Beyond simple DNN regression calibration of hadronic jets in ATLAS

P-A Delsart & Guillaume albouy

Experimental context

• Proton collision at LHC

P-A Delsart

P-A Delsart

• Tracks

Calorimeter E clusters

to form

reconstructed 4-vectors

("reco constituent")

Correspondence between hadron jets and reco jets

 Simulation can have reference quantities for reco jets

- Reconstructed Jet E and M **require** calibration
- For a given true jet, E_{true}, corresponds a **distribution** of possible E_{reco}
 - due to the nature of QCD and calorimeter showers
 - thus for $E_{reco} \rightarrow distribution of possible E_{true}$

- Reconstructed Jet E and M **require** calibration
- For a given true jet, E_{true}, corresponds a **distribution** of possible E_{reco}
 - due to the nature of QCD and calorimeter showers
 - thus for $E_{reco} \rightarrow distribution of possible E_{true}$

10

- Reconstructed Jet E and M **require** calibration
- For a given true jet, E_{true}, corresponds a **distribution** of possible E_{reco}
 - due to the nature of QCD and calorimeter showers
 - thus for $E_{reco} \rightarrow distribution$ of possible E_{true}

- Reconstructed Jet E and M **require** calibration
- For a given true jet, E_{true}, corresponds a **distribution** of possible E_{reco}
 - due to the nature of QCD and calorimeter showers
 - thus for $E_{reco} \rightarrow distribution$ of possible E_{true}

The calibration problem

The calibration problem

The calibration problem

Inputs: output: reconstructed calibrated quantities quantities (E and Mass) $x_{reco} = \begin{pmatrix} E_{reco} \\ M_{reco} \\ \phi \end{pmatrix} \Longrightarrow$ D $y_{pred} = \text{mode}(P(r|x_{reco})) \qquad \longrightarrow \qquad E_{calib} = \frac{E_{reco}}{\text{mode}(P(r|x_{reco}))}$ most probable response

*this solution is a practical choice & not necessarily mathematically valid

The ML problem

Design & train a DNN to learn simultaneously the **mode** of the E and mass responses

Requirements:

- calibrated E scale = $1 \pm 1\%$
- calibrated M scale = $1 \pm 5\%$
- on all the phase space ($E \sim 0.1 \rightarrow 4 \text{TeV}$)
- with improved resolution

Solutions

- Choose a proper loss function
- Encode the jet angular position
- Network Architecture
- Training procedure

Loss function choice

Learning the mode of distributions

- We want to predict the **mode** of the distribution
 - In training examples, the target (r=E_{reco}/E_{true}) is just 1 number out of this distribution
 - NOT the mode
- The choice of the loss function is important
 - L= $||r_{target}-r_{pred}||^2 \rightarrow$ learns the mean
 - L= $|r_{target}-r_{pred}| \rightarrow$ learns the median
 - − L = $\delta(r_{target}-r_{pred})$ → learns the mode
 - unusable in practice

P-A Delsart

Losses for mode learning

• Leaky Gaussian Kernel :

$$L_{LGK} = \exp(-\frac{(x_{\text{target}} - x_{\text{pred}})^2}{2\alpha}) + \beta |x_{\text{target}} - x_{\text{pred}}|$$

- approximation of Dirac's delta
 - α and β are fixed hyper-parameters

Losses for mode learning

Mixture Density Network

- First, assume distrib is gaussian :
 - μ is the **mode** !

$$P(r|\theta) \simeq e^{\frac{-(r-\mu)^2}{2\sigma^2}}$$

- μ , σ are estimated by the DNN, functions of $\theta = (E_{reco},...)$
- Given inputs, μ and σ are obtain when maximizing the likelihood : LH = $\prod P(r_i | \theta_i)$
- In practice :

 $i \in inputs$

- have the NN predicts both μ and σ
- choose the log likelihood as the loss

$$\log((\mu_{\text{pred}}, \sigma_{\text{pred}}), r_{\text{target}}) = \log(\sigma_{\text{pred}}) + \frac{1}{2} (\frac{\mu_{\text{pred}} - r_{\text{target}}}{\sigma_{\text{pred}}})^2$$

24-04-16

Losses for mode learning

- Mixture Density Network
- ... but real r distribution are not gaussian ?
- We can use other underlying assumption
 - asymmetric gaussian
 - truncated gaussian
 - ignore tails+focus on mode

$$P_{\text{asym}}(x) \sim \begin{cases} e^{(x-\mu)^2/2\sigma_1^2} & \text{if } x < \mu \\ e^{(x-\mu)^2/2\sigma_2^2} & \text{if } x \ge \mu \end{cases}$$

$$P_{\rm trunc}(x) \sim \begin{cases} e^{(x-\mu)^2/2\sigma^2} & \text{if } |x-\mu| < N\sigma \\ 0 & \text{otherwise} \end{cases}$$

• can change/tune loss during training

Input encoding

Input encoding

- Detector segmented in different subdector
- Strong response variations vs angular position
 - very difficult to model
- Solution : encode the angular position
 - "η annotation"
 - create new inputs out of angular position
 - 1 new input for each detector region

Implement detector knowledge into the NN

Input Annotation

• Increase the input by adding "features"

Input Annotation

• Increase the input by adding "features"

Gaussian Annotation

Gaussian centers set on each detector region

Intention : add the "distance to the region" information to the NN

Input Annotation

Network architecture

Network architecture

- Requirements impose a complex architecture
- Fork
 - specialize different weights for E and mass calib
 - allow to "freeze" weights during training
- Residual connection
 - mass calib much harder
 - help to converge on better weights

24-04-16

Training procedure

Training procedure

- Naive training for N epochs is not enough
 - ex: stopping here doesn't work _____
 - response≠1 in some region of phase space
 - mass response not calibrated enough
- Evolve loss functions to help with convergence to the mode everywhere
- Freeze all weights related to E and continue mass weights trainings

	Steps	N°	Number of epochs	Batch size	Learning rate	Loss
	Initialisation	1	2	15000	10^{-3}	MDNA
		2	2	25000	10^{-3}	MDNA
		3	2	35000	10^{-3}	MDNA truncated (4.0σ)
		4	2	15 000	10^{-3}	MDNA truncated (3.5σ)
	Common training	5	6	95000	10^{-3}	MDNA truncated (3.5σ)
		6	6	95000	10^{-3}	MDNA truncated (3.5σ)
		7	6	125000	10^{-3}	MDNA truncated (3.2σ)
		8	6	125000	10^{-3}	MDNA truncated (3.2σ)
		9	10	155 000	5.10^{-4}	MDNA truncated (3.0σ)
_		10	15	95000	10^{-5}	MDNA truncated ($E{:}$ 3.0 $\sigma,$ $m{:}$ 2.0 σ)
\rightarrow	Exclusive mass training	11	50	95000	10^{-5}	MDN truncated (1.0σ)

Number of processed jets

Results

Excellent Performances !

P-A Delsart

щ

Jet Energy Response,

Conclusions

- Solved 4 difficulties to implement a complete E&mass calibration of ATLAS
- Excellent performances \rightarrow public result (to be plublished in MSLT)
 - including on "types" of jet not seen during training
- Remaining work lines
 - what/how input variables impact predictions ?
 - robust criteria for stopping training procedure ?

Technical details & difficulties

Technicalities

- Framework : own code build on keras/tensorflow
- Data flow : custom solution
 - O(100M) examples x N features > available memory
 - ROOT ntuple \rightarrow read by uproot \rightarrow numpy array \rightarrow tensorflow
 - Other better technical solutions ?
- Computing : using CC-IN2P3 GPU farm
 - works very well !
 - good interactions with CC experts

Difficulties

- NN convergence issues solved with
 - Inputs & targets normalization
 - use of weights regularization (I2 or max-norm)
 - paying attention to activation functions !
- The Loss is not enough
 - different NN can reach similar minimal loss YET having different perfs according to other metrics
 - workaround by complex training procedures
 - Is it a sign something is wrong ?

Difficulties

- GraphNN difficulties/open questions
 - Isn't the system "underconstrained" ?
 - tuning constituent-level corrections from jet-level constraints
 - will it be able to converge to a physical solution ?
 - How to enforce valid/useful constraints if needed ?
 - Sometimes training Loss starts to **increase** continuously
 - yet model weights seem reasonable
 - In some setup GNN converges to ~constant correction factors for most of the input constituents...

Back-up

24-(