Development of a Deep Generative Hadronization Model

Andrzej Siódmok

Towards a Deep Learning Model for Hadronization

Aishik Ghosh. a,b Xiangyang Ju. Benjamin Nachman. b,c and Andrzej Siodmokd

Fitting a Deep Generative Hadronization Model

Jay Chan, a,b Xiangyang Ju,b Adam Kania, Benjamin Nachman, b,c Vishnu Sangli, d,b and Andrzei Siodmok^d

2203.12660

Integrating Particle Flavor into **Deep Learning Models for Hadronization**

Jay Chan, Xiangyang Ju, Adam Kania, Benjamin Nachman, b.c Vishnu Sangli, d.b and Andrzej Siodmoke

2312.08453

2305.17169

^aDepartment of Physics and Astronomy, University of California, Irvine, CA 92697, USA

^bPhysics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^cBerkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA

^d Jagellonian University, Krakow, Poland

^aDepartment of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA

^bPhysics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^c Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA

^dDepartment of Physics, University of California, Berkeley, CA 94720, USA

^e Jagiellonian University, Krakow, Poland

^a Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^bPhysics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^cBerkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA

^d Department of Physics, University of California, Berkeley, CA 94720, USA

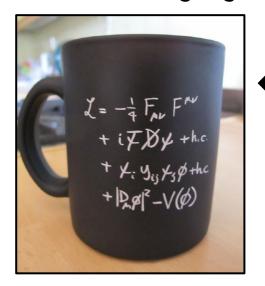
^e Jagiellonian University, Krakow, Poland

Motivation - Monte Carlo Event Generators (MCEG)

Standard Model

There is a **huge gap** between a one-line formula of a fundamental theory, like the Lagrangian of the SM, and the experimental reality that it implies

Theory Standard Model Lagrangian

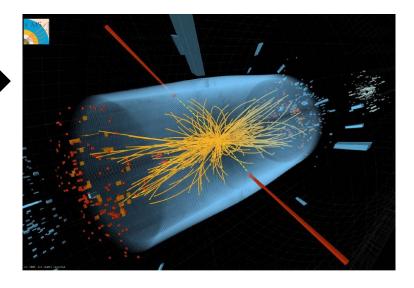


Data makes you smarter

It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong.

Richard P. Feynman

Experiment LHC event



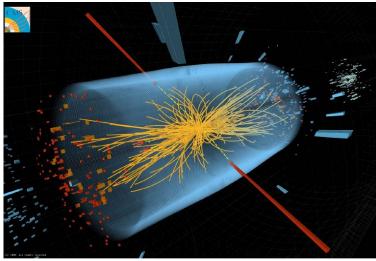
Motivation - Monte Carlo Event Generators (MCEG)

Standard Model

There is a **huge gap** between a one-line formula of a fundamental theory, like the Lagrangian of the SM, and the experimental reality that it implies

Theory
Standard Model Lagrangian

Experiment LHC event



- MC event generators are designed to bridge the that gap
- "Virtual collider" ⇒ Direct comparison with data

Almost all **HEP measurements and discoveries** in the modern era have **relied on MCEG**, most notably the discovery of the Higgs boson.

(Herwig and Sherpa)@**UJ**, Pythia

Published papers by ATLAS, CMS, LHCb: **2252** Citing at least 1 of 3 existing MCEG: **1888** (**84%**)

Quantum chromodynamics (QCD)

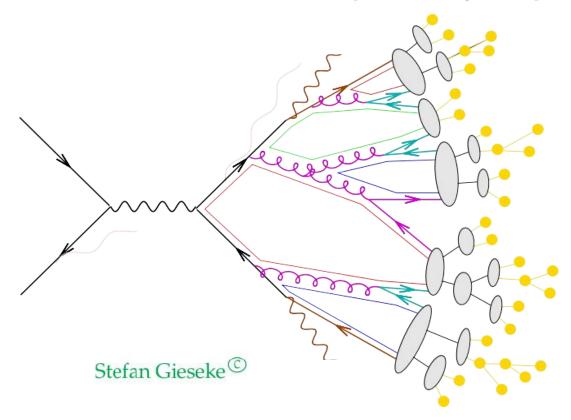
QCD correctly describes strong interactions in each energy range but it is very difficult to obtain precise predictions

High energy

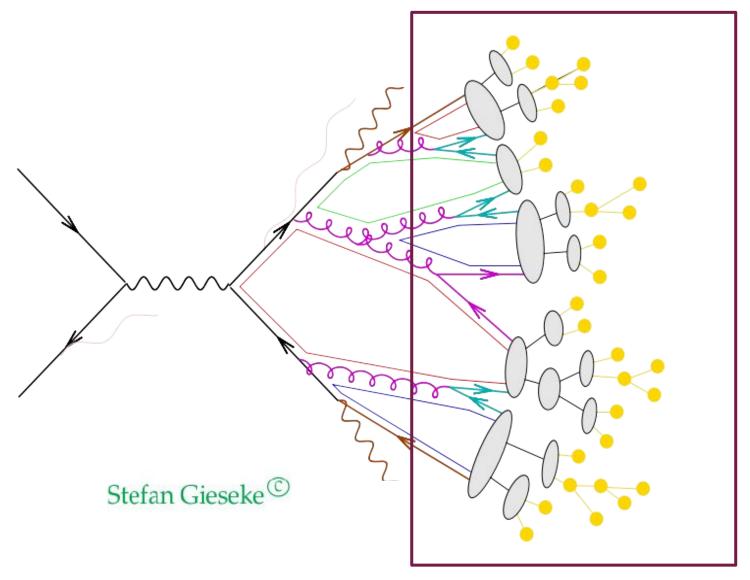
- perturbative QCD
- we have theoretical models
- but they are hard to use in practice

Low energy

- non-perturbative QCD
- we lack solid theoretical models
- so we use phenomenological models (with many free parameters)



Hadronization

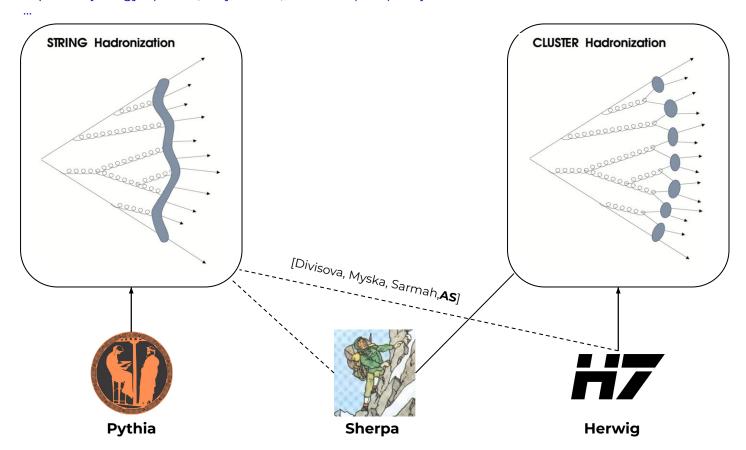


Hadronization: one of the least understood elements of MCEG

Motivation - Hadronization

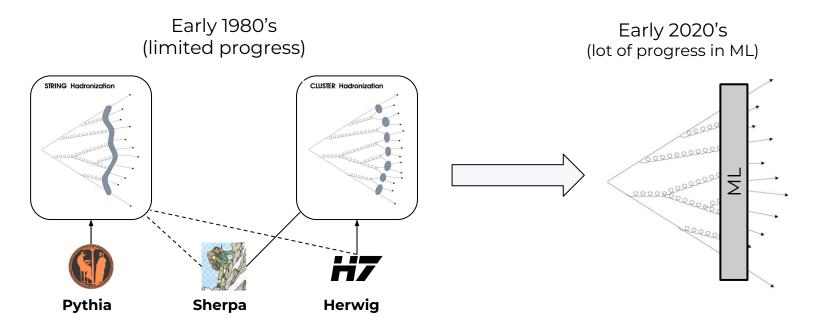
Hadronization:

- → Increased control of perturbative corrections ⇒ more often LHC measurements are limited by non-perturbative components, such as hadronization.
 - W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
 - Extraction of the strong coupling in [M. Johnson, D. Maître, Phys.Rev. D97 (2018) no.5]
 - Top mass [S. Argyropoulos, T. Sjöstrand, JHEP 1411 (2014) 043]



Hadronization models

Hadronization:

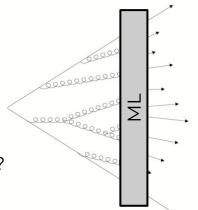


Idea of using Machine Learning (ML) for hadronization.

Motivation for Machine learning hadronization

Idea of using Machine Learning (ML) for hadronization.

- Existing hadronization models are highly parameterized functions.
- Hadronization is a fitting problem
 - Can ML hadronization be more flexible to fit the data?
 - Can ML hadronization extract more information from the data? [can accommodate unbinned and high-dimensional inputs]

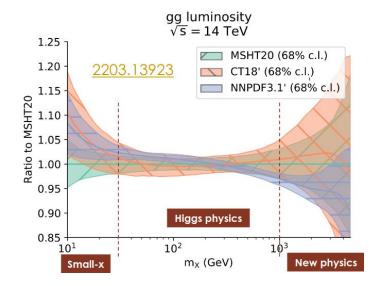


NNPDF

NNPDF used successfully ML to nonperturbative Parton Density Functions (PDF).

Hadronization is closely related to fragmentation functions (FF) which were considered the

counterpart of PDFs.



Recent progress: Machine learning hadronization

First steps for ML hadronization:

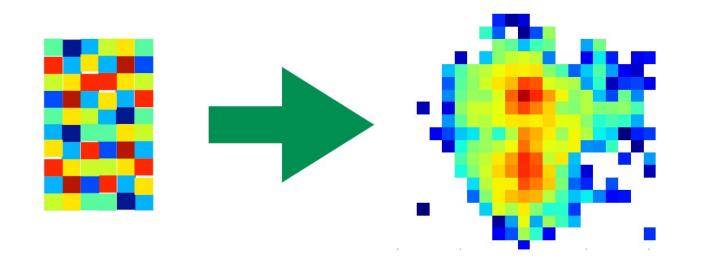
- HADML [A. Ghosh, Xi. Ju, B. Nachman AS, Phys. Rev. D 106 (2022) 9]
- MLhad [P. Ilten, T. Menzo, A. Youssef and J. Zupan, SciPost Phys. 14, 027 (2023)]

	MLhad	HADML
Deep generative model:	Variational Autoencoder	Generative Adversarial Networks
Trained on:	String model	Cluster model
Recent progress:	"Reweighting Monte Carlo Predictions and Automated Fragmentation Variations in Pythia 8"	"Fitting a Deep Generative Hadronization Model"
	[Bierlich, Ilten, Menzo, Mrenna, Szewc, Wilkinson, Youssef, Zupan, 2308.13459]	[J. Chan, X. Ju, A. Kania, B. Nachman, V. Sangli and AS, JHEP 09 (2023) 084]

MLhadML

What is a deep generative model?

A **generator** is nothing other than a function that maps random numbers to structure.



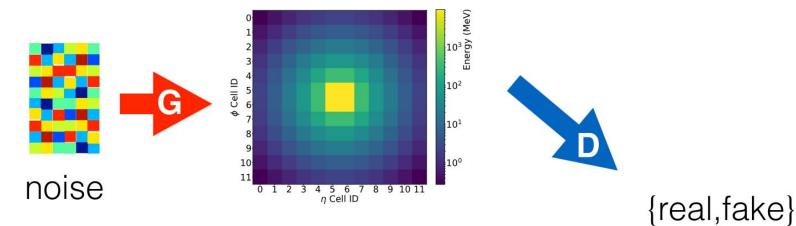
Deep generative models: the map is a deep neural network.

Our tool of choice: GANs

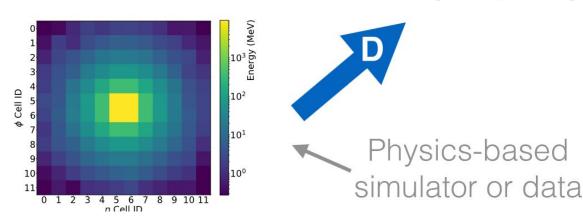
[Goodfellow et al. "Generative adversarial nets". arxiv:1406.2661]

Generative Adversarial Networks (GANs):

A two-network game where one maps noise to structure and one classifies images as fake or real.

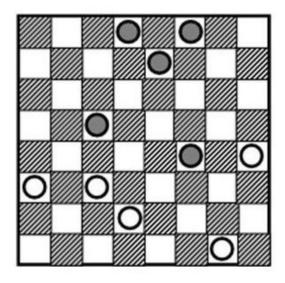


When **D** is maximally confused, **G** will be a good generator



Adversarial Networks

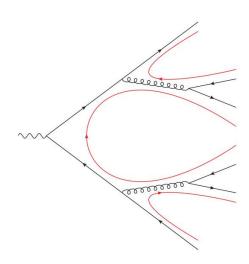
Arthur Lee Samuel (1959) wrote a program that learnt to play checkers well enough to beat him.



- He popularized the term "machine learning" in 1959.
- The program chose its move based on a **minimax** strategy, meaning it made the move assuming that the opponent was trying to optimize the value of the same function from its point of view.
- He also had it play thousands of games against itself as another way of learning.

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

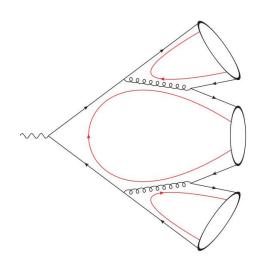
QCD **pre-confinement** discovered by Amati & Veneziano:



QCD provide pre-confinement of colour

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

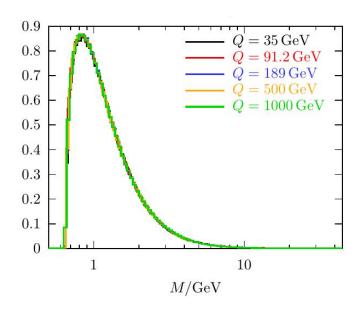
QCD **pre-confinement** discovered by Amati & Veneziano:



- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD **pre-confinement** discovered by Amati & Veneziano:

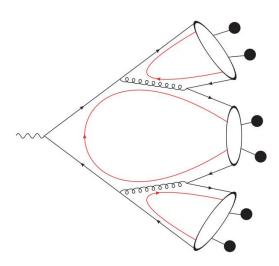


[S. Gieseke, A. Ribon, MH Seymour, P Stephens, B Webber JHEP 0402 (2004) 005]

- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

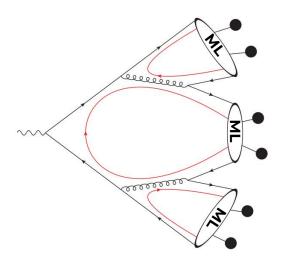
QCD **pre-confinement** discovered by Amati & Veneziano:



- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision
- Peaked at low mass (1-10 GeV) typically decay into 2 hadrons

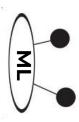
The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD **pre-confinement** discovered by Amati & Veneziano:

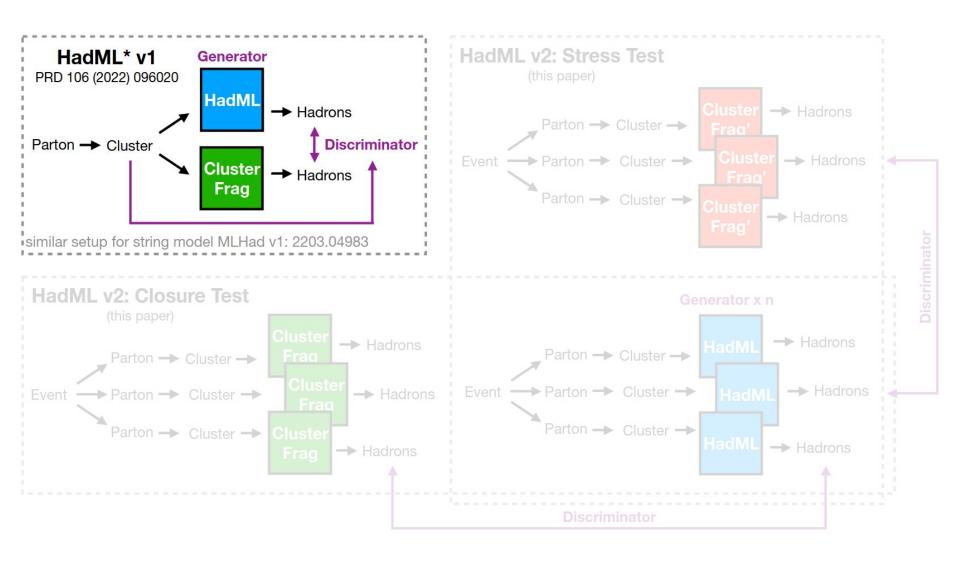


- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision
- Peaked at low mass (1-10 GeV) typically decay into 2 hadrons
- ML hadronization

1st step: generate kinematics of a cluster decay:



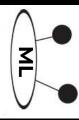
Road map for today



Towards a Deep Learning Model for Hadronization

ML hadronization

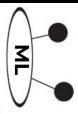
1st step: generate kinematics of a cluster decay to 2 hadrons



Towards a Deep Learning Model for Hadronization

ML hadronization

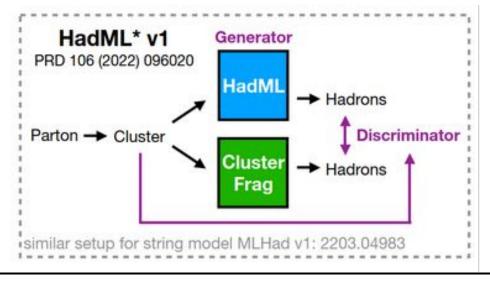
1st step: generate kinematics of a cluster decay to 2 hadrons



How?

We have a conditional GAN, with cluster 4-vector input and two hadron 4-vector outputs.

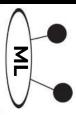
Generative Adversarial Net



Towards a Deep Learning Model for Hadronization

ML hadronization

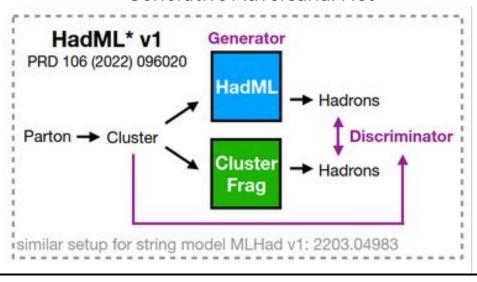
1st step: generate kinematics of a cluster decay to 2 hadrons



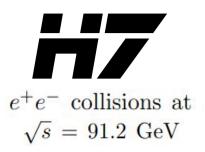
How?

We have a conditional GAN, with cluster 4-vector input and two hadron 4-vector outputs.

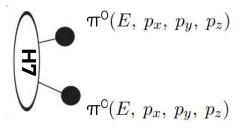
Generative Adversarial Net



Training data:



Cluster (E, p_x, p_y, p_z)



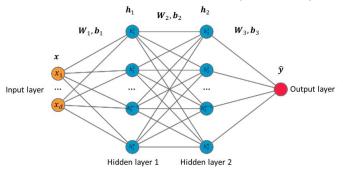
Simplification:

considering only pions and generating two angles in the cluster rest frame.

Architecture: conditional GAN

Generator and the Discriminator are composed of two-layer perceptron

(each a fully connected, hidden size 256, a batch normalization layer, LeakyReLU activation function)



Generator

Input

Cluster (E, p_x, p_y, p_z) and 10 noise features sampled from a Gaussian distribution

Output (in the cluster frame)

Discriminator

Input

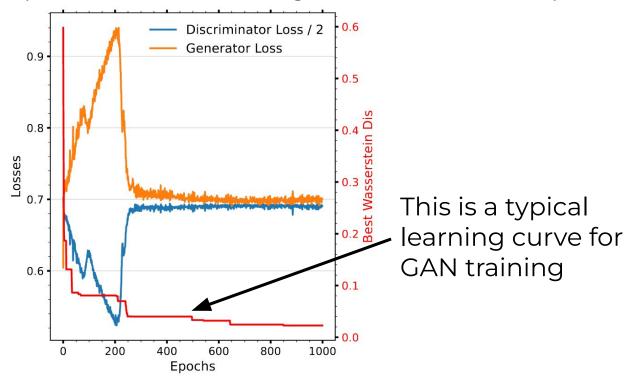
 ϕ and heta labeled as signal (generated by Herwig) or background (generated by Generator)

Output

Score that is higher for events from Herwig and lower for events from the Generator

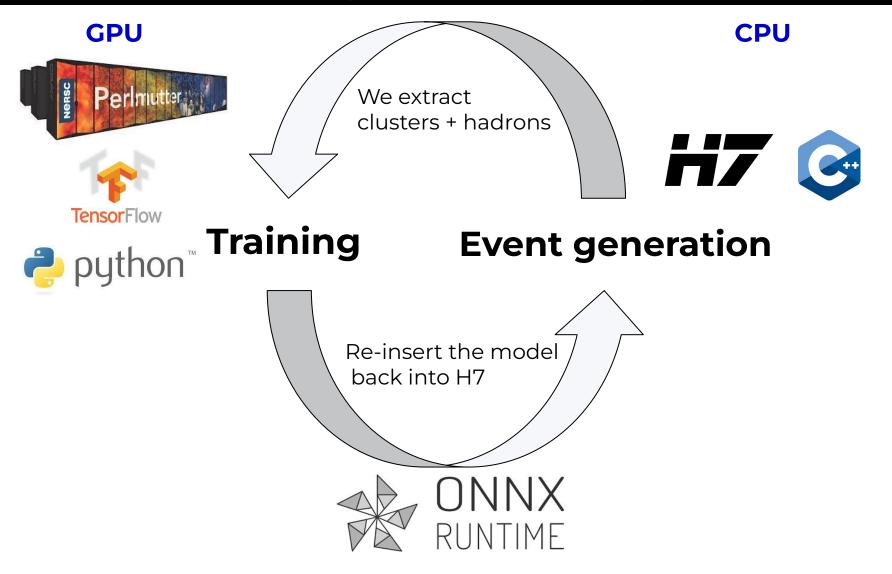
Training

- Data normalization:
 - cluster's four vector and angular variables are scaled to be between -1 and 1 (tanh activation function as the last layer of the Generator)
- **Discriminator** and the **Generator** are trained separately and alternately by two independent Adam optimizers with a learning rate of 10⁻⁴, for 1000 epochs



• **The best model** for events with partons of Pert = 0, is found at the epoch 849 with a total Wasserstein distance of 0.0228.

Integration into Herwig



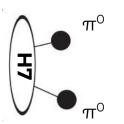
This then allows us to run a full event generator and produce plots

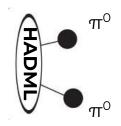
Performance: Pions

Low-level Validation

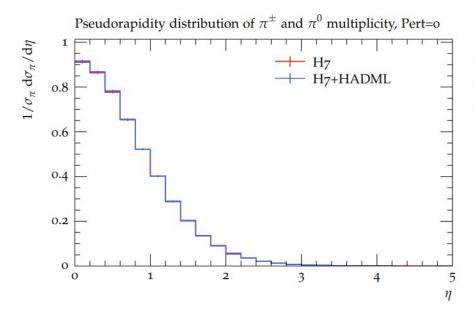
(similar to training data)

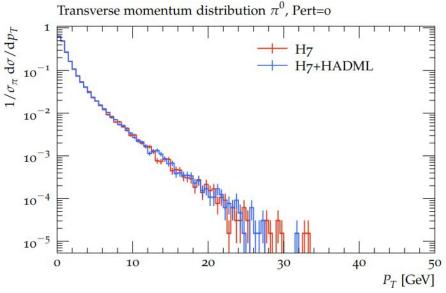
$$e^+e^-$$
 collisions at $\sqrt{s} = 91.2 \text{ GeV}$





 $\pi^{\rm O}$ kinematic variables





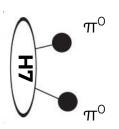
Performance: Energy of the collisions

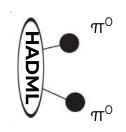
VS

Low-level Validation

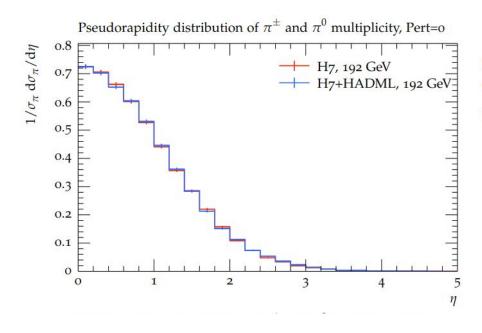
(beyond training data different energy)

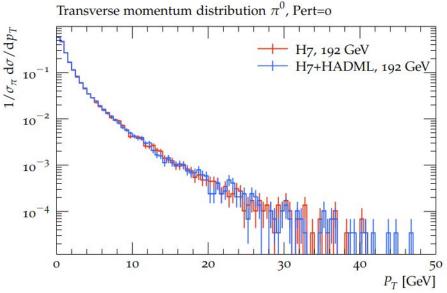
$$e^+e^-$$
 collisions at $\sqrt{s} = 192 \text{ GeV}$.





 $\pi^{\rm O}$ kinematic variables



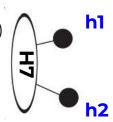


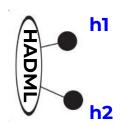
Performance: All Hadrons

Low-level Validation

(beyond training data different hadrons)

$$e^+e^-$$
 collisions at $\sqrt{s} = 91.2 \text{ GeV}$

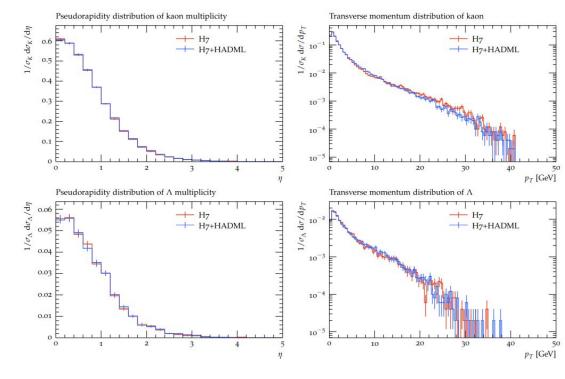




h kinematic variables

As a crude "full" model, we simply take the PIDs from Herwig and the kinematics from the GAN.

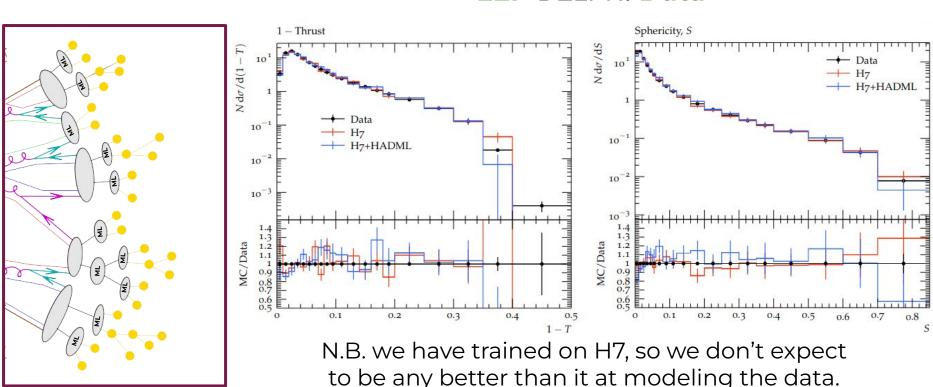
Lambda



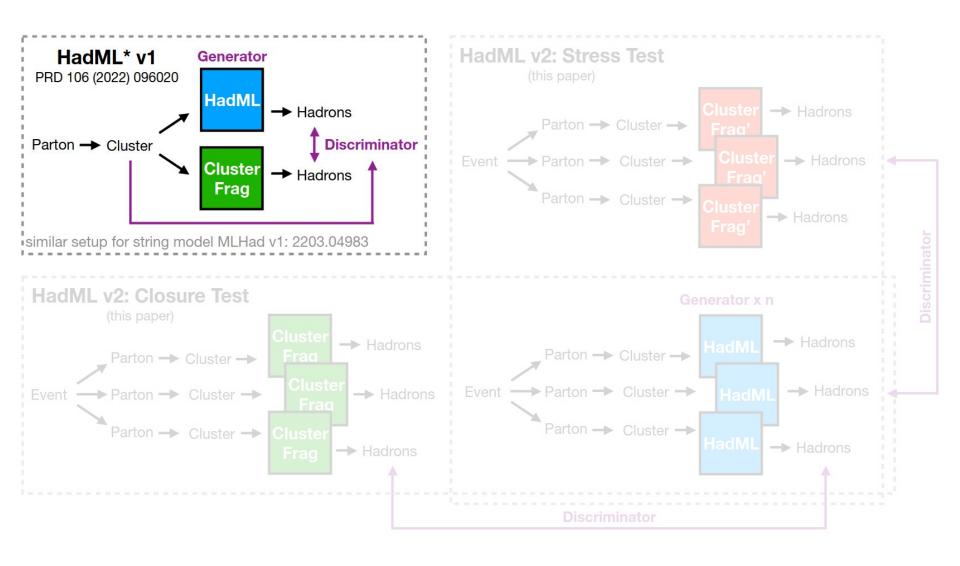
Performance: Data!

With a "full" model, we can compare directly to data!

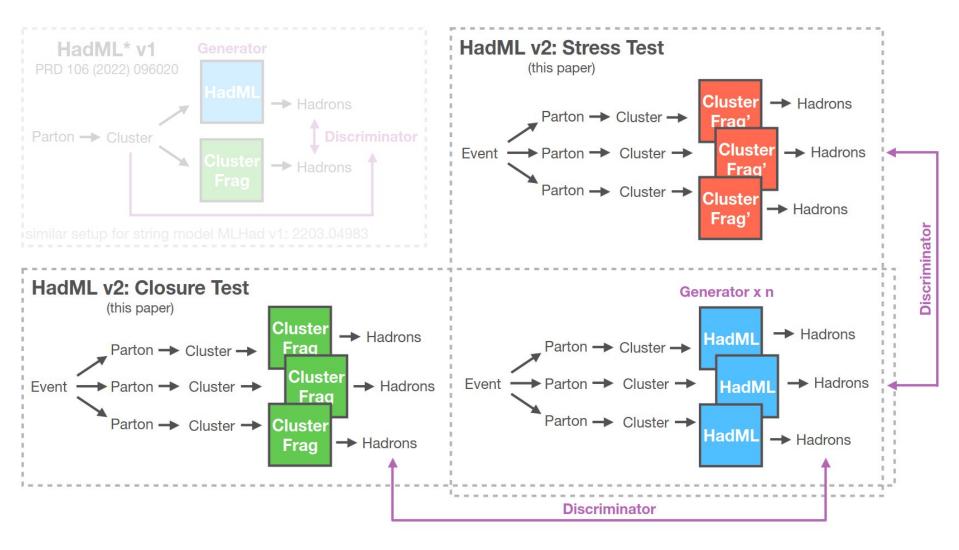
LEP DELPHI Data



Road map for today

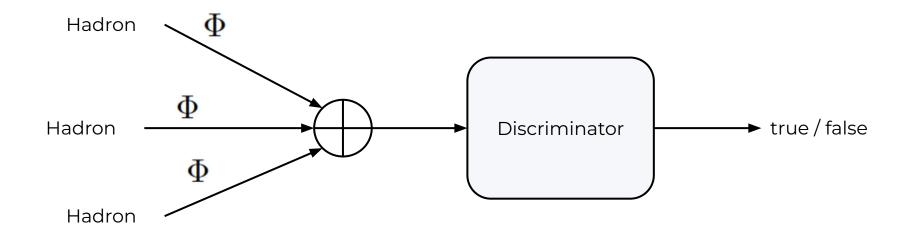


Road map for today



Protocol for fitting a deep generative hadronization model in a realistic data setting, where we only have access to a set of hadrons in data.

Discriminator HadML v2



The discriminator function is modified, we parameterize is as a Deep Sets model

$$D_{E}\left(x\right) = F\left(\frac{1}{n}\sum_{i=1}^{n}\Phi\left(h_{i},\omega_{D_{\Phi}}\right),\omega_{F}\right) \qquad \qquad \text{invariant under permutations of hadrons}$$

Discriminator HadML v1 vs v2

HadML v1

The loss function:

$$L = -\sum_{\lambda \sim \text{Herwig}, z \sim p(z)} \left(\log \left(D\left(\tau\left(\lambda\right)\right) \right) + \log \left(1 - D\left(G\left(z,\lambda\right)\right) \right) \right)$$

HadML v2

The discriminator function is modified, we parameterize is as a Deep Sets model

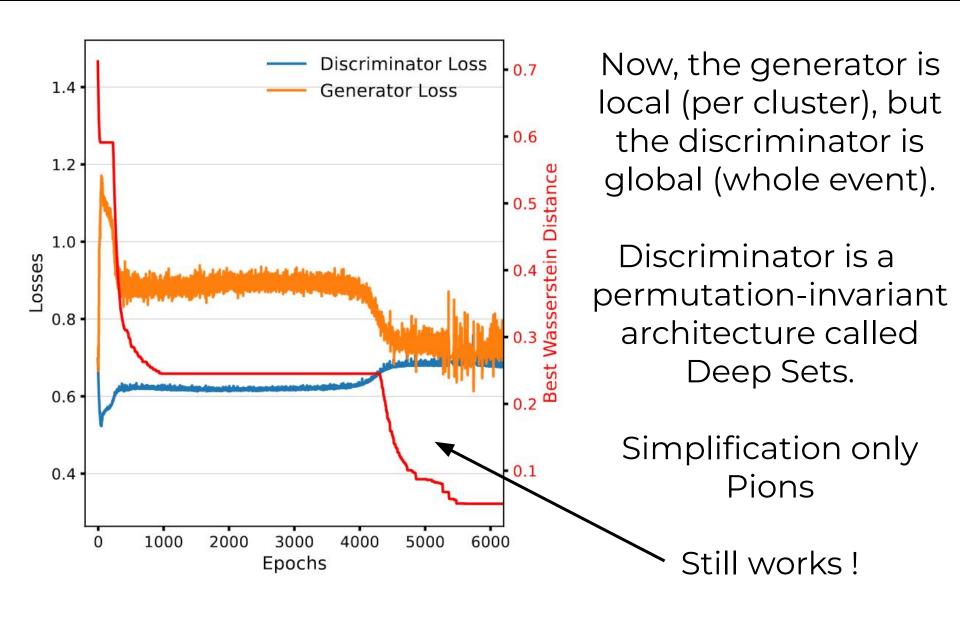
$$D_{E}\left(x\right) = F\left(\frac{1}{n}\sum_{i=1}^{n}\Phi\left(h_{i},\omega_{D_{\Phi}}\right),\omega_{F}\right) \qquad \qquad \text{invariant under permutations of hadrons}$$

 Φ embeds a set of hadrons into a fixed-length latent space and F acts on the average

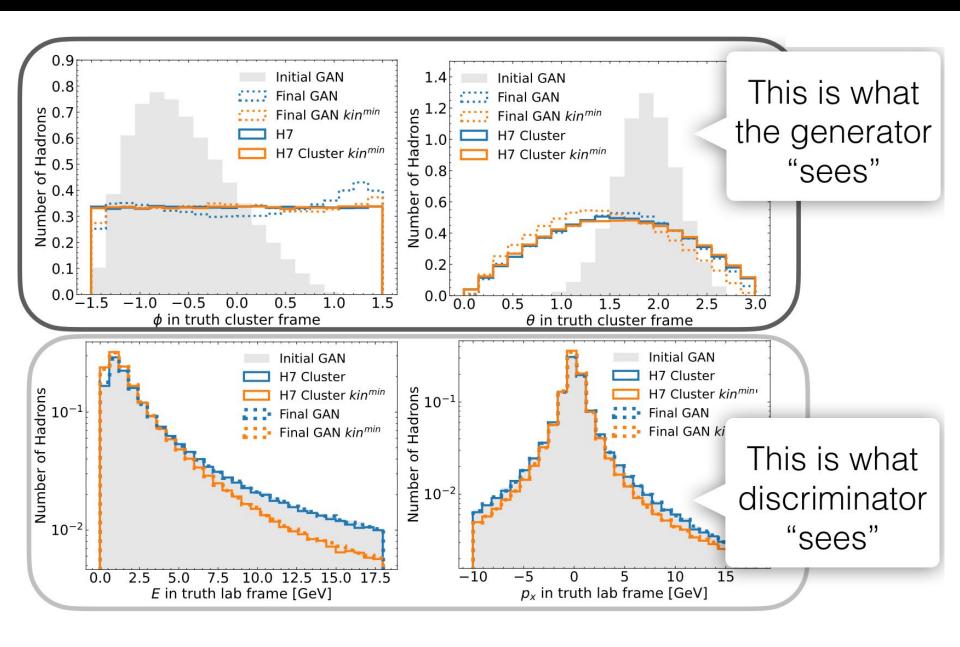
$$L = -\sum_{x \sim \text{data}} \log (D_E(x)) - \sum_{\{G\} \sim \text{HERWIG}, z \sim p(z)} \log (1 - D_E(\{G(z, \lambda)\}))$$

The approach could also be used to fit (without binning) data to a parametric physics model (for example cluster) as well. However, this would require making the cluster model differentiable.

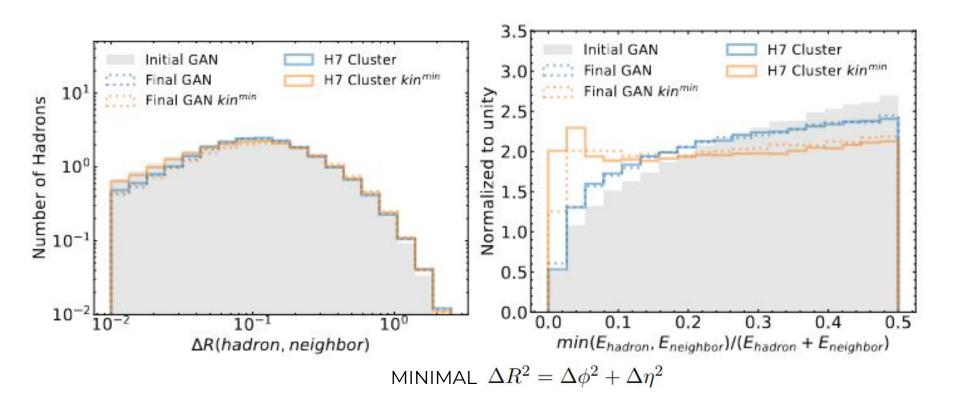
Training HADML v2



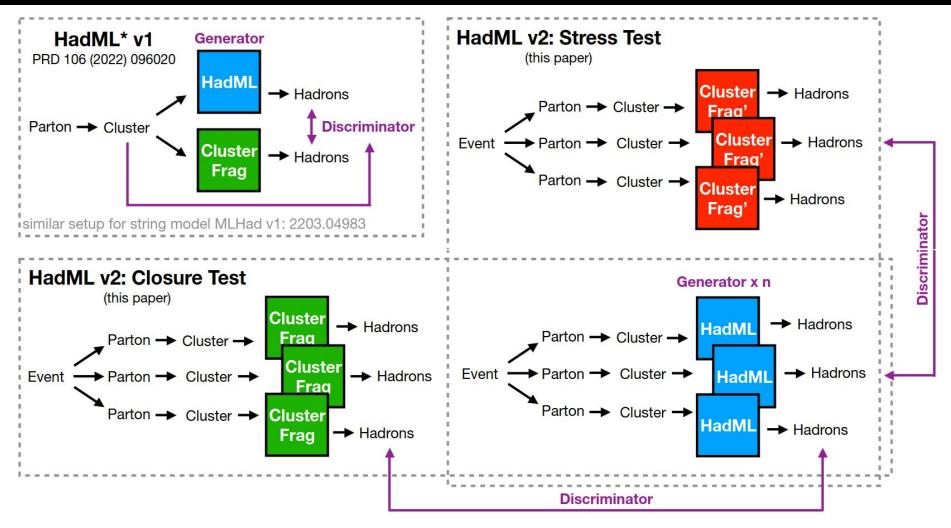
<u>Performance</u>



Performance: going beyond inputs and outputs



Summary

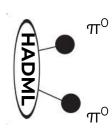


A key advantage of this fitting protocol over other methods is that it can accommodate unbinned and high-dimensional inputs.

The approach could also be used to tune (without binning) data to a parametric physics model (for example cluster) as well. However, this would require making the cluster model differentiable.

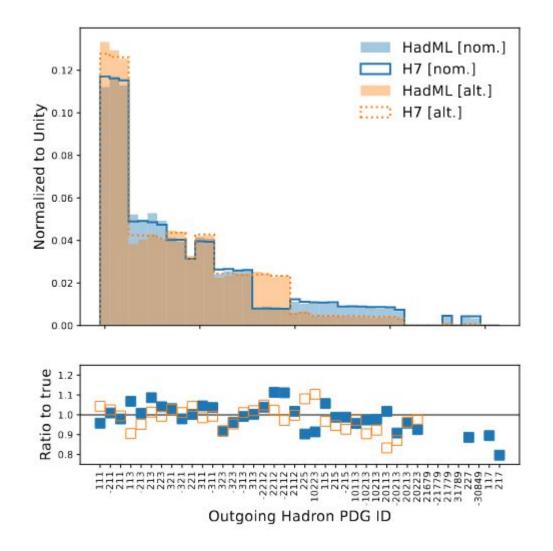
Outlook

 For HADML, we have made significant progress, but there are still multiple steps to build and tune a full-fledged hadronization model.



What is next?

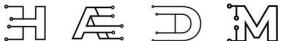
- Number of technical and methodological step needed:
 - → Directly accommodate multiple hadron species with their relative probabilities



2312.08453

Outlook

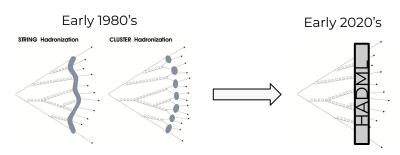
- For HADML, we have made significant progress, but there are still multiple steps to build and tune a full-fledged hadronization model.
- HADML is naturally suited for GPUs



What is next?

- Number of technical and methodological step needed:
 - Include heavy clusters (so far done by Herwig) \rightarrow
 - Hyperparameter optimization, including the investigation of alternative generative models \rightarrow
 - More flexible model with a capacity to mimic the cluster or string models and beyond. \rightarrow
 - MLhadML joining idea of MLhad reweighting and HadML fitting deep generative models \rightarrow
 - Tune to the LEP data

There is still a multi-year program ahead of us, but it will be worth it!



So Stay tuned!

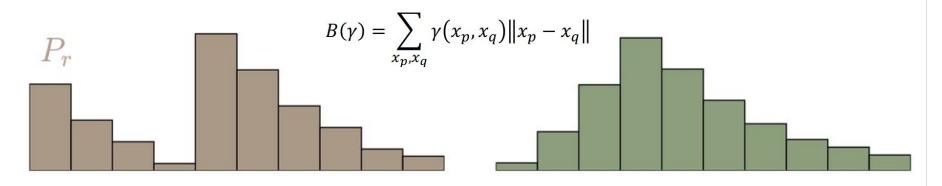
Wasserstein distance

The Wasserstein distance

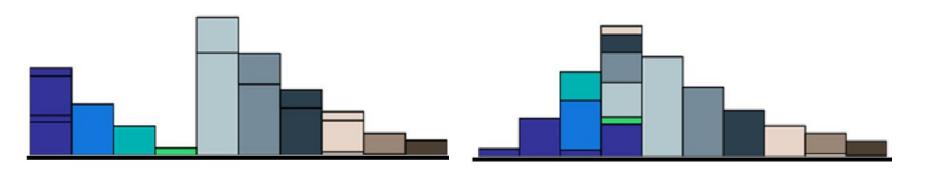
- For discrete probability distributions, the Wasserstein distance is called the earth mover's distance (EMD):
- EMD is the minimal total amount of work it takes to transform one heap into the other.

$$W(P,Q) = \min_{\gamma \in \Pi} B(\gamma)$$

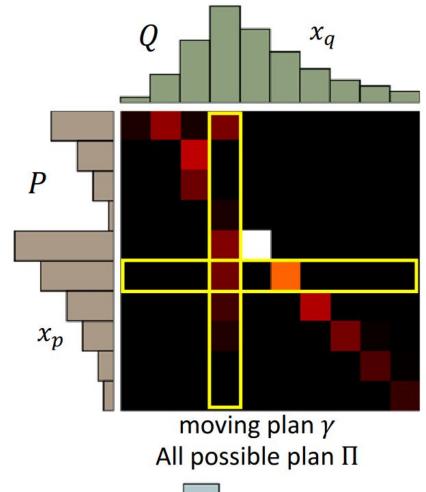
Work is defined as the amount of earth in a chunk times the distance it was moved.



Best "moving plans" of this example



Wasserstein distance



A "moving plan" is a matrix
The value of the element is the
amount of earth from one

Average distance of a plan γ :

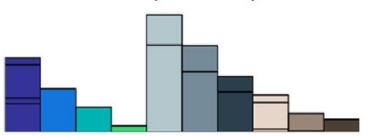
position to another.

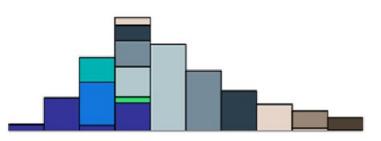
$$B(\gamma) = \sum_{x_p, x_q} \gamma(x_p, x_q) ||x_p - x_q||$$

Earth Mover's Distance:

$$W(P,Q) = \min_{\gamma \in \Pi} B(\gamma)$$

The best plan





Minimax Loss

In the paper that introduced GANs, the generator tries to minimize the following function while the discriminator tries to maximize it:

$$E_x[log(D(x))] + E_z[log(1 - D(G(z)))]$$

In this function:

- D(x) is the discriminator's estimate of the probability that real data instance x is real.
- E_x is the expected value over all real data instances.
- . G(z) is the generator's output when given noise z.
- D(G(z)) is the discriminator's estimate of the probability that a fake instance is real.
- E_z is the expected value over all random inputs to the generator (in effect, the expected value over all generated fake instances G(z)).
- The formula derives from the cross-entropy between the real and generated distributions.

The generator can't directly affect the log(D(x)) term in the function, so, for the generator, minimizing the loss is equivalent to minimizing log(1 - D(G(z))).

2.2 Machine Learning Implementation

The generator (G) and discriminator (D) functions are both parametrized as neural networks. Each of them is a fully connected network with four hidden layers, each with a width of 1,000 neurons. All intermediate layers in these networks use a LeakyReLU [24] activation function.

The non-discrete conditional inputs of G are normalized to the range of (-1, 1), whereas the noise prior p is a Gaussian distribution with a mean of 0 and width of 1. The noise dimension N_z is set to 64. The last layer of G is divided into the variables $\kappa \in \mathbb{R}^2$, which correspond to hadron kinematics, and the variables $\pi \in \mathbb{R}^{2N_t}$, which correspond to hadron types. Here, N_t is the number of hadron types considered. For simplicity, we consider only the 40 most common hadron types (i.e. $N_t = 40$). The hadron kinematics θ_{h_1} and ϕ_{h_1} are extracted from κ with a tanh activation function, as in the previous work [15]. The hadron type, on the other hand, is a categorical variable. In order to avoid zero gradients when using argmax in training, we use the Gumbel-Softmax [25] distribution to approximate the distribution of hadron types:

$$y_i = \frac{\exp\left(\left(\log \pi_i + g_i\right)/\tau\right)}{\sum_i \exp\left(\left(\log \pi_i + g_i\right)/\tau\right)},\tag{2.4}$$

where g_i are independent and identically distributed samples drawn from Gumbel (0, 1). τ is a temperature parameter and as it approaches 0 the Gumbel-Softmax distribution becomes identical to the categorical distribution. We anneal τ by linearly decreasing it from 1.0 to 0.1 during training. The hadron type distributions y from the Gumbel-Softmax distribution are then taken as the inputs for D, in addition to the hadron kinematics θ_{h_1} and ϕ_{h_1} . During inference, the generated hadron types are obtained from the Gumbel-Softmax distribution with the argmax operation. The last layer of D uses a sigmoid activation function.

All neural networks are implemented and trained using PyTorch [26]. The generator and discriminator are optimized alternately with Adam [27] with a learning rate of 3×10^{-4} for both networks. The training uses a batch size of 40,000 and is performed for 25 epochs. The hyperparameters are optimized with Weights and Biases [28].