - Anisotropic transport of electrons
 - ► Scattering, phonon emission (NTL), charge trapping, impact ionization
- 3) **Transport** of **meV-scale** (acoustic) **phonons** in deeply cryogenic crystals
 - ► Mode-specific relationship between wave vector and group velocity
 - Impurity scattering (mode mixing), anharmonic decays
- 4) **Sensor modeling** (SuperCDMS example: QET)
 - User application implements phonon collection
 - Phonons incident on QET trigger thin-film simulation (G4CMPKaplanQP)

More details: NIM A 1055, 168473, 2023 (arXiv:2302.05998) **Source code:** https://github.com/kelseymh/G4CMP

G4CMP – Event processing flow

arXiv:2302.05998

