Search for spin-dependent short-range forces in ³He/¹²⁹Xe clock comparison experiment

Institut für Physik, Universität Mainz: C. Gemmel, W.Heil, S.Karpuk, Yu. S, K.Tullney Physikalisch-Technische-Bundesanstalt, Berlin: M. Burghoff, W. Kilian, S.Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trahms

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg: U.Schmidt

For Granit 2010 / 14-19 February

➤ motivation

- >description of experiment
- measurement results
- conclusion and outlook

Search for a new pseudoscalar boson (Axion-like particle)

Original proposal for Axion (F.Wilczek, 1978 and others) : prediction as a consequence of a possible solution to the "Strong CP Problem" $d_n \propto \overline{\theta} \frac{1}{\Lambda_{OCD}} \approx 10^{-16} \overline{\theta} e \cdot cm$

Modern interest: Dark Matter candidate. All couplings to matter are weak

Signature of a new pseudoscalar boson: New Short-Range Potential

Monopole-dipole:

monopole-dipole interactions of range λ mediated by new light boson of mass M

$$\lambda = \frac{\hbar}{Mc}$$

Dipole n
(probe)
$$ig_P \gamma_5$$
 /P C/P Scalar-Pseudoscalar
 $V(\mathbf{r}) = \kappa \mathbf{n} \cdot \sigma \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}$
Monopole
(source) g_S $\kappa = \frac{\hbar^2 g_S g_P}{8\pi m_n}$

Detection of magnetic field produced by oriented nuclei

(Cohen-Tannoudji et al., PRL 22 (1969),758)

Results:

> ³He spin precession: T₂^{*} = 2h 20min

sensitivity of Rb-magnetometer: 100fT@ BW 0.3 Hz

 $P_{He} \approx 5\% @ 4 mbar$

Improvement of measurement sensitivity:

- SQUID-detectors@2 fT/√Hz
- Iaser for OP of ³He @ P> 70%
- Ionger T₂*-times (needed !!!)

parameters: p_{He} = 4.5 mbar ; P_{He} = 15% ; R_{int} =2.9 cm; d = 6cm

expected
$$T_{2,exp}^*$$
: $\frac{1}{T_{2,exp}^*} = \frac{1}{T_{1,wall}} + \frac{1}{T_{2,field}} = \frac{1}{(85\pm5)h} + \frac{1}{(370\pm64)h} \to T_{2,exp}^* = (69\pm4)h$

FREQUENCY ESTIMATION

example : $\Delta T = 5 \min \rightarrow \approx 300 \times \text{less sensitive }!$

The recorded signal S from the precessing spins can be written as:

$$S[n] = A \cdot \cos\left(2\pi \cdot f \cdot \Delta t \cdot n + \Phi\right) \cdot \exp\left(-\Delta t / T_2^* \cdot n\right) + w[n] \qquad n = 0, 1, 2, 3, \dots, N-1$$

If the noise w[n] is Gaussian distributed, initial phase is known, the Cramer-Rao Lower Bound (CRLB) sets the lower limit on the variance

$$\sigma_f^2 \ge \frac{3}{\left(2\pi\right)^2 \cdot \left(SNR\right)^2 \cdot f_{BW} \cdot T^3} \times C\left(T_2^*\right)$$

example: SNR = 2000:1

$$f_{BW} = 1 \text{ Hz}$$

T= 10000 s
$$\int \sqrt{\sigma_f^2} \approx 0.15 \text{ nHz}$$

For more details look article: "Ultra-sensitive magnetometry based on free precession of nuclear spins", accepted in EPJD

Power spectrum density of ³He-¹²⁹Xe co-precession differential signals between SQUIDs Z1C and Z9C.

BMSR 2, PTB Berlin

J. Bork, et al., Proc. Biomag 2000, 970 (2000).

The 7-layered magnetically shielded room (residual field < 1 nT)

³He (~2 mbar) ¹²⁹Xe (~ 12 mbar) N_2 (~ 35 mbar)

magnetic guiding field ≈ 0.4 µT (Helmholtz-coils)

MEOP Polarizer Mainz: ³He

SEOP Polarizer PTB: Xe

³He/¹²⁹Xe clock-comparison experiments

$$\Delta \boldsymbol{\omega} = \boldsymbol{\omega}_{L,He} - \frac{\boldsymbol{\gamma}_{He}}{\boldsymbol{\gamma}_{Xe}} \cdot \boldsymbol{\omega}_{L,Xe} \neq 0$$

The detection of the free precession of co-located ³He/¹²⁹Xe sample spins can be used as ultra-sensitive probe for non-magnetic spin interactions

- Search for a Lorentz violating sidereal modulation of the Larmor frequency
- Search for spin-dependent short-range interactions
- Search for EDM of Xenon

Lead glass samples

Results for transverse relaxation time:

Measurement: sample(s)	Mass sample(s) removal time / measurement time without sample (sec)	Gas mixture ³ He : ¹²⁹ Xe : N ₂ (mbar)	³ He / ¹²⁹ Xe initial amplitude (pT)	Relaxation time T* ₂ ³ He / ¹²⁹ Xe before // after sample (s) removal (hours)
Two samples	7200 / 10600	1 : 8.9 : 37	2.4/3.3	22.83 / 5.66 // 23.77 / 5.75
Right sample	10800 / 42700	2.3 : 9.6 : 36.1	10.7 / 5.6	17.87 / 4.70 // 18.26 / 4.76
Left sample	10800 / 25800	2.4 : 12 : 34.6	6.16 / 8.26	18.51 / 4.27 // 18.82 / 4.30

Two methods for extraction of amplitude and phase of the signal:

Direct fit of signal*

Minimization of sum of the squared residuals:

$$\sum_{i} \left[Y_i - F\left(t_i, \vec{a}\right) \right]^2,$$

$$F\left(t_i, \vec{a}\right) = a_0 + a_1 \sin\left(a_2 t + \Phi_{He}\right)$$

$$+ a_3 \sin\left(a_4 t + \Phi_{Xe}\right)$$

 a_i are assumed as constant parameters for given sample -> all measurement should be divided in short intervals. Then He,Xe signal phases vs. time can be found as simple sum:

$$\varphi_{He,Xe}\left(t_{k}\right) = \sum_{i=0}^{k} a_{2,4|i} \cdot \Delta t$$

while magnetic field magnitude for each time interval can be found as:

$$B_i = \gamma_{He, Xe} a_{2,4h}$$

* Under development with help of U.Schmidt (Heidelberg)

"Digital lockin" method:

• First, the measured SQUID signal s(t) is mixed numerically with a reference frequency ~ $<\omega_{He(Xe)}>$ according to $s(t) \cdot exp(-i <\omega_{He(Xe)}>t)$ and is then transformed into the frequency domain via direct Fourier transformation (FFT).

• After that, a gaussian filter ~ $exp(-\omega^2/\omega_{cut}^2)$ is applied. Its cutoff frequency determines the bandwidth of our output data.

- The filtered data are then transformed back into the time domain using inverse FFT.
- The result is $F_{He(Xe)}(t)$. The phase $\Phi_{He(Xe)}(t)$ is found as

$$\varphi(t) = \arctan \left(\frac{\operatorname{Im} \left[F_{He(Xe)}(t) \right]}{\operatorname{Re} \left[F_{He(Xe)}(t) \right]} \right)$$

and the amplitude is $|F_{He(Xe)}(t)|$

- → Consecuently errors of phase fit should be scaled with factor: $r = \sqrt{(2\sqrt{\pi} \cdot \text{sample_rate} / \omega_{cut})}$
- → Precession frequencies and magnetic field magnitude can be found via numerical time derivative from phases $\Phi_{He(Xe)}(t)$

Comparison of results of two methods for obtaining of magnetic field magnitude:

with direct fit

with digital lockin method

Further data processing for extraction of short-range interaction effect:

1. To cancel magnetic field influence we calculate from He,Xe phases the following weighted phase difference:

$$\Delta \varphi(t) = \varphi_{He} - \frac{\gamma_{He}}{\gamma_{Xe}} \cdot \varphi_{Xe}$$

2. Make polynomial fit $a_0 + a_1t + a_2t^2 + ...$ of $\Delta \varphi(t)$ for measurements with sample and without

3. Compare linear terms $v = a_1 / 2\pi$ of fit

Preliminary results for left and right samples (with direct fit method):

Right sample $\Delta v = 10.6 \pm 1.7 \text{ nHz} \propto \Delta B = 0.33 \pm 0.05 \text{ fT}$ Left sample $\Delta v = 9.7 \pm 1.7 \text{ nHz} \propto \Delta B = 0.30 \pm 0.05 \text{ fT}$ $=> \delta v = \frac{1}{2} (\Delta v_{right sample} - \Delta v_{left sample}) = 0.9 \pm 1.2 \text{ nHz}$

Possible false effects:

1. Effects due to paramagnetism or magnetization of samples (one sample shows 2 pT change in magnetic field after removal): distance between He and Xe mass centres $\Delta z_{CM} \sim 0.1 \mu m$ is extremely small according to Maxwell-Boltzmann distribution:

$$\Delta z_{CM} \approx \int z \cdot e^{-\frac{m_{Xe}g \cdot z}{kT}} dV / \int e^{-\frac{m_{Xe}g \cdot z}{kT}} dV - \frac{1}{V} \int z dV$$

-> therefore expected effects should be << 1 fT

2. Effects due to temperature variations, rotation of residual magnetic field inside magnetically shielded room

-> so far we have no information -> should be investigated!

3. Effect from demagnetization field of polarized precessing He, Xe gases inside cylindrical cell: we observed that weighted phase difference is not constant in time and depends on He and Xe transverse polarization:

$$\Delta \varphi(t) \sim A e^{-t/T_{2He}} + B e^{-t/T_{2Xe}}$$

-> we used approximation by polynom-fit

Limitation on short range spin-dependent interaction:

The effective PT violating potential of the interaction between spin of one fermion with another fermion is given by

$$V_{SP}(\mathbf{r}) = \frac{\hbar^2 g_S g_P}{8\pi m} \left(\frac{\mathbf{r}}{r} \cdot \boldsymbol{\sigma}\right) \left(\frac{1}{r\lambda} + \frac{1}{r^2}\right) e^{-r/\lambda}$$

 $V^*(r)$ is coordinate dependent part of V(r).

Average potential $\langle V^*(r) \rangle$ was calculated numerically for cell sizes diameter 6 cm x length 6 cm, gap 3 mm between cell inner volume and lead glass diameter 57 mm x length 81 mm.

Next, from the measured value of δv we get

 $g_{S}g_{P} < 4 \ (2\pi)^{2} \ m_{3He} \ \delta v \ / \ (NV \ \hbar < V^{*}(r) >),$

where V = $2.07 \cdot 10^{-4}$ m⁻³ is volume of lead glass sample, N = $2.3 \cdot 10^{30}$ m⁻³ is its number density,

Result for sensitivity level $\delta v \approx 1.2$ nHz is presented in next transparency.

Exclusion Plot for new spin-dependent forces

SQUID signal near block of bismuth*

*Goodfellow, ferromagnetic admixtures < 1 ppm.

Magnetic field measured by SQUID via He precession signal in presence of block of aluminium (diameter 56 mm length 70 mm)

Conclusion and Outlook

• A novel ³He/¹²⁹Xe co-magnetometer was used to probe macroscopic short range spin-dependent interactions (pseudo-scalar interaction)

 It was shown that high sensitivity of such co-magnetometer and immunity to the influence of magnetic field fluctuations allow us to reach a new constraints on pseudo-scalar interaction in range 0.2 – 10 cm.

• Further work on investigation of possible systematic effects and on materials suitable for samples for such measurements can give an opportunity to improve significantly existed constrains.