Formerly:

Istituto Nazionale di Fisica Nucleare
Sezione di Genova

Currently:

RWNTH

P

¢

Normalizing Flows for high-dimensional HEP.

Humberto Reyes-Gonzalez
RWTH Aachen

ML coffee.
LPSC Grenoble.
1 22,103 /24



Motivation

e Machine Learning is becoming a part of our society. Is being used everywhere from
finance and health to climate research and astrophysics.

e High Energy Physics is not the exception. Machine learning is making great strides
towards revolutionizing the field.

e Large amounts of more complex data is being collected by the Large Hadron collider, as
well as by a number of other under on and above ground astrophysical experiments etc.

e To be able to draw insights from this data about the fundamental laws of Nature, we
must rely on modern data science, ML included.

e To ensure the systematic usage of ML methods, we should be aware of their capabilities
and limitations.

® A particularly interesting brand of ML are the so-called Normalizing Flows. Generative

networks with explicit density estimation.
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Outline

1.Machine Learning (ML) and High Energy Physics (HEP).

2.Normalizing Flows (NFs).
3.NFs 4 HD-HEP.

4. Conclusions.



Challenges in HEP

CMS Experiment at the LHC, CERN
Data recorded: 2011-Dec-01 14:35%39.907994 GMT
Run/Event/LS: 182798 / 2268703 / 117
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Challenges in HEP

Machine learning (ML) has the potential to address several challenges in high-energy physics
(HEP). For:

When High Energy Physics meets Machine Learning

e Enabling faster and more accurate data
analysis,

e Improving signal processing and background
rejection,

e Aiding in anomaly detection,

e Enhancing simulations and modeling,

e Optimizing detector design, and

e Facilitating efficient data compression and
storage




ML In a nutshell

Machine learning is a branch of artificial intelligence (Al) that focuses on the development
of algorithms and statistical models that allow computers to learn and make predictions or
decisions without being explicitly programmed Levering from large amounts of data it
allows to extract patterns, learn from them, and make informed decisions or predictions.
ML is revolusinind many fileds:

1. Healthcare

2. Finance

3. Iransportation

4. E-commerce and Marketing

5. Natural Language Processing (NLP)
6. Manutfacturing and Quality Control
/. Energy and Sustainability

AND SCIENCE!!

https://www.geeksforgeeks.org/what-is-artificial-intelligence/



The ML landscape

Supervised Learning: Unsupervised Learning
1. Random Forests ) 1. Variational Autoencoders e {:
£z : : Q-

2. Boosted decision trees 2. Generative Adversarial Networks

3. Neural Networks 3 Normallzmg Flows _ake=

4. Graph neural Networks 4. Dittusion Models

5. ... Fra

Self-Supervised. Weakly-superwse.d: = T
1. Anomaly detection Classifiers 00000 | | @006

1. Large Language Models .. . = o . . 00000 | | 90000

2. Vision Transformers - 2. Active Learning,. 2] (122202

: : g 0 1
3. Contrastive Learning. e E,Eg: 3. Transfer Learning. \ __ /
4. ... : 4. arXiv:1708 02949



Applications of ML in HEP

1. Particle identification
2. Event Reconstruction. T on

Charged Hadron (e.g. Plon)
w s = Neutral Hadron (e.g. Neutron)

S nomalyBeteckiomm s oo e ol S -
4. Unfolding.

5. Calibration and Corrections
6. Event Simulations

/. Analysis design.

8.Likelihood learning.
Sl

| |
Im

om

HEP data has particular challenges as compared
to ‘real world data’ !



Open challenges ML4HEP

Higgslﬂ the nggSMl chullenge The LHC Olympics 2020

May to September 2014 A Community Challenge for Anomaly
Detection in High Energy Physics

challenge

When High Energy Physics meets Machine Learning

w.\-\"i W
3D

TrackML’ partlae&ackmg Chall

Fast Calorimeter Simulation Challenge
2022

High Energy Physics partlc{etgagwngur

and more to come... stay tuned and participate!
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Normalizing Flows.



Introduction

e |In HEP we find complex Probability Distribution Functions (PDFs) EVERYWHERE!
e \What do we want to do with them? -> (Re)-interpret, preserve, sample, combine, invert, ...
e Can Normalizing Flows (NFs) help us on these endeavours?...

e Normalizing flows are a powerful brand of generative models.
e [hey map simple to complex distributions.

e They allow for efficient sampling of complex PDFs...

e ... and include density estimation by construction!

Some applications:

e Learning LHC likelihoods (arxiv:2309.09743)

e Unfolding (arXiv:2006.06685)

e Calorimeter shower simulation (arXiv:2106.05285)

e Event generation and numerical integration (arXiv:2001.10028,
arXiv:2001.05486 ,arXiv:2110.13632)
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Basic principle

Following the change of variables formula, perform a series of bijective, continuous, invertible
transformations on a simple probability density function (pdf) to obtain a complex one.
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See review: Ivan K. et. al.
arxXiv:1908.09257



Choosing the transformations

THE OBJECTIVE: YOU MUST CHOUSE.
To perform the right transformations to accurately estimate the ok
complex underlying distribution of some observed data.

THE RULES OF THE GAME:

e The transformations (bijectors) must be invertible
e They should be sufficiently expressive

e And computationally efficient (including Jacobian)

THE STRATEGY:
Let Neural Networks learn the parameters of Autoregressive®
Normalizing Flows.

13
*One among many types of NFs



Autoregressive Flows

Coupling Flows:

eDimensions are divided in two sets: and g

e We transform with bijectors trained with . ]

e The bijector parameters are functions of a NN. - |

e The Jacobian J is triangular ->

eJacobian is easily computed! e

*Direct sampling AND density estimation.

*Less expressive. Z;l - ;321 =

L3 Y3 X3 / Y3

Autoregressive Flows : %i

e Dimension is transformed with bijectors trained with n cdid B o

e Bijector parameters are trained with Autoregressive e

NNSs.
e The Jacobian J is also triangular thus...
*Jacobian is easily computed! _ |
eDirect sampling OR density estimation. —log(pytargety;y,))
* More expressive.

The loss function:

14



Autoregressive Flows

Bijector Affine Rational Quadratic
NF type Spllne

Coupling RealNVP C-RQS
Autoregressive MAF A-RQS

l RQ Spline
nverse
Knots y

y=0x+h 5,




NFs for high-dimensional HEP



Testing ML methods



Non-parametric methods

e Non-parametric methods are statistical techniques that do not make any assumptions about the
underlying probability distribution or data structure.

e They are used to evaluate the quality of the generated samples without relying on predefined
probability distributions.

e Their applicability for high dimensional distributions is an active topic of research..

Examples: —

e Kolgomorov-Smirnov test
e Anderson-Darling test. &_ _@_
e (Sliced) Wasserstein

Distance

. FreChet thSiCS diStance e R, Kansal et. al. Evaluating generative models in

e Kernel thSiCS distance high energy physics. (arXiv:2211.10295)

e R. Torre, et. Al. Performances of non-paratemtric

e (Clasifier-based tests. two sample tests for high dimensional samples. To

appear.

18


https://arxiv.org/search/hep-ex?searchtype=author&query=Kansal,+R

Non-parametric methods

- Two-sample 1D Kolgomonov - Smirnov test (ks test):

e Computes the p-value for two sets of 1D samples coming from the same unknown distribution.
e We average over ks test estimations and compute the median over dimensions.

e Optimal value 0.5

Dy,z = Sup, ‘ Fy(l’) o F;(l“) | ’

- The sliced Wasserstein distance:
e The one-dimensional Wasserstein distance between two empirical distributions is formulated as:

W= / dn | Bylo) — Bz}
R

e In our sliced approach, we randomly select Nd = 2D directions, with D the dimensionality of the
sample, uniformly distributed over the 47t solid angle.

e We then project all samples on such directions and compute the one-dimensional Wasserstein distance
and finally take the mean over the directions.

19



NFs in High Dimensions
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NFs in High Dimensions

Mean sliced Wasserstain distance
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NFs 4 HD-HEP: LHC Likelihoods.



. HC- Likelihoods.

Likelihood functions (full statistical models) parametrise the full information of an LHC analysis;
whether it is New Physics (NP) search or an SM measurement.

® Their preservation is a key part of the LHC legacy.

Bayes theorem:

P(®,x) = P (x| ®)ng(®) = Pg(® | x)n (x)

LHC Statistical model:

LR o M o B A

1 (Observed) data

Nuisance parameters (uncertainties)

(Auxmary) data

Parameters of Interest (signal strength, observables, etc.)
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Example likelihoods

LHC-like toy likelihood.
Simplified likelihood (Multivariate-Gaussian)
1 parameter of interest (signal strength)

89 nuisance parameters.
Ref. arXiv:1809.05548

ElectroWeak fit Likelihood

e EW observables.
e Including recent measurements of top mass (CMS) and

W mass (CDEF).

e § parameters of interest (Wilson coefficients of SMEFT

operators)

e 32 nuisance parameters.
o Ref. arXiv:2204.04204

24

Flavor fit likelihood
Flavor observables related to
12 parameters of interest (Wilson coefficients)

/7 nuisance parameters.
Ref. arXiv:1809.05548



https://arxiv.org/abs/1809.05548
https://arxiv.org/abs/1809.05548
https://arxiv.org/abs/2204.04204

-like toy likelihood

H ,
5 (‘\‘lé B true Hyperparameters for Toy Likelihood
:,{‘ ‘i Bia EEN pred # of hidden algorithm  # of spline range L1 factor patience max # of
Hil —— HPDly,4 samples  layers bijec.  knots epochs
jr - T :gg:m 2.10° 3x64 MAF 2 - - 0 20 200
/H i Table 1: Hyperparameters leading to the best determination of the Toy Likelihood.
-v" K*-ﬁaa

HiH Results for Toy Likelihood
i }\: # of Mean Mean HPDIe;, HPDIle;, HPDIes, time (s)
=55 samples KS-test SWD

2-10° 0.4893 +.0292 0.03947 == .0019 0.02073 0.01207 0.01623 133

Table 2: Best results obtained for the Toy Likelihood.

Results for Toy Likelihood POI
1R} POI KS-test HPDIe;, HPDIes, HPDles,
""" e e vl R TTATT ) 0.54 0.02742 0.01359 0.01786

Table 3: Results for the POI in the Toy Likelihood.
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R. Torre, HRG. arxiv:2309.09743
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EW-fit likelihood

I pred

B truc Hyperparameters for the EW Likelihood
—— HPDIy,
=TT ——= HPDby # of hidden # of algorithm spline range L1 factor patience # of
> J' j|] —-= HPDI3, samples  layers bijec. knots epochs
9 Jl N e, 2-10° 2 3 x128 A-RQS 4 -6 0 20 800

T

Table 4: Hyperparameters leading to the best determination of the EW Likelihood.

Results for the EW Likelihood

# of Mean Mean HPDleq, HPDIle;, HPDles, time (s)
samples KS-test SWD

2-10° 0.4307 £ 0.06848 0.003131 £0.00053 0.000339 0.0008664 0.006973 7255
Table 5: Best results obtained on the EW Likelihood.

Results for EW Likelihood
POI KS-test HPDIei, HPDIles, HPDles,
cl 0.1901 0.08384 0.09787 0.437

RO WORIOMON ==

; ¢, 0.2078  0.0346 0.1039 0.4967
cpg 0.4581  0.02279  0.01131  0.04866

0, ‘0,
D,
® Yo

cs, 04989  0.01219  0.01439  4.1017
cpa 05221  0.01713  0.03808  0.09952
cpe  0.4885  0.01453  0.2146 0.1401
cou 05259  0.005409 0.005082  0.341
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Table 6: Results for the Wilson coefficients in the EW Likelihood.
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R. Torre, HRG. arxiv:2309.09743
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Flavor likelihood

B true
B pred
—— HPDIy,
===+ HPDlys
—-= HPDI3,

A

90 9 60 59 O .9 1.0

A7 07 ATAD YT g S oy

27

Hyperparameters for the Flavor Likelihood

# of hidden # of algorithm spline range L1 factor patience max # of
samples layers  bijec. knots epochs
10° 3x1024 2 A-RQS 8 -5 le-4 50 12000

Table 7: Hyperparameters leading to the best determination of the Flavor Likelihood.

Results for the Flavor Likelihood

# of Mean Mean HPDIe;, HPDIes, HPDles, time (s)
samples KS-test SWD

5-10° 0.4237 £0.03405 0.02717 + 0.002374 0.00867 0.007346 1.419e-07 9550

Table 8: Best results obtained for the Flavor Likelihood.

Results for Flavor Likelihood POIs

POI  KS-test HPDIe;, HPDIes, HPDIes,
k2104346  0.007251  1.83e-05  4.731e-08
k9l 04736  0.01249  0.00162  0.03575
cihs 0486  0.01466  0.006628  0.002338
czsns  0.4138  0.0513 0.02446  2.398e-08
cked? 05362 0.00738  0.004683  5.387e-08
ci®@ 05161 0.02799  0.001639  2.155e-09
¢S5, 0.4476  0.01389  0.007458  1.419e-07
S5, 0382 0.02132  0.02496  0.0004609
Sl 0.4789  0.04076  0.00333  5.602e-08
533 0.4436  0.008685  0.016  1.502e-08
cFed@ 03203  0.09194  0.007041  8.011e-08
che®4?  0.4157  0.03001  0.008749  4.374e-08

Table 9: Results for the Wilson coefficients in the Flavor Likelihood.

R. Torre, HRG. arxiv:2309.09743



L HC- Likelihoods.

NFs
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NFs 4 HD-HEP: Calorimeter Showers.



Normalizing Flows Calorimeter shower simulation

Calorimeters are detectors used to measure the energy of particles that pass through them. In order
to validate and optimize the performance of calorimeters, simulation studies are conducted.

* The Fast Calorimeter simulation challenge*

“The purpose of this challenge is to spur the development and benchmarking of fast and high-
fidelity calorimeter shower generation using deep learning methods. Currently, generating
calorimeter showers of interacting particles (electrons, photons, pions, ...) using GEANT4 is a
major computational bottleneck at the LHC, and it is forecast to overwhelm the computing
budget of the LHC experiments in the near future.”

front view

3d view

A¢

30 *To appear on ArXiV soon



The datasets

Each dataset has the same general format. The detector geometry consists of concentric cylinders with
particles propagating along the z-axis. The detector is segmented along the z-axis into discrete layers. Each
layer has bins along the radial direction and some of them have bins in the angle a. The coordinates A¢ and
An correspond to the x- and y axis of the cylindrical coordinates. The events are conditioned by the incident

energy.

Dataset 1
 Separated in two parts: Photon and Pion showers.

15 incident energies from 256 MeV up to 4 TeV
368 voxels (in 5 layers) for photons and 533 (in 7 layers) for pions.

Dataset 2
« Electron showers.
 Energies sampled from a log-uniform from 1 GeV to 1 TeV.

e 45x16x9 =6480 uniform voxels.

Dataset 3
 Electron showers.
 Energies sampled from a log-uniform from 1 GeV to 1 TeV.

e 45x50x18=40500 uniform voxels.

31



Normalizing Flows Calorimeter shower simulation
CaloFlow

MADE Block RQS Transformation

bijector input cond. input a .\
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C. Krause, D. Shih arxiv:2106.05285, arxiv:2110.11377
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Normalizing Flows Calorimeter shower simulation

CaloFlow
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Dataset 1 C. Krause, D. Shih arxiv:2106.05285, arxiv:2110.11377
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Normalizing Flows In the latent space.

 NFs are very expressive generative networks even in HD.

 However, they are bijective functions: The size of the model scales with the dimensionality of
data. How can we solve this? -> Mapping data to lower dimensional manifolds.

 In Machine Learning, this is known as the manifold hypothesis from machine learning, which
states that high- dimensional data is supported on low-dimensional manifolds.

Our assumption is that the seemingly high-dimensional structure of calorimeter showers, can be
described by simpler physical laws.

 We propose to model calorimeter showers in two steps: To first learn learn a mapping to a lower
dimensional manifold to then perform density on the manifold.

arX1v:1708.02949
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Normalizing Flows calorimeter shower simulation

CaloMan
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Here we use (Coupling) NFs

J. Cresswell, B. Leigh-Ross, G. Loaiza-Ganem, H.R.G.,
M. Letizia, A. Caterini. arxiv:2211.15380
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Normalizing Flows calorimeter shower simulation
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Coupling Flow.

J. Cresswell, B. Leigh-Ross, G. Loaiza-Ganem, H.R.G.,
36 M. Letizia, A. Caterini. arxiv:2211.15380



Normalizing Flows calorimeter shower simulation

CaloMan
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Requirements of ML methods for HEP.

e Robustness: The limits of the method in regards of complexity, range or type of data of should be

clear as much as possible.

e Scalability: Understanding how well ML methods work as the dimensionality of the problem

increases is crucial to ensure their systematic usage beyond vanilla proof of concepts.

e Accuracy determination: Reliable, statistically robust assessment of the level of accuracy of
trained ML models is essential. This is not easy for Unsupervised learning approaches.

e Uncertainty estimation: ML methods should provide an estimation of the uncertainty in the
prediction. For most applications in HEP, this is necessary to derive statistical sound conclusions.

e Reproducibility: In science, any result and computational tool s

available. This ensures cross-checking, reusability and the overal

nould be reproducible and openly

 lasting legacy of the research.

e Deployment: Collider experiments are extremely sophisticated. Integration of ML, requires

careful planning.
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Conclusions

e Machine Learning is revolutionizing society and is strongly making its way into High
Energy Physics.

e It will be crucial to enlarge our understanding of fundamental physics trough data
intensive approaches.

e We find that Normalizing Flows are a particularly interesting example of ML methods,
given its expressibility, scalability and their explicit density estimation.

e To ensure their usage ML methods should be thoroughly tested and must fulfill a
number of conditions.

e The effort will require interdisciplinary research that will be fruitful for Physics and
Data Science.

® The emerge of Data Physicists is imminent.

(see: https:/ / www.aps.org/ publications /apsnews /202311 /backpage.cfm)
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THANK YOU!

Contact information:
Email: humberto.reyes@rwth-aachen.de

Skype: humberto.reyes32

I look forward to discussion/collaboration!
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