

Development and characterization of a fast detector dedicated to time-of-flight gamma imaging in proton therapy

Adélie ANDRÉ

Supervised by Sara MARCATILI and Marie-Laure GALLIN-MARTEL

Nuclear Physics and Medical Applications team (PNAM)

Context – Proton therapy

Dose (1Gy = 1J/kg)

- High ballistic precision of the dose deposition (Bragg peak)

- Less dose deposition in surrounding healthy tissue

Context – Proton therapy

Limitations:

- Uncertainties induce high healthy tissues overdosing or tumor underdosing compared to conventional radiotherapy
- Safety margins (~1 cm)
- Protontherapy potential not fully exploited

→ On-line proton range verification is highly desirable to assure the correct dose delivery

A.C. Knopf et al. Phys. Med. Biol. 2013

Context – Prompt Gammas in proton therapy

→ requires the development of a dedicated detection system

Correlation between the dose deposition and the PG emission profiles

Context – PGTI (Prompt Gamma Time Imaging)

Reconstruction of the proton range through time-of-flight (TOF) measurement.

A reconstruct algorithm of PG distribution is under development in our collaboration (CPPM Marseille)

TOF depends on both the position of the TIARA module (r_d) and the PG emission vertex position (r_v).

Spatial reconstruction needed to combine TIARA modules:

 \rightarrow more statistics

 \rightarrow 3D sensibility

Final detection system ~ 30 TIARA modules

Ion Imaging Workshop 2023

PGTI objective

TIARA collaboration

Context - PGTI regimes

Two possible regimes:

- single proton regime (for patient positioning),
- nominal intensity (during the whole treatment)

Clinical proton beam structure

Jacquet et al. Phys Med Biol, 2021

Measured parameter	CTR (FWHM)	Nb. Of protons	Nb. Of PGs	Sensitivity mm (at 2 0)	Regime	
Longitudinal shift	235 ps	107	3 × 10 ³	3	Single	
	235 ps	10 ⁸	3 × 10 ⁴	1	proton regime	
	2.35 ns	10 ⁹	3 × 10 ⁵	2	Nominal	
Lateral shift	-	10 ⁸	3×10^{4}	2	intensity	

PGTI **sensitivity** depends on events **statistic** and the system **Coincidence Time Resolution (CTR)**

A detection system of 235 ps FWHM CTR is required

Sensitivity estimation based on Monte Carlo simulation of a 100 MeV proton beam and 0.6% detection efficiency

PhD objectives

- Development of a first prototype of the detection system composed of a beam monitor and 8 PG modules
- Characterization under clinical proton beam (Single Proton Regime + Nominal intensity)

Summary

- Beam monitor development and characterization
- TIARA module development and characterization
- PGTI measurement:
 - Experimental TOF measurement
 - Background analysis based on Monte Carlo simulations
- Conclusion and perspectives

Beam monitor – Motivations

Beam monitor – Plastic scintillator development

3rd version of the prototype (18 month R&D)

Plastic scintillator (EJ-204) 1x25x25 mm³
Read-out by 16 Silicon Photomultipliers (Hamamatsu SiPM 3x3 mm²)

Article in preparation

Adélie ANDRÉ

Each SiPM strip is amplified and acquire separately - Electronic service

Prototype assembly - SDI

Beam monitor – Plastic scintillator characterization

Beam monitor – Plastic scintillator characterization

Radiation sensitive film (Gafchromic)

Spatial resolution

Beam images for 2 positions (5mm,0) and (0,5mm)

For PGTI only the position of the center of the beam is required \rightarrow Position resolution = 1.8/ \sqrt{N} With N the number of protons detected

TIARA module development

Final version of the prototype (18 month R&D)

Cherenkov radiator 2 x 1.5 x 1.5cm³ lead fluoride cristal (PbF₂)

Assembly of different versions of the prototype - SDI

Final preamplifier – Electronique service

Preliminary characterization at LPSC

Adélie ANDRÉ

Read-out by 4 Silicon Photomultipliers (SiPM)

TIARA modulecharacterization

Medicyc (CAL) 63 MeV proton beam in November 2023

Final version of TIARA module

Summary of the different versions of the TIARA module

Version	SiPM number	Crystal (mm ³)	Front-end	PG module DTR (ps) FWHM	When	
1	1	10 ³	Commercial	275	June 2021	Maxime PhD
2	1	20*10*10	LPSC, single	202	April 2022	Internship
3	4	15 ³	LPSC, hybrid	211	December 2022	
4	4	15*15*20	LPSC, parallel	197	June 2023	PhD
5 (final version)	4	15*15*20	LPSC, hybrid compact	220	November 2023	

Final version of the TIARA module is a compromise to optimize: the time resolution, detection efficiency and compactness

Adélie ANDRÉ

8 TIARA modules for the next beam test (18 March 2024)

PGTI experimental measurement

TOF measurement under 148 MeV proton beam in June 2023

3 setup :

1st: Thin target 2nd: Without target 3rd: Thick target

- => calibration
- => background characterisation
- => TOF measurements

PGTI calibration measurement

PGTI PROMPT GAMMA TIME IMAGING

18

PGTI TOF simulation

Experimental geometry reproduced in Geant4

PGTI background analysis

Experimental results compared to Monte Carlo simulation (Geant4)

PGTI TOF profile measurement

Thick target

→ Higher SNR
 → TOF profiles depend on
 the PG module position

Next step: PGTI reconstruction!

Upstream module Downstream module Background TOF profile superimposed on raw data 1.4 <u>le</u>2 1.4 <u>le2</u> Thick target Thick target 1.2 1.2 Without target Without target 1.0 1.0 8.0 Counts 8.0 Counts 0.4 0.4 0.2 0.2 0.0 0.0 2 3 Time difference [ns] Time difference [ns] TOF profile after subtracting the background 1.4 <u>le</u>2 1.2 1.2 1.0 1.0 8.0 Counts 8.0 Counts 0.4 0.4 0.2 0.2 0.0 0.0 3 2 4 2 3 Time difference [ns] Time difference [ns]

Conclusion

- Full development and characterisation of the plastic beam monitor
- Final development and characterisation of the PG module
- PGTI TOF measurement with clinical proton accelerator
- Background sensitivity evaluation via Geant4 simulations

Perspectives

- Optical simulation of the PG module response
- PGTI TOF measurement with clinical phantom and 8 PG modules:
 - CAL ProteusOne (single proton regime)
 - CNAO (nominal intensity)
- Reconstruction of the experimental TOF measurements (CPPM collaboration)

Summary

