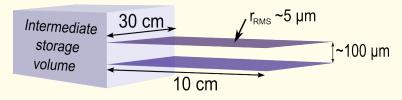
A new concept to extract and collimate UCN without loosing phase-space density

A. Mietke^{1,2}, S. Baessler², V. Nesvizhevsky³

¹ Technical University Dresden, ² University of Virginia, ³ Institut Laue-Langevin

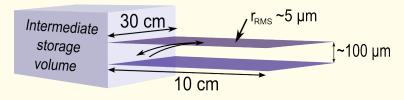
February 16, 2010



- Introduction of two collimating systems
- 2 Simulationdetails and -data
- 6 Alternative application: Neutron reflectometry

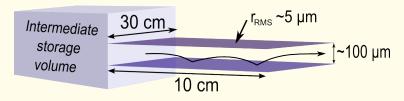
- Introduction of two collimating systems
- Simulationdetails and -data
- 6 Alternative application: Neutron reflectometry

- Introduction of two collimating systems
- 2 Simulationdetails and -data
- 4 Alternative application: Neutron reflectometry


- Introduction of two collimating systems
- 2 Simulationdetails and -data
- 6 Alternative application: Neutron reflectometry

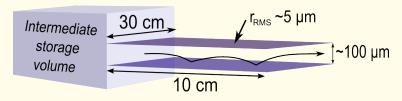
Proposed by J. Barnard and V. Nesvizhevsky, Nucl. Instr. and Meth. A 591 (2008), p. 431.; r_{RMS} : RMS roughness amplitude: $\sqrt{\frac{1}{mn}\sum_{k,l=1}^{m,n}(z_{kl}-\langle z\rangle)^2}$

- propagate on classical trajectories
- can be diffusely reflected, specularly reflected or absorbed
- ullet are accepted at the slit if: $E_{\perp} < m_n g h_{slit} pprox 10~peV$



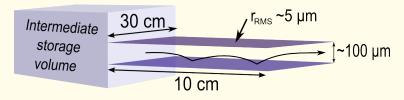
Proposed by J. Barnard and V. Nesvizhevsky, Nucl. Instr. and Meth. A 591 (2008), p. 431.; r_{RMS} : RMS roughness amplitude: $\sqrt{\frac{1}{mn}\sum_{k,l=1}^{m,n}(z_{kl}-\langle z\rangle)^2}$

- propagate on classical trajectories
- can be diffusely reflected, specularly reflected or absorbed
- ullet are accepted at the slit if: $E_{\perp} < m_n g h_{slit} pprox 10~peV$



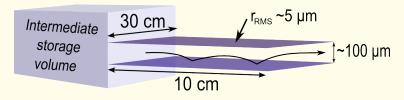
Proposed by J. Barnard and V. Nesvizhevsky, Nucl. Instr. and Meth. A 591 (2008), p. 431.; r_{RMS} : RMS roughness amplitude: $\sqrt{\frac{1}{mn}\sum_{k,l=1}^{m,n}(z_{kl}-\langle z\rangle)^2}$

- propagate on classical trajectories
- can be diffusely reflected, specularly reflected or absorbed
- ullet are accepted at the slit if: $E_{\perp} < m_n g h_{slit} pprox 10~peV$



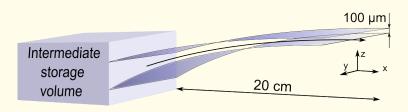
Proposed by J. Barnard and V. Nesvizhevsky, Nucl. Instr. and Meth. A 591 (2008), p. 431.; r_{RMS} : RMS roughness amplitude: $\sqrt{\frac{1}{mn}\sum_{k,l=1}^{m,n}(z_{kl}-\langle z\rangle)^2}$

- propagate on classical trajectories
- can be diffusely reflected, specularly reflected or absorbed
- ullet are accepted at the slit if: $E_{\perp} < m_n g h_{slit} pprox 10~peV$



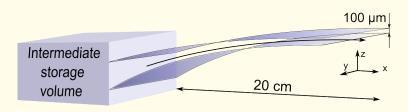
Proposed by J. Barnard and V. Nesvizhevsky, Nucl. Instr. and Meth. A 591 (2008), p. 431.; r_{RMS} : RMS roughness amplitude: $\sqrt{\frac{1}{mn}\sum_{k,l=1}^{m,n}(z_{kl}-\langle z\rangle)^2}$

- propagate on classical trajectories
- can be diffusely reflected, specularly reflected or absorbed
- ullet are accepted at the slit if: $E_{\perp} < m_n g h_{slit} pprox 10~peV$



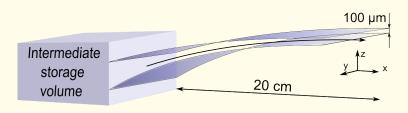
Proposed by J. Barnard and V. Nesvizhevsky, Nucl. Instr. and Meth. A 591 (2008), p. 431.; r_{RMS} : RMS roughness amplitude: $\sqrt{\frac{1}{mn}\sum_{k,l=1}^{m,n}(z_{kl}-\langle z\rangle)^2}$

- propagate on classical trajectories
- can be diffusely reflected, specularly reflected or absorbed
- ullet are accepted at the slit if: $E_{\perp} < m_n g h_{slit} pprox 10~peV$



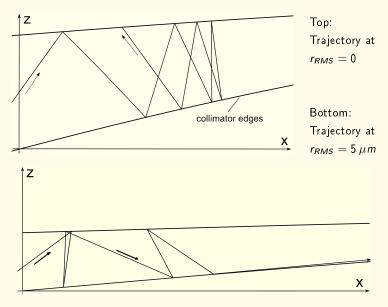
Collimator with parabola-shaped edges - the slope corresponds to $v_n \sim 7 \, {m \over s}$

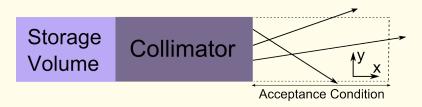
Now we adapt the collimating system for the neutron trajectory and expect the following improvements:


- Higher rate of reflections back (P_R) into the storage volume
 A larger aperture, that still provides a proper phase space density of the UCN, becomes possible
- $P_{diff} \propto v_{\perp}^2$ is essential for the effectiveness of the system \Rightarrow Once the neutron trajectory is adapted to the edge, specular reflections become more likely

Collimator with parabola-shaped edges - the slope corresponds to $v_n \sim 7 \, {m \over s}$

Now we adapt the collimating system for the neutron trajectory and expect the following improvements:

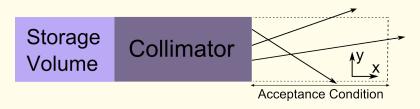

- Higher rate of reflections back (P_R) into the storage volume \Rightarrow A larger aperture, that still provides a proper phase space density of the UCN, becomes possible
- $P_{diff} \propto v_{\perp}^2$ is essential for the effectiveness of the system \Rightarrow Once the neutron trajectory is adapted to the edge, specular reflections become more likely



Collimator with parabola-shaped edges - the slope corresponds to $v_n \sim 7 \, {m \over s}$

Now we adapt the collimating system for the neutron trajectory and expect the following improvements:

- Higher rate of reflections back (P_R) into the storage volume \Rightarrow A larger aperture, that still provides a proper phase space density of the UCN, becomes possible
- $P_{diff} \propto v_{\perp}^2$ is essential for the effectiveness of the system \Rightarrow Once the neutron trajectory is adapted to the edge, specular reflections become more likely



Collimationsystem top view - Visualization Acceptance Condition

 Neutrons are counted with respect to their alignment
 What intensity can be expected in a certain distance from the exit slit

The type of reflection is selected in the following ways:

Collimationsystem top view - Visualization Acceptance Condition

Neutrons are counted with respect to their alignment
 ⇒ What intensity can be expected in a certain distance from
 the exit slit

The type of reflection is selected in the following ways:

- An absorbtion of a neutron takes place with a probability^{1,2} of $P_{abs} = 3 \cdot 10^{-5}$

$$P_{diff} = \left(\frac{k_{\perp} r_{RMS}}{2\pi}\right)^2 \stackrel{k_{\perp}}{\Longrightarrow} \stackrel{= \frac{2\pi p_{\perp}}{h}}{\Longrightarrow} P_{diff} = \frac{r^2 m_n^2}{h^2} V_{\perp}^2$$

¹Ignatovich, The Physics of Ultracold Neutrons, 1990

²Barnard, Nesvizhevsky, Nucl. Instr. and Meth., 2008 (3) (3)

- An absorbtion of a neutron takes place with a probability^{1,2} of $P_{abs} = 3 \cdot 10^{-5}$
- 2 The probability for diffuse reflection depends on the velocity component perpendicular to the surface¹:

$$P_{diff} = \left(\frac{k_{\perp} r_{RMS}}{2\pi}\right)^2 \stackrel{k_{\perp}}{\Longrightarrow} \frac{=\frac{2\pi p_{\perp}}{h}}{P_{diff}} P_{diff} = \frac{r^2 m_n^2}{h^2} v_{\perp}^2$$

¹Ignatovich, The Physics of Ultracold Neutrons, 1990

²Barnard, Nesvizhevsky, Nucl. Instr. and Meth., 2008 (A) (E)

- An absorbtion of a neutron takes place with a probability^{1,2} of $P_{abs} = 3 \cdot 10^{-5}$
- 2 The probability for diffuse reflection depends on the velocity component perpendicular to the surface¹:

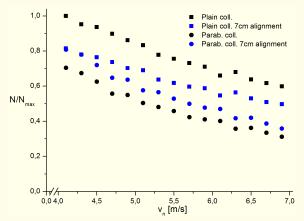
$$P_{diff} = \left(\frac{k_{\perp} r_{RMS}}{2\pi}\right)^2 \stackrel{k_{\perp}}{\Longrightarrow} \frac{\frac{2\pi p_{\perp}}{h}}{P_{diff}} P_{diff} = \frac{r^2 m_n^2}{h^2} v_{\perp}^2$$

- The neutrons are then scatterd with an angle distribution, that is based on the scattering law¹ and yields: $d\Omega_{out} = \cos\theta_{out} d\cos\theta_{out} d\phi_{out} = \frac{1}{2} d\cos^2\theta_{out} d\phi_{out}$

¹Ignatovich, The Physics of Ultracold Neutrons, 1990

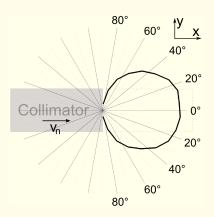
²Barnard, Nesvizhevsky, Nucl. Instr. and Meth., 2008

- An absorbtion of a neutron takes place with a probability^{1,2} of $P_{abs} = 3 \cdot 10^{-5}$
- 2 The probability for diffuse reflection depends on the velocity component perpendicular to the surface¹:

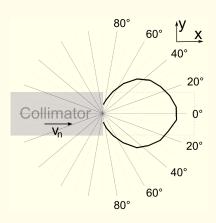

$$P_{diff} = \left(\frac{k_{\perp} r_{RMS}}{2\pi}\right)^2 \stackrel{k_{\perp}}{\Longrightarrow} \frac{=\frac{2\pi p_{\perp}}{h}}{P_{diff}} P_{diff} = \frac{r^2 m_n^2}{h^2} V_{\perp}^2$$

- The neutrons are then scatterd with an angle distribution, that is based on the scattering law¹ and yields: $d\Omega_{out} = \cos\theta_{out} d\cos\theta_{out} d\phi_{out} = \frac{1}{2} d\cos^2\theta_{out} d\phi_{out}$
- The probability for specular reflection is then given by $P_{\text{spec}} = 1 - P_{\text{abs}} - P_{\text{diff}}$

¹Ignatovich, The Physics of Ultracold Neutrons, 1990


²Barnard, Nesvizhevsky, Nucl. Instr. and Meth., 2008

4. Simulationdata - velocity distributions



Velocity distributions for parabola-shaped and plain collimator

4. Simulationdata - angle distributions

Angle distribution plain collimator

Angle distribution parabola- shaped collimator

 A_0 : Aperture area, P_p : Passing probability, P_b : Back reflection probability

Flux relation:

$$\frac{f_{parabola}}{f_{plain}} = \frac{A_{0,par}P_{p,par}}{A_{0,plain}P_{p,plain}}$$

Effective aperture:

$$A_{eff} = A_0(1 - P_R)$$

Main goal:

$$A_{eff} < 1.5 \, mm^2$$

 A_0 : Aperture area, P_p : Passing probability, P_b : Back reflection probability

Flux relation: $\frac{f_{parabola}}{f_{plain}} = \frac{A_{0,par}P_{p,par}}{A_{0,plain}P_{p,plain}}$

Effective aperture: $A_{eff} = A_0(1 - P_R) < 1.5 \text{ mm}^2$

 A_0 : Aperture area, P_p : Passing probability, P_b : Back reflection probability

Flux relation: $\frac{f_{parabola}}{f_{plain}} = \frac{A_{0,par}P_{p,par}}{A_{0,plain}P_{p,plain}}$

Effective aperture: $A_{eff} = A_0(1 - P_R) < 1.5 \text{ mm}^2$

Plain collimator:

Width	$A_{0,plain} [mm^2]$	$A_{eff} [mm^2]$	P_b	$P_{p,plain}$	
30 cm	30	1.05	96.5 %	0.7/0.45 %	

 A_0 : Aperture area, P_p : Passing probability, P_b : Back reflection probability

Flux relation: $\frac{f_{parabola}}{f_{plain}} = \frac{A_{0,par}P_{p,par}}{A_{0,plain}P_{p,plain}}$

Effective aperture: $A_{eff} = A_0(1 - P_R) < 1.5 \text{ mm}^2$

Plain collimator:

Width	$A_{0,plain} [mm^2]$	$A_{eff} [mm^2]$	P_b	$P_{p,plain}$
30 cm	30	1.05	96.5 %	0.7/0.45 %

Parabola-shaped collimator:

Width	$A_{0,par}$ $[mm^2]$	$A_{eff} [mm^2]$	P_b	$P_{p,par}$	f _{parabola} f _{plain}
26 cm	56.42	1.2	97.8 %	0.43/0.27 %	1.3
28 cm	60.76	1.3	97.8 %	0.46/0.28 %	1.4
30 cm	65.1	1.4	97.8 %	0.48/0.3 %	1.5

Width	$A_{0,par}$ $[mm^2]$	$A_{eff} [mm^2]$	P_b	$P_{p,par}$	f _{parabola} f _{plain}
26 cm	56.42	1.2	97.8 %	0.43 %	1.3
28 cm	60.76	1.3	97.8 %	0.46 %	1.4
30 cm	65.1	1.4	97.8 %	0.48%	1.5 %

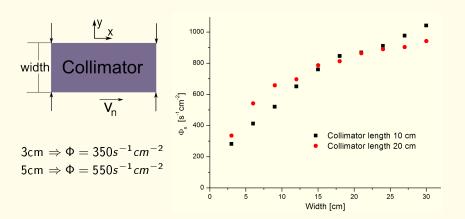
Comments on the effects of r_{RMS} :

- Inserting a mirror at the bottom decreases P_p rapidly
- Inserting mirrors as sidewalls increases P_p significantly

Width	$A_{0,par}$ $[mm^2]$	$A_{eff} [mm^2]$	P_b	$P_{p,par}$	f _{parabola} f _{plain}
26 cm	56.42	1.2	97.8 %	0.43 %	1.3
28 cm	60.76	1.3	97.8 %	0.46 %	1.4
30 cm	65.1	≈ 2	97.8 %	0.2 %	1.5 %

Comments on the effects of r_{RMS} :

- Inserting a mirror at the bottom decreases P_p rapidly
- Inserting mirrors as sidewalls increases P_p significantly


Width	$A_{0,par}$ $[mm^2]$	$A_{eff} [mm^2]$	P_b	$P_{p,par}$	f _{parabola} f _{plain}
26 cm	56.42	1.2	97.8 %	0.43 %	1.3
28 cm	60.76	1.3	97.8 %	0.46 %	1.4
30 cm	65.1	1.5	97.8 %	0.7 %	2.2

Comments on the effects of r_{RMS} :

- Inserting a mirror at the bottom decreases P_p rapidly
- Inserting mirrors as sidewalls increases P_p significantly

6. Alternative application: Neutron reflectometry

ullet Only a width < 5~cm is useful for this measurement technique

- A Monte-Carlo simulation was successfully developed, to investigate and compare two collimation systems
- While taking a limit for the effective aperture into account, the parabola-shaped collimator was optimized

- The optimized collimator is capable of a flux increase of a factor of
- The setup is sensitive to the roughness and mirror combination that
- It is found, that a setup that might be applicable for neutron

- A Monte-Carlo simulation was successfully developed, to investigate and compare two collimation systems
- While taking a limit for the effective aperture into account, the parabola-shaped collimator was optimized

- The optimized collimator is capable of a flux increase of a factor of more than 2 compared to the plain arrangement
- The setup is sensitive to the roughness and mirror combination that is choosen
- It is found, that a setup that might be applicable for neutron reflectometry could produce a neutron flux of about $600 \, s^{-1} cm^{-2}$

- A Monte-Carlo simulation was successfully developed, to investigate and compare two collimation systems
- While taking a limit for the effective aperture into account, the parabola-shaped collimator was optimized

- The optimized collimator is capable of a flux increase of a factor of more than 2 compared to the plain arrangement
- The setup is sensitive to the roughness and mirror combination that is choosen
- It is found, that a setup that might be applicable for neutron

- A Monte-Carlo simulation was successfully developed, to investigate and compare two collimation systems
- While taking a limit for the effective aperture into account, the parabola-shaped collimator was optimized

- The optimized collimator is capable of a flux increase of a factor of more than 2 compared to the plain arrangement
- The setup is sensitive to the roughness and mirror combination that is choosen
- It is found, that a setup that might be applicable for neutron reflectometry could produce a neutron flux of about $600 \, s^{-1} cm^{-2}$

- Can we manipulate the velocity distribution via tilting the collimator?
- Can similar shapes reproduce the improvements that were found for the parabola-shaped collimator?
- How can the setup for reflectometry be optimized further?

- Can we manipulate the velocity distribution via tilting the collimator?
- Can similar shapes reproduce the improvements that were
- How can the setup for reflectometry be optimized further?

- Can we manipulate the velocity distribution via tilting the collimator?
- Can similar shapes reproduce the improvements that were found for the parabola-shaped collimator?
- How can the setup for reflectometry be optimized further?

- Can we manipulate the velocity distribution via tilting the collimator?
- Can similar shapes reproduce the improvements that were found for the parabola-shaped collimator?
- How can the setup for reflectometry be optimized further?

Appendix - Scattering Law

The condition of detailed balance states, that the number of neutrons reflected from Ω_0 to Ω must be equal to the number of neutrons reflected from Ω to Ω_0 and can be expressed as:

$$\cos\theta_0 d\Omega_0 W_{ref}(\Omega_0, \Omega) d\Omega = \cos\theta d\Omega W_{ref}(\Omega, \Omega_0) d\Omega_0
\Rightarrow \cos\theta_0 W_{ref}(\Omega_0, \Omega) = \cos\theta W_{ref}(\Omega, \Omega_0) \tag{1}$$

Where θ und θ_0 are the angles between normal of the surface and direction of passing neutrons. Because of the required equilibrium, W_{ref} must be symmetric in Ω and Ω_0 and with respect to (1) can be satisfied by functions as: $W_{ref}(\Omega_i,\Omega_j)=f(\Omega_i,\Omega_j)\cos\theta_j$, where f is an arbitrary function, symmetric in its arguments. Assuming f=const. allows us to normalize W_{ref} to satisfy $\int W_{ref} d\Omega=1$ and leads to:

$$W_{ref}d\Omega = \frac{1}{\pi}\cos\theta d\Omega = \frac{1}{2\pi}d\cos^2\theta d\phi$$

