
Normalizing Flows for high-dimensional HEP.

Humberto Reyes-González
RWTH Aachen

1

ML coffee. 
LPSC Grenoble.

22/03/24

Currently: Formerly:



2

Motivation
● Machine Learning is becoming a part of our society. Is being used everywhere from 

finance and health to climate research and astrophysics.

● High Energy Physics is not the exception. Machine learning is making great strides 
towards revolutionizing the field. 

● Large amounts of more complex data is being collected by the Large Hadron collider, as 
well as by a number of other under on and above ground astrophysical experiments etc. 

● To be able to draw insights from this data about the fundamental laws of Nature, we 
must rely on modern data science, ML included. 

● To ensure the systematic usage of ML methods, we should be aware of their capabilities 
and limitations.

● A particularly interesting brand of ML are the so-called Normalizing Flows. Generative 
networks with explicit density estimation. 
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Outline

1. Machine Learning (ML) and High Energy Physics (HEP).

2. Normalizing Flows (NFs).

3. NFs 4 HD-HEP.

4. Conclusions.
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Challenges in HEP

https://images.app.goo.gl/hfdgqBWqNngoakQD8
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Challenges in HEP
Machine learning (ML) has the potential to address several challenges in high-energy physics 
(HEP). For:

● Enabling faster and more accurate data 
analysis, 

● Improving signal processing and background 
rejection, 

● Aiding in anomaly detection, 
● Enhancing simulations and modeling, 
● Optimizing detector design, and 
● Facilitating efficient data compression and 

storage

The HiggsML poster advertising the challenge.- Clara 
Nellist, https://www.researchgate.net/
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ML in a nutshell
Machine learning is a branch of artificial intelligence (AI) that focuses on the development 
of algorithms and statistical models that allow computers to learn and make predictions or 
decisions without being explicitly programmed Levering from large amounts of data it 
allows to  extract patterns, learn from them, and make informed decisions or predictions.
ML is revolusinind many fileds:

1. Healthcare
2. Finance
3. Transportation
4. E-commerce and Marketing
5. Natural Language Processing (NLP)
6. Manufacturing and Quality Control
7. Energy and Sustainability

AND SCIENCE!!!
https://www.geeksforgeeks.org/what-is-artificial-intelligence/
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The ML landscape
Supervised Learning:
1. Random Forests
2. Boosted decision trees
3. Neural Networks 
4. Graph neural Networks
5. …

Unsupervised Learning
1. Variational Autoencoders
2. Generative Adversarial Networks
3. Normalizing Flows
4. Diffusion Models
5. …

Unite Ai
.spindox.it

Self-Supervised.
1. Large Language Models
2. Vision Transformers.
3. Contrastive Learning.
4. …

Weakly-supervised:
1. Anomaly detection Classifiers
2. Active Learning.
3. Transfer Learning.
4. …

https://www.v7labs.com/blog/self-supervised-learning-guide arXiv:1708.02949
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Applications of ML in HEP

1. Particle identification
2. Event Reconstruction.
3. Anomaly Detection
4. Unfolding.
5. Calibration and Corrections
6. Event Simulations
7. Analysis design.
8.Likelihood learning.
9. …

HEP data has particular challenges as compared 
to ‘real world data’ ! 
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Open challenges ML4HEP

and more to come… stay tuned and participate!
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Normalizing Flows.
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Introduction
● In HEP we find complex Probability Distribution Functions (PDFs) EVERYWHERE! 

● What do we want to do with them? -> (Re)-interpret, preserve, sample, combine, invert, …

●  Can Normalizing Flows (NFs) help us on these endeavours?…


● Normalizing flows are a powerful brand of generative models. 

●  They map simple to complex distributions.

●  They allow for efficient sampling of complex PDFs…

●   … and include density estimation by construction!


Some applications: 

●  Learning LHC likelihoods (arxiv:2309.09743)

●  Unfolding (arXiv:2006.06685) 

● Calorimeter shower simulation (arXiv:2106.05285)

●  Event generation and numerical integration (arXiv:2001.10028, 

arXiv:2001.05486 ,arXiv:2110.13632)




Basic principle

Normalizing direction

Generative direction

Following the change of variables formula, perform a series of bijective, continuous, invertible 
transformations on a simple probability density function (pdf) to obtain a complex one. 
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See review: Ivan K. et. al.

arXiv:1908.09257



THE RULES OF THE GAME:
• The transformations (bijectors) must be invertible
• They should be sufficiently expressive
• And computationally efficient (including Jacobian)

THE OBJECTIVE:
To perform the right transformations to accurately estimate the 
complex underlying distribution of some observed data. 

THE STRATEGY:
Let Neural Networks learn the parameters of Autoregressive* 
Normalizing Flows.
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Choosing the transformations

*One among many types of NFs
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Autoregressive Flows
Coupling Flows: 

•Dimensions are divided in two sets:  and 
• We transform  with bijectors trained with .
• The bijector parameters are functions of a NN.
• The Jacobian J is triangular ->   
•Jacobian is easily computed!
•Direct sampling AND density estimation.
•Less expressive.

Autoregressive Flows : 
•Dimension  is transformed with bijectors trained with 
• Bijector parameters are trained with Autoregressive 
NNs.

• The Jacobian J is also triangular thus…
•Jacobian is easily computed!
•Direct sampling OR density estimation.
•More expressive.

arXiv:1908.09257

arXiv:1908.09257



Autoregressive Flows

Affine Rational Quadratic 
Spline 

Coupling RealNVP C-RQS

Autoregressive MAF A-RQS

y = Θx + h

Bijector
NF type
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NFs for high-dimensional HEP
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Testing ML methods
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Non-parametric methods
● Non-parametric methods are statistical techniques that do not make any assumptions about the 

underlying probability distribution or data structure. 
● They are used to evaluate the quality of the generated samples without relying on predefined 

probability distributions.
● Their applicability for high dimensional distributions is an active topic of research..

Examples:
● Kolgomorov-Smirnov test
● Anderson-Darling test.
● (Sliced) Wasserstein 

Distance
● Frechet physics distance
● Kernel physics distance
● Clasifier-based tests.

● R, Kansal et. al. Evaluating generative models in 
high energy physics. (arXiv:2211.10295)

● R. Torre, et. Al. Performances of non-paratemtric 
two sample tests for high dimensional samples. To 
appear.

https://arxiv.org/search/hep-ex?searchtype=author&query=Kansal,+R
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Non-parametric methods
- Two-sample 1D Kolgomonov - Smirnov test (ks test):
● Computes the p-value for two sets of 1D samples coming from the same unknown distribution.
● We average over ks test estimations and compute the median over dimensions.
● Optimal value 0.5

- The sliced Wasserstein distance:
● The one-dimensional Wasserstein distance between two empirical distributions is formulated as:

● In our sliced approach, we randomly select Nd = 2D directions, with D the dimensionality of the 
sample, uniformly distributed over the 4π solid angle.

● We then project all samples on such directions and compute the one-dimensional Wasserstein distance 
and finally take the mean over the directions.
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NFs in High Dimensions

A. Coccaro, M. Letizia, H.R.G, R. Torre. arxiv:2302.12024
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NFs in High Dimensions

A. Coccaro, M. Letizia, H.R.G, R. Torre. arxiv:2302.12024
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NFs 4 HD-HEP: LHC Likelihoods.



LHC- Likelihoods.

Likelihood functions (full statistical models) parametrise the full information of an LHC analysis; 
whether it is New Physics (NP) search or an SM measurement. 

● Their preservation is a key part of the LHC legacy. 
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Example likelihoods

LHC-like toy likelihood.
● Simplified likelihood (Multivariate-Gaussian)
● 1 parameter of interest (signal strength)
● 89 nuisance parameters.
●  Ref. arXiv:1809.05548

Flavor fit likelihood
● Flavor observables related to 
● 12 parameters of interest (Wilson coefficients)
● 77 nuisance parameters.
●  Ref. arXiv:1809.05548

ElectroWeak fit Likelihood
● EW observables.
● Including recent measurements of top mass (CMS) and 

W mass (CDF).
● 8 parameters of interest (Wilson coefficients of SMEFT 

operators)
● 32 nuisance parameters.
●  Ref.  arXiv:2204.04204

https://arxiv.org/abs/1809.05548
https://arxiv.org/abs/1809.05548
https://arxiv.org/abs/2204.04204
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R. Torre, HRG. arxiv:2309.09743

LHC-like toy likelihood
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R. Torre, HRG. arxiv:2309.09743

EW-fit likelihood
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R. Torre, HRG. arxiv:2309.09743

Flavor likelihood
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NFs: LHC- Likelihoods.

R. Torre, HRG. arxiv:2309.09743
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NFs 4 HD-HEP: Calorimeter Showers.
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Normalizing Flows Calorimeter shower simulation 
Calorimeters are detectors used to measure the energy of particles that pass through them. In order 
to validate and optimize the performance of calorimeters, simulation studies are conducted.

“The purpose of this challenge is to spur the development and benchmarking of fast and high-
fidelity calorimeter shower generation using deep learning methods. Currently, generating 
calorimeter showers of interacting particles (electrons, photons, pions, ...) using GEANT4 is a 
major computational bottleneck at the LHC, and it is forecast to overwhelm the computing 
budget of the LHC experiments in the near future.”


• The Fast Calorimeter simulation challenge*

*To appear on ArXiV soon
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The datasets

Dataset 1

• Separated in two parts: Photon and Pion showers.

• 15 incident energies from 256 MeV up to 4 TeV

• 368 voxels (in 5 layers) for photons and 533 (in 7 layers) for pions.

Each dataset has the same general format. The detector geometry consists of concentric cylinders with 
particles propagating along the z-axis. The detector is segmented along the z-axis into discrete layers. Each 
layer has bins along the radial direction and some of them have bins in the angle α. The coordinates Δφ and 
Δη correspond to the x- and y axis of the cylindrical coordinates. The events are conditioned by the incident 
energy.

Dataset 2

• Electron showers.

• Energies sampled from a log-uniform from 1 GeV to 1 TeV.

• 45x16x9 =6480 uniform voxels.

Dataset 3

• Electron showers.

• Energies sampled from a log-uniform from 1 GeV to 1 TeV.

• 45x50x18=40500 uniform voxels.
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Normalizing Flows Calorimeter shower simulation 

CaloFlow

C. Krause, D. Shih arxiv:2106.05285, arxiv:2110.11377
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Normalizing Flows Calorimeter shower simulation 

CaloFlow

C. Krause, D. Shih arxiv:2106.05285, arxiv:2110.11377Dataset 1
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Normalizing Flows in the latent space.

• NFs are very expressive generative networks even in HD.

• However, they are bijective functions: The size of the model scales with the dimensionality of 

data. How can we solve this? -> Mapping data to lower dimensional manifolds.

• In Machine Learning, this is known as the  manifold hypothesis from machine learning, which 

states that high- dimensional data is supported on low-dimensional manifolds.

• Our assumption is that the seemingly high-dimensional structure of calorimeter showers, can be 

described by simpler physical laws.

• We propose to model calorimeter showers in two steps: To first learn learn a mapping to a lower 

dimensional manifold to then perform density on the manifold.


arXiv:1708.02949
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Normalizing Flows calorimeter shower simulation 

CaloMan

 J. Cresswell, B. Leigh-Ross, G. Loaiza-Ganem, H.R.G., 

M. Letizia, A. Caterini. arxiv:2211.15380
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Normalizing Flows calorimeter shower simulation 

CaloMan

 J. Cresswell, B. Leigh-Ross, G. Loaiza-Ganem, H.R.G., 

M. Letizia, A. Caterini. arxiv:2211.15380
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Normalizing Flows calorimeter shower simulation

Dataset: Photons1

CaloMan

 J. Cresswell, B. Leigh-Ross, G. Loaiza-Ganem, H.R.G., 

M. Letizia, A. Caterini. arxiv:2211.15380Dataset 1
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Requirements of ML methods for HEP.
• Robustness: The limits of the method in regards of complexity, range or type of data of should be 

clear as much as possible. 

• Scalability: Understanding how well ML methods work as the dimensionality of the problem 
increases is crucial to ensure their systematic usage beyond vanilla proof of concepts.

• Accuracy determination:  Reliable, statistically robust assessment of the level of accuracy of 
trained ML models is essential. This is not easy for Unsupervised learning approaches.

• Uncertainty estimation: ML methods should provide an estimation of the uncertainty in the 
prediction. For most applications in HEP, this is necessary to derive statistical sound conclusions.

• Reproducibility: In science, any result and computational tool should be reproducible and openly 
available. This ensures cross-checking, reusability and the overall lasting legacy of the research. 

• Deployment: Collider experiments are extremely sophisticated. Integration of ML, requires 
careful planning.
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Conclusions
● Machine Learning is revolutionizing society and is strongly making its way into High 

Energy Physics.
● It will be crucial to enlarge our understanding of fundamental physics trough data 

intensive approaches.
● We find that Normalizing Flows are a particularly interesting example of ML methods, 

given its expressibility, scalability and their explicit density estimation.
● To ensure their usage ML methods should be thoroughly tested and must fulfill a 

number of conditions.
● The effort will require interdisciplinary research that will be fruitful for Physics and 

Data Science.
● The emerge of  Data Physicists is imminent.

 (see: https://www.aps.org/publications/apsnews/202311/backpage.cfm)

https://towardsdatascience.com/from-theoretical-physicist-to-data-scientist-d8b781462c9
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THANK YOU!

Contact information:
Email: humberto.reyes@rwth-aachen.de
Skype: humberto.reyes32
I look forward to discussion/collaboration!

mailto:humberto.reyes@rwth-aachen.de

