Impact of blending on weak lensing measurements with Rubin-LSST

PhD Seminar, March 2024 **Manon Ramel**

Laboratoire de Physique Subatomique & Cosmologie - Dark team Supervisors : Cyrille Doux, Marine Kuna

Scientific context Cosmology

Study the nature of dark matter and dark energy

- Dark matter: invisible, detected through its gravitational effects
- Dark energy: responsible for the current acceleration of the Universe expansion

Redshift $z \sim \text{distance} \sim \text{look}$ in the past

Time

Redshift $z \sim \text{distance} \sim \text{look}$ in the past

Time

Scientific context

Tracers of dark matter over-densities

Composed of 80% of dark matter

Sensitive to dark energy

Accelerated expansion vs. gravity

Studied through their counting per bins of mass and redshift

Studied through their counting per bins of mass and redshift

Studied through their counting per bins of mass and redshift

Mass is **not an observable**: indirect measurements through weak lensing

<

Scientific context

Fit of the lensing profile = estimate of the galaxy cluster mass

Fit of the lensing profile = estimate of the galaxy cluster mass

- Excess surface mass density (in M_{\odot} . Mpc^{-2})

6/26

Fit of the lensing profile = estimate of the galaxy cluster mass

- Excess surface mass density (in M_{\odot} , Mpc^{-2})

Fit of the lensing profile = estimate of the galaxy cluster mass

- Excess surface mass density (in M_{\odot} , Mpc^{-2})

Fit of the lensing profile = estimate of the galaxy cluster mass

- Excess surface mass density (in M_{\odot} . Mpc^{-2})

Scientific context Vera C. Rubin - LSST

Vera C. Rubin Observatory

• World's largest camera (3 billions pixels)

Legacy Survey of Space and Time - LSST

- Optical and deep sky survey over 10 years
- First scientific data in 2025

Scientific context Vera C. Rubin - LSST

Vera C. Rubin Observatory

• World's largest camera (3 billions pixels)

Legacy Survey of Space and Time - LSST

- **Optical** and **deep** sky survey over 10 years
- First scientific data in 2025

Scientific context Vera C. Rubin - LSST

Vera C. Rubin Observatory

• World's largest camera (3 billions pixels)

Legacy Survey of Space and Time - LSST

- **Optical** and **deep** sky survey over 10 years
- First scientific data in 2025

Deepest ground-based survey

<u>Survey</u>	<u>Sky area (deg²)</u>	<u># of clusters</u>	<u># of galax</u>
LSST	18,000	100,000	10 ¹⁰
DES	5,000	10,000	7.10 ⁸
HSC	1,400	5,000	107

<u>kies</u>

Superposition of galaxies due to:

- The depth of observation
- The survey's resolution

Superposition of galaxies due to:

- The depth of observation
- The survey's resolution

magnitude ~ $-\log_{10}(flux)$ Bright \leftrightarrow low magnitude Faint \leftrightarrow high magnitude

Superposition of galaxies due to:

- The depth of observation
- The survey's resolution

magnitude ~ $-\log_{10}(flux)$ Bright \leftrightarrow low magnitude Faint \leftrightarrow high magnitude

Superposition of galaxies due to:

- The depth of observation
- The survey's resolution

Superposition of galaxies due to:

- The depth of observation
- The survey's resolution

2D image

Recognized blends

2D image

Recognized blends Hubble/ACS

2D image

LSST deblender: **SCARLET**

2D image

Less resolution **Recognized blends** Hubble/ACS

Unrecognized blends Subaru/HSC

LSST deblender: **SCARLET**

2D image

Less resolution

Recognized blends Hubble/ACS

Unrecognized blends Subaru/HSC

* 2016, Dawson et al. 2022, Troxel et al.

PhD Seminar. Manon Ramel

LSST deblender: **SCARLET**

LSST ~ 60% of blends

- Recognized blends: ~40 %
- Unrecognized blends: ~14 20 %*

DES ~ 10% of blends

Scientific context Blending around galaxy clusters

Galaxy clusters = high density regions = **blending**

FIELD

CLUSTER

Scientific context Blending around galaxy clusters

Galaxy clusters = high density regions = **blending**

FIELD

CLUSTER

Blending impacts:

- The **detection** of galaxies
- The measurement of **shapes**
- The measurement of **redshifts**

WL profiles \leftrightarrow galaxy cluster masses \leftrightarrow cosmology
Impact of blending on weak lensing measurements with Rubin-LSST

1) Properly define what is a blend 2) Identify the problematic blends

Impact of blending on weak lensing measurements with Rubin-LSST

1) Properly define what is a blend 2) Identify the problematic blends

3) Quantify the impact on weak lensing profiles 4) **Correct** this impact for unbiased cosmological parameters

Impact of blending on weak lensing measurements with Rubin-LSST

1) Properly define what is a blend 2) Identify the problematic blends

3) Quantify the impact on weak lensing profiles 4) **Correct** this impact for unbiased cosmological parameters

This work is part of the **DESC** collaboration of LSST

Impact of blending on weak lensing measurements with Rubin-LSST

Detection of blends in DESC simulations

Detection of blends in DESC simulations Rubin-LSST is being constructed... Simulated catalogs

Outer Rim 2019, Heitmann et al.

<u>cosmoDC2</u> = truth catalog

- 440 deg² catalog from a N-body simulation
- Reference for galaxies and dark matter haloes
- True shapes, brightnesses, positions...

Detection of blends in DESC simulations Rubin-LSST is being constructed... Simulated catalogs

Outer Rim 2019, Heitmann et al.

<u>cosmoDC2</u> = truth catalog

- 440 deg² catalog from a N-body simulation
- Reference for **galaxies** and dark matter haloes
- True shapes, brightnesses, positions...

DESC simulated image

DC2object = object catalog

- Simulated images from cosmoDC2
- Detection of objects
- Measured shapes, brightnesses, positions

Identification of blends through catalog matching

dec

Dec

Dec

Dec

Dec

Detection of blends in DESC simulations Matching procedure: Friends-of-Friends

https://github.com/yymao/FoFCatalogMatching

Detection of blends in DESC simulations Matching procedure: Friends-of-Friends

https://github.com/yymao/FoFCatalogMatching

Detection of blends in DESC simulations Matching procedure: friendly

https://github.com/LSSTDESC/friendly

Detection of blends in DESC simulations Matching procedure: friendly

https://github.com/LSSTDESC/friendly

Detection of blends in DESC simulations Matching procedure: friendly

https://github.com/LSSTDESC/friendly

Relative probability of matching between each object and the galaxies of its group

Detection of blends in DESC simulations Relative probabilities of matching galaxies

1. For each object:

Matching probability with one galaxy of the group

Detection of blends in DESC simulations Relative probabilities of matching galaxies

1. For each object:

Matching probability with one galaxy of the group

 $p \propto \text{overlap}$ weighted by the difference in magnitudes

Detection of blends in DESC simulations Relative probabilities of matching galaxies

1. For each object:

Matching probability with one galaxy of the group

 $p \propto \text{overlap}$ weighted by the difference in magnitudes

2. Vector of matching probabilities

3. Blending entropy:

$$S_{b} = -\sum_{i} p_{i} \log p_{i}$$

= score for each object

Detection of blends in DESC simulations Blending entropy of blended systems

Detection of blends in DESC simulations Blending entropy of blended systems

Detection of blends in DESC simulations Blending entropy of blended systems

Partial conclusions

Friendly: matching algorithm development for DESC
New approach based on matching probabilities
Powerful tool to identify problematic blended systems
Integration of blending entropy in DC2object catalog

Impact of blending on weak lensing profiles

Blending and weak lensing Reminder: weak gravitational lensing

Objective: study the impact of bad blends on $\Delta\Sigma$ profiles

Objective: study the impact of bad blends on $\Delta\Sigma$ profiles

Objective: study the impact of bad blends on $\Delta\Sigma$ profiles

Objective: study the impact of bad blends on $\Delta\Sigma$ profiles

Objective: study the impact of bad blends on $\Delta\Sigma$ profiles

DESC tool https://github.com/LSSTDESC/CLMM

Conclusions

Blending, major issue for weak lensing studies with Rubin/LSST

- Confusion of sources will impact galaxy shapes measurements
- Biased estimates of galaxy clusters masses and of cosmological parameters
- Poorly studied, difficult to separate from other systematics \bullet

2. Development of friendly, new DESC matching algorithm

- New blending entropy metric to characterize blends
- Efficiency in identifying problematic blended galaxies
- Impact of blending on weak lensing profiles and galaxy cluster mass estimates

3. Shared work with the DESC collaboration

- Friendly will be public and available for the collaboration \bullet
- Blending entropy will be added to DESC catalogs metrics
 - **DESC** paper in preparation

Perspectives

1. PhD perspectives

- Friendly improvement: overlap of diffuse objects = gaussian overlap ightarrow
- Propagation of this work to cosmological parameters
- Get involved in the commissioning: LSST data expected in 2025 ! ightarrow

2. Long term projects

- Machine learning classifier on detected objects to identify blends features ullet
- Test of the existing deblenders with the blending entropy
- Application of my expertise in blending to analyze future LSST data

Perspectives

1. PhD perspectives

- Friendly improvement: overlap of diffuse objects = gaussian overlap
- Propagation of this work to cosmological parameters
- Get involved in the commissioning: LSST data expected in 2025 ! \bullet

2. Long term projects

- Machine learning classifier on detected objects to identify blends features ullet
- Test of the existing deblenders with the blending entropy •
- Application of my expertise in blending to analyze future LSST data

Thank you for your attention!

Back-up Rubin-LSST

Back-up Point Spread Function (PSF)

E. Nourbakhsh et. al

Back-up Ellipses definition

cosmoDC2

- Positions x_0, y_0
- Minor/Major axis *a* and *b*
- Position angle θ
- Convolution with the PSF

Back-up Ellipse overlap test

https://github.com/LSSTDESC/Cluster_Blending/blob/main/match_ellipse_dc2.ipynb

2017, Alberich-Carramiña

Functions of a, b, θ, x_0, y_0

Determinant computation

Overlap of 2 ellipses ?

- True
- False

30/26

<u>na</u>	<u>et</u>	<u>aı</u> .

Blending entropy vs. halo radius

31/26

Back-up HSM ellipticities calibration

 $e_{HSM} = 0.85 \times e_{truth} - 0.003$

Back-up HSM ellipticities calibration

Back-up Impact of systems on $\Delta\Sigma$ profiles

- 34 % of the objects are removed
- 42 % of the objects are removed
- 61 % of the objects are removed •

