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Beyond simple DNN regression 
 calibration of hadronic jets in 

ATLAS

P-A Delsart & Guillaume albouy 
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Experimental contextExperimental context

● Proton collision at LHC
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Hadronic jetsHadronic jets

initial parton
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Hadronic jetsHadronic jets

Parton shower

hadrons
(pions, kaons...)

initial parton
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Hadronic jetsHadronic jets

initial parton

hadrons 4-vectors



24-04-16 P-A Delsart 6

Hadronic jetsHadronic jets

initial parton

hadron jet

Jet main parameter:
● Radius in angular space
typically R=0.4 or R=1.0

R
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Hadronic jetsHadronic jets

Calorimeters

Inner Tracker

Combine
● Tracks
● Calorimeter E clusters

to form 

reconstructed 4-vectors

("reco constituent")
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Hadronic jetsHadronic jets
● Correspondence between 

hadron jets and reco jets

● Simulation can have 
reference quantities for reco 
jets

reco jet
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Measuring jetsMeasuring jets

● Reconstructed Jet E and M require calibration
● For a given true jet, Etrue, corresponds a distribution of possible Ereco

– due to the nature of QCD and calorimeter showers

– thus for Ereco →distribution of possible Etrue

Ereco distrib for Etrue=E0

E0<E> Ereco
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Measuring jetsMeasuring jets

● Reconstructed Jet E and M require calibration
● For a given true jet, Etrue, corresponds a distribution of possible Ereco

– due to the nature of QCD and calorimeter showers

– thus for Ereco →distribution of possible Etrue

distrib for Etrue=E0
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Measuring jetsMeasuring jets

● Reconstructed Jet E and M require calibration
● For a given true jet, Etrue, corresponds a distribution of possible Ereco

– due to the nature of QCD and calorimeter showers

– thus for Ereco →distribution of possible Etrue
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distrib for Etrue=En

"Energy scale" vs Etrue

1R
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Measuring jetsMeasuring jets

● Reconstructed Jet E and M require calibration
● For a given true jet, Etrue, corresponds a distribution of possible Ereco

– due to the nature of QCD and calorimeter showers

– thus for Ereco →distribution of possible Etrue

1R r
E

true

R

+ + + + +

+
+

1
distrib for Etrue=En

"Energy scale" vs Etrue

1R

uncalibrated response

calibrated response (ideally)
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The calibration problemThe calibration problem

Inputs: 
reconstructed 
quantities

???

output: 
calibrated quantities 
(E and Mass)

?
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The calibration problemThe calibration problem

Inputs: 
reconstructed 
quantities

???

output: 
calibrated quantities 
(E and Mass)

most probable response

*this solution is a practical choice & 
not necessarily mathematically valid
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The calibration problemThe calibration problem

Inputs: 
reconstructed 
quantities

output: 
calibrated quantities 
(E and Mass)

most probable response

*this solution is a practical choice & 
not necessarily mathematically valid

DNN
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The ML problemThe ML problem

Design & train a DNN to learn simultaneously the 

mode of the E and mass responses

Requirements:
● calibrated E scale = 1 ± 1%
● calibrated M scale = 1 ± 5%
● on all the phase space (E~0.1 → 4TeV)
● with improved resolution
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SolutionsSolutions

● Choose a proper loss function
● Encode the jet angular position
● Network Architecture
● Training procedure
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Loss function choice
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r

Learning the mode of distributionsLearning the mode of distributions

● We want to predict the mode of the distribution
– In training examples, the target (r=Ereco/Etrue) is 

just 1 number out of this distribution
– NOT the mode

● The choice of the loss function is important
– L=||rtarget-rpred||2 → learns the mean
– L=|rtarget-rpred| → learns the median

– L = δ(rtarget-rpred) →  learns the mode
● unusable in practice
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Losses for mode learningLosses for mode learning

● Leaky Gaussian Kernel : 

– approximation of Dirac's delta
● α and β are fixed hyper-parameters
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Mixture Density Network

● First, assume distrib is gaussian : 

– μ is the mode !

– μ, σ are estimated by the DNN, functions of θ=(Ereco,...) 

● Given inputs, μ and σ are obtain when maximizing the 
likelihood : 

● In practice : 

– have the NN predicts both μ and σ 

– choose the log likelihood as the loss 

●

Losses for mode learningLosses for mode learning
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Losses for mode learningLosses for mode learning

● Mixture Density Network

● … but real r distribution are not gaussian ?

● We can use other underlying assumption

– asymmetric gaussian

– truncated gaussian
● ignore tails+focus on mode

● can change/tune loss during training
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Input encoding
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Input encodingInput encoding

● Detector segmented in different 
subdector

● Strong response variations vs 
angular position
– very difficult to model

● Solution : encode the angular 
position
– "η annotation"
– create new inputs out of 

angular position
● 1 new input for each detector 

region 

Angular position

Implement detector 
knowledge into the NN
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Input AnnotationInput Annotation

● Increase the input by adding “features” 

inputs outputs

η

Annotated layer

DNN layers
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Input AnnotationInput Annotation

● Increase the input by adding “features”

inputs

η

f
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(η)
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(η)
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(η)

f
n
(η)

f
i

eta

eta

f
0

Gaussian Annotation
● Gaussian centers set on each 

detector region

Intention : add the “distance to the 
region” information to the NN
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Input AnnotationInput Annotation

Input encoding allows to 
perfectly recover from detector 

boundaries



24-04-16 P-A Delsart 28

Network architecture



24-04-16 P-A Delsart 29

Network architectureNetwork architecture

● Requirements impose a complex 
architecture

● Fork
– specialize different weights for 

E and mass calib
– allow to "freeze" weights during 

training 
● Residual connection

– mass calib much harder
– help to converge on better 

weights
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Training procedure
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Training procedureTraining procedure
● Naive training for N epochs is not enough

– ex: stopping here doesn't work

– response≠1 in some region of phase space

– mass response not calibrated enough

● Evolve loss functions to help with convergence to the mode everywhere

● Freeze all weights related to E and continue mass weights trainings
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Results
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Excellent Performances !Excellent Performances !
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ConclusionsConclusions

● Solved  4 difficulties to implement a complete E&mass 
calibration of ATLAS

● Excellent performances → public result (to be plublished 
in MSLT)
– including on "types" of jet not seen during training

● Remaining work lines
– what/how input variables impact predictions ?
– robust criteria for stopping training procedure ?

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2023-02/
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Technical details & difficulties
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TechnicalitiesTechnicalities

● Framework : own code build on keras/tensorflow
● Data flow : custom solution

– O(100M) examples x N features > available memory

– ROOT ntuple → read by uproot → numpy array → tensorflow

– Other better technical solutions ?

● Computing : using CC-IN2P3 GPU farm
– works very well ! 

– good interactions with CC experts
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DifficultiesDifficulties

● NN convergence issues solved with
– Inputs & targets normalization

– use of weights regularization (l2 or max-norm)

– paying attention to activation functions !

● The Loss is not enough
– different NN can reach similar minimal loss YET having different 

perfs according to other metrics
● workaround by complex training procedures

– Is it a sign something is wrong ?
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DifficultiesDifficulties

● GraphNN difficulties/open questions
– Isn't the system "underconstrained" ?

● tuning constituent-level corrections from jet-level constraints
● will it be able to converge to a physical solution ?
● How to enforce valid/useful constraints if needed ?

– Sometimes training Loss starts to increase continuously
● yet model weights seem reasonable

– In some setup GNN converges to ~constant correction factors 
for most of the input constituents...
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Back-up
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