Paris, Samedi 15 mai 2009

Neutrinos de Haute Energie

Intérêt du neutrino

Neutrino v:

- Intéragit faiblement \rightarrow accès à des distances cosmologiques
- Accès au coeur des sources
- Intéragit faiblement \rightarrow nécessite de grands volumes de détection

Sources potentielles de neutrinos Sources Galactiques <u>SNR RX 11713.7-3946</u>

Supernovae, Restes de Supernovae,

Micro Quasars:

Matière noire : annihilation de neutralinos piégés dans des objets massifs (Soleil, Terre, Centre Galactique)

Noyaux Actifs de

Galaxies

Centre Galactique

M 87, HST

SOURCES EXTRA GALACTIQUES: Sursauts Gamma

Electromagnétique ou hadronique ?

 $e \rightarrow \gamma$, X (Compton Inverse, Synchrotron)

Reste de supernova RX J1713.7-3946

Scénario hadronique : **possible**

$$\begin{array}{cccc} p/A + p/\gamma \rightarrow \pi^{0} & + \pi^{\pm} + \dots \\ & \downarrow & \downarrow \\ & \gamma \gamma & \nu_{\mu} \mu & \downarrow \\ Intéractions & & \downarrow \\ hadroniques & \nu_{\mu} \nu_{e} e \end{array}$$

Calcul du flux de neutrinos à partir du flux de gammas A Kappes et al, TeV Particle Astrophysics II Workshop

Principe de détection

Matrice 3D

42°

Gamme dynamique différente selon instruments: 20pe/40ns à 500 pe/3.3 ns sur 420 ns Seuil ~1/3 pe <u>1 2 3 4 5 6 7 8 9 10</u>

Lumière Cherenkov produite (µ) Y Sensibilité requise : photo-électron gerbe Bonne résolution en énergie

> (O(30%))) faible résolution en angle (O(10°))

Intéraction à μ courant chargé μ (W) Bonne résolution angulaire (O(degré) @ E>10 TeV), faible résolution en énergie (facteur 2-3)

2500-5000 m

© François Montanet

trajectoire des muons ou caractérisation des gerbes

Mesures :

Temps (O(ns)), amplitude (30%)

& position des hits (O(10 cm))

Précision sur le temps : Contributions à la résolution exemple de ANTARES temporelle

Electronique :

- Electronique + calibration : σ < 0.5 ns
- TTS du photomultiplicateur : $\sigma \sim 1.3~ns$
- Diffusion des photons et dispersion chromatique : $\sigma \sim 2$ ns (eau)
- → Limitation de la résolution angulaire pour un télescope de la taille de ANTARES : 0.2° – 0.3°

AMANDA

ANTARES 42°50'N, 6°10'E prof. 2475m, eau de mer **3 PMTS/étage** 12 lignes de 25 étages

NEMO 36°20'N,16°E prof 3500m eau de mer 4 PMTs/étage. **Actuellement test** d'une mini tour de 4 étages.

NT36 NT72 NT96

B4 B10

télescopes à BAIKAL 54°50'N,104°20'E prof. 1367m eau du lac Baikal (1^{ier} prototype NT36: 1993, 1^{ière} ligne résidente : 1984) 2 PMTs/étage 8 lignes de 12 étages (total 192 PMTs) + 3 lignes externes de 6 étages (+36 OMs) **En fonctionnement** FLOOR NESTOR

10

Phase 1 NEMO KM3Ne

12 lines

MILOM 1-2

ICECUBE

NESTOR 36°36'N,21°30'E prof 4000m eau de mer 12 PMTs/étage 1 étage déployé en 2003.

96 97 98 99 00 01 02 03 04 05 06

NT200 (BAIKAL)

AMANDA

PSL

AMANDA: pôle sud, prof 900-2350m, 1 PMT/étage: **AMANDA-B4 (1996): 4 lignes, 80 PMTs** AMANDA-B10(1997): 10 lignes, 302 PMTs AMANDA-II(2000->aujourd'hui): 19 lignes, 677 PMTs

neutrino

demo.

ICECUBE (prof. 2450m): 80 lignes de 60 étages (4800PMTs). 59 lignes déployées

Propriétes optiques du milieu (propagation lumière Cherenkov)

BAIKAL	λ abs ~ 20 m $\& \lambda$ diff eff ~ 300 m @ 470 nm	λ_{diff} /(1- <cos <math="">\theta_{diff}>)</cos>
AMANDA	λ abs ~ 70 m & λ diff eff ~ 25 m @ 470 nm	θ diffusion
NESTOR	λ att ~ 55 m @ 460 nm: λ att contient abs & diff	
NEMO	λ abs ~ 70 m @ 440 nm	diffusion
ANTARES	λ abs ~ 60 m $\& \lambda$ diff eff ~ 300 m @ 470 nm	$\gamma \longrightarrow \lambda_{\text{diffusion}}$

BAIKAL, prof. 1367m 2 PMTs/étage 8 lignes de 12 étages (total 192 PMTs : NT200, depuis 1998)

BAIKAL

Neutrinos a<u>tmosphériques</u>

372 Neutrinos en 1038 jours (1998-2003)

BAIKAL, projet de détecteur de taille kilométrique :

```
Instrumentation espacée:
91 lignes portant 12/16 OMs
= 1308 OMs
Volume effectif pour
gerbes de 100 TeV ~ 0.5 - 1.0 \text{ km}^3
résolutions:
                                                                          1308 optical modules
δlog10(E) ~ 0.1, δθ_{med} < 5^{\circ}
                                                                            91 strings
                                                                    70m
                                                                        (0.7-0.9) km<sup>3</sup> detection volum
Seuili entre 10 et 30 TeV
                                              280m
```

6.24km

AMANDA-II: 19 lignes, 677 PMTs

15m entre modules optique d'une ligne

AMANDA exploite ses 19 lignes depuis 2000

Résolution angulaire ~ 2°

Surface effective pour les neutrinos :

Sources ponctuelles : cartes du ciel AMANDA : pas d'excès significatif

Sources ponctuelles : cartes du ciel AMANDA : pas d'excès significatif

Performances attendues (M Ribordy, Moriond 2008)

Evenements dans ICECUBE

# Strings	Year	CR µ rate	v rate
1	2005	5 Hz	0.01 / day
9	2006	80 Hz	1.5 / day
22	2007	550 Hz	20 / day
40	2008	1000 Hz	
59	2009		
?	2010		
80	2011	~ 1650 Hz	~ 200 / day

Observation de neutrinos montants : reconstruction et sélection :

Sources ponctuelles : sensibilité

Flux diffux

RICE

200m x 200m x 200m, Cherenkov radio 16 récepteurs [0.2 GHz, 1 GHz] (Kravchenko et al

NESTOR prof. 4000m 12 PMTs/étage 12 étages/tour

Module optique orienté vers le haut

NEMO

vs KM3NeT

ANTARES, 2475m, 3 PMTs/étage

12 lines de 25 étages

=900 PMTs

connexions: Ligne 1: 03 / 2006 Lignes 2, 3, 4, 5: 01 / 2007 Lignes 6, 7, 8, 9, 10: 12 / 2007 Lignes 11, 12: 05 / 2008

Détection d'un neutrino montant

Neutrinos détectés

Année 2008 (9,10 lignes puis 12 lignes) 173 jours

582 montants /

494 neutrinos attendus + 13 muons atmosphériques

Neutrinos détectés

Carte du ciel (avec smearing ie « blindée »)

Mesure du flux de muons atmosphériques et verticalisation (flux=f(profondeur))

Calibration/monitorage avec le Potassium-40

KM3NeT une union des efforts en Méditerranée

Détecteur dit de «référence» (NON définitif)

- 15 x 15 lignes ou tours distance entre lignes ou tours : 95 m
- 37 OMs/ligne ou tour, distance entre étages 15.5 m
- Un OM (module optique) réunit 21 PMTs de 3''

Détecteur dit de «référence» (NON définitif)

Etudes en cours : optimisation

Basses énergies

Bon compromis : détecteur homogène hexagonal

Stucture des unités de détection:

ANTARES »

en 5 ans

[†] Assuming no γ -ray absorption within source. INFC specifies the phase of inferior conjunction of the binary system as defined in [9].

Espace de paramètres mSugra : m₀,m_{1/2},A₀,tan(β),sign(μ)

Détecteur Multi-site ?

2 détecteurs moyens comparés à un grand Exemple (sur un détecteur avec étages type ANTARES):

moyen : 69 lignes, 4140 PMTs (0.4 km³, 3.18 km²) grand : 127 lignes, 7620 PMTs (0.9 km³, 5.84 km²) (rapport du nombre de lignes \sim 1.84)

CONCLUSION

BAIKAL (eau douce) & AMANDA (glace) ont prouvé la faisabilité des télescopes à neutrinos et fait apparaître leur intérêt : les premiers neutrinos montants ont été observés en 1995 par BAIKAL;

Aujourd'hui AMANDA/ICECUBE, BAIKAL, et ANTARES produisent des résultats en astronomie neutrino (limites).

La première phase de NEMO est en fonctionnement depuis décembre 2006, et sa seconde phase deviendra une contribution à KM3NeT:

ANN (Antares Nemo Nestor) et de nouveaux collaborateurs participent aux consortiums KM3NeT-DS et KM3NeT-PP afin de converger vers un détecteur de taille kilométrique, de performances supérieures à ICECUBE.