

Conseil Scientifique LPSC 30-31 mai 2024

LE PROJET RICOCHET AU LPSC

Jacob Lamblin pour l'équipe Neutrinos

La diffusion cohérente neutrinos-noyaux (CEvNS)

Prédite en 1974.

Observée par l'expérience COHERENT avec des neutrinos d'accélérateur et plusieurs cibles différentes.

Les objectifs scientifiques

Mesure de l'angle Weinberg à basse énergie

$$\frac{d\sigma(E_{\nu}, E_r)}{dE_r} = \frac{G_f^2}{4\pi} Q_w^2 m_N \left(1 - \frac{m_N E_r}{2E_{\nu}^2}\right) F^2(E_r)$$
$$Q_w = N - Z(1 - 4\sin^2\theta_w)$$

0.245

Physique au-delà du modèle standard :

- nouveau boson d'interaction Z'
- moment magnétique du neutrino
- interaction non-standard

.

Connaissance bdf matière noire

La diffusion cohérente des neutrinos (solaires/atmosphériques) est le bruit de fond ultime pour les expériences de matière noire.

Vers les neutrinos de réacteur

Recoil energy [keV]

10⁴

10²

10

Event rate [evts/kg/keV/day]

Tour d'horizon des expériences

Expérience	v Flux	Détecteur	Seuil (keVnr)	Protection cosmique	Bruit de fond [0.5-1 keVee]	Résultats
CONUS	17m - 3.9 GWth	HPGe	1.2	24 m.w.e	10 DRU	Bdf > ~2 x signal
DRESDEN- II	8 m - 2.96 GWth	HPGe	1.1	3 m.w.e	500 DRU (OFF)	Observation à 3 sigmas mais très controversée
NuGEN	11 m - 3.1 GWth	HPGe	1.1	50 m.w.e	30 DRU	Bdf > ~ qlqs x signal
CONNIE	15 m - 3 GWh	CCD	O(1)	0 m.w.e	3000 DRU	Bdf >> signal
MINER	Site non défini	Ge Saphire	0.2 0.1	-	-	-
NUCLEUS	100 m - 4.25 Gwth 72 m - 4.25 GWth	CaWO ₄	0.02 eV	3 m.w.e	O(10) DRU	-
RICOCHET	8.8 m - 50 MWth	Ge Zn	0.05 eV	15 m.w.e	O(10) DRU	-

L'expérience RICOCHET

ILL Reactor ~50 MWth 15 m.w.e

Principe de détection

Détecteurs semi-conducteurs germanium - CryoCube

Discrimination avec le rapport ionisation/chaleur

Détecteurs inspirés des détecteurs FID800 de EDELWEISS-III Objectif : résolution 20 eV ionisation et chaleur

La Collaboration RICOCHET

Collaboration internationale : France, Russie, USA, Canada

RICOCHET au LPSC

Physicien.nes Permanent.es :

- Corinne Goy (DR)
- Valentina Novati (CR)
- Silvia Scorza (DR)
- Anne Stutz (CR)
- Jean-Sébastien Real (DR)
- Jacob Lamblin (MCF)

Doctorants :

- Guillaume Chemin (fin 2024)
- Renaud Serra (co-tutelle ILL, fin 2026)

Stage M2 : Juliette Blé

- SERM :
- Eric Perbet
- Francis Vezzu
- Electronique :
- 🕨 Fatah Rarbi
- Christophe Hoarau
- Olivier Bourrion

SDI:

- Murielle Heusch
- Mohammed Chala

Thèses G. Chemin, R. Serra Responsable WG : S. Scorza

Types de bruit de fond :

- radiogénique = radioactivité interne
- reactogénique = induits par le réacteur et les expériences voisines (gammas, neutrons)
- cosmogénique 2 étapes : CRY + GEANT4

- Dimensionnement des blindages passifs et actifs
 Interpretation des mesures de bruit de fond
- Estimation des taux résiduels dans les bolomètres

Taux (DRU) [50eV-1keV]	Cosmogénique	Reactogénique	Signal CEvNS
Reculs électroniques	10.4 ± 0.4	23.9 ± 0.7	-
Reculs nucléaires	8.3 ± 0.4	1.6 ± 0.1	~11

Thèse R. Serra

Mesures de bruit de fond sur site

Objectifs:

obtenir les données d'entrée pour les simulations
 vérification des résultats des simulations

Détecteurs utilisés :

- Détecteur HPGe pour les gammas
- compteur ³He pour les neutrons thermiques et neutrons rapides (captures en vol)

Ricochet colllaboration, Eur. Phys. J. C (2023) 83: 20

 compteur H2 sphérique pour les neutrons rapides

Blindage passif

20 T de plomb, 2 T de polyéthylène boré (PE), Fer doux

Veto muon : réalisation

34 panneaux scintillateurs à adapter (découpe, changement PM,...)

Mean muon detection efficiencies

Thèse G. Chemin Veto muon : validation @ILL

Electronique

Electronique de lecture des détecteurs cryogéniques :

- modélisation des transistors HEMT
- caractérisation d'une technologie CMOS 130nm

Carte test

(MA)

Acquisition des détecteurs veto : - réutilisation électronique STEREO + adaptation du code d'acquisition

- conception carte DAQ SiPM pour le veto muon cryogénique

Installation à l'ILL

Operational coordinator : V. Novati

Commissioning/Opération

014

Run

Apr/.. 2024

Run 013

Validation cryogénie \checkmark

Premier test de détecteur et mesure des performances 🗸

Feb/Apr 2024

Arrêt long du réacteur pendant le 2ème semestre 2024. Redémarrage début 2025.

Thèse G. Chemin

Sensibilité de l'expérience

Développement d'outils pour quantifier la sensibilité aux différents canaux de physique.

Analyse des données

Implications présentes et futures :

- Extraction du signal (trigger soft)
- ► Etalonnage
 - Reculs électronique
 - Reculs nucléaires (quenching)
- Bruits de fond
 - Cosmiques, réactogéniques
 - Bolomètres, détecteurs annexes
- Sélection des événements
- Systématiques
- Analyses statistiques

Conclusions & Perspectives

- La collaboration RICOCHET a installé l'expérience à l'ILL avec succès (avec 3 détecteurs).
- Les performances nominales du détecteur ne sont pas encore atteintes mais les premières mesures sont encourageantes et des améliorations sont en cours.
- Montée en puissance sur l'analyse avec les premières données. Premières publications sur les performances prévues pour fin 2024.
- Le Cryocube sera complet (18 détecteurs) début 2025, et prendra des données jusque fin 2026 avec un objectif de ~300 jours de données réacteur ON.
- Poursuite envisageable au-delà de 2026 mais sous condition d'acceptation par l'ILL.
- Le LPSC a une grande visibilité au sein de la collaboration avec de nombreuses contributions et responsabilités.

RICOCHET: Commissioning at IP2I

Evenements « Heat Only »

Worst case scenario

Nuclear-recoil equivalent energy [eVnr] Nuclear-recoil equivalent energy [eVnr] 400 400 600 800 200 600 200 1000 1200 0 400 400 Ionization energy [eVee] Ionization energy [eVee] Gamma Gamma + Neutron Neutron Heat Only Heat Only CENNS CENNS 300 300 ± 20 NR band ± 25 NR band 200 200 100 100 0 -1000 -100 200 400 600 800 1000 1200 1400 200 600 800 1000 1200 1400 400 Heat energy [eV] Heat energy [eV]

Baseline scenario

Ricochet: Commissioning @ ILL

December 2023 – Fall 2024

Vibrations mitigation: outside and inside the cryostat:

- Double frame
- Fabreeka pads
- Rotary valve decoupling (third frame fixed onto water channel)
- Wiring firmly attached @ all cold stages

•