24/03/2025

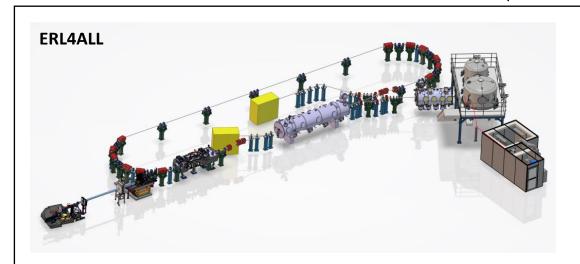
Simulation study of the ECRIPAC accelerator concept

Author: Andrea Cernuschi, Ph.D. student in Applied Physics at LPSC - École Doctorale de Physique of Université Grenoble Alpes

Advisor: Thomas Thuillier, Ingénieur de recherche at LPSC - Université Grenoble Alpes

Co-advisor: Laurent Garrigues, Directeur de Recherche at LAPLACE - Université de

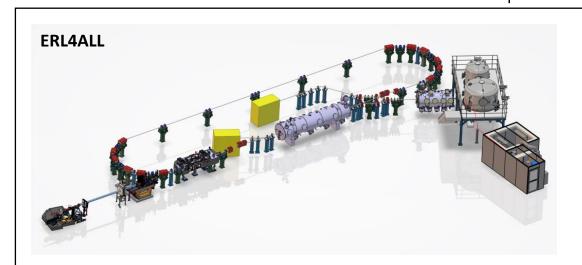
Toulouse

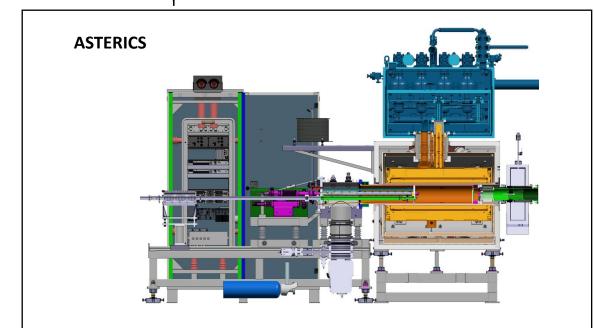


Context

Pole Accélérateurs et Sources d'Ions

- Accelerate charged particles through electric and magnetic field.
- Several kinds of particle accelerator (linear, circular, plasma-based ...)





Context

Pole Accélérateurs et Sources d'Ions

- Accelerate charged particles through electric and magnetic field.
- Several kinds of particle accelerator (linear, circular, plasma-based ...)

 Generate ions inside a plasma using Electron Cyclotron Resonance (ECR).



Context

Pole Accélérateurs et Sources d'Ions

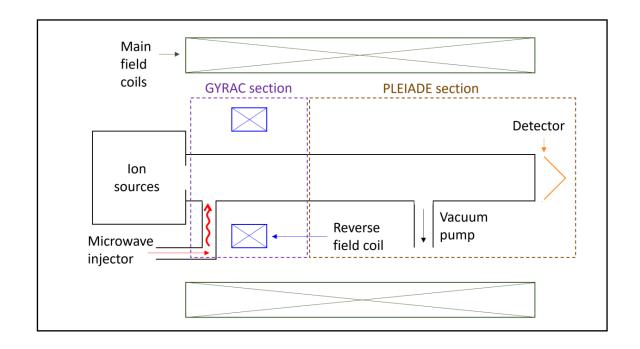
- Accelerate charged particles through electric and magnetic field.
- Several kinds of particle accelerator (linear, circular, plasma-based ...)

 Generate ions inside a plasma using Electron Cyclotron Resonance (ECR).

ECRIPAC

Thesis outline and goals

ECRIPAC (Electron Cyclotron Resonance Ion Plasma Accelerator, R. Geller, 1990)

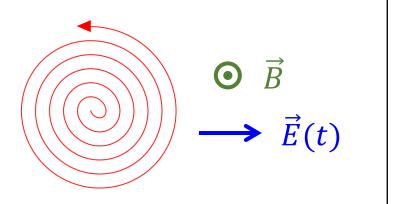

- ECR plasma accelerator with adjustable ion energy, up to 100s MeV/nucleons.
- Scientific interest: Reduced accelerator dimensions, established technologies and simple design.

Aim

 Numerically simulate ECRIPAC to asses device feasibility.

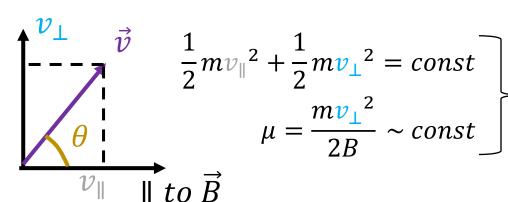
Methods

- Theoretical calculations.
- Monte Carlo electron simulation.
- Particle-In-Cell simulation.


Some physical basis

Electron Cyclotron Resonance (ECR)

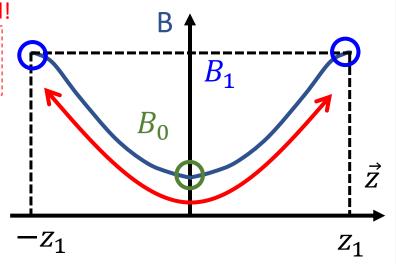
Electron e^- in magnetic field \vec{B} and transverse time varying electric field $\vec{E}(t)$ rotating at ω_{HF} .


ightharpoonup e gain \perp energy from $\vec{E}(t)$ if $\omega_{HF} = \Omega = \frac{eB}{m}$

e⁻rotating at frequency Ω

Magnetic mirror confinement

Charged particle propagating towards 1 B.


Like a ball rolling up/down a hill!

 $\nabla \mathrm{B} > 0$: v_{\parallel} converted to v_{\perp}

 $abla \mathrm{B} < 0$: v_{\perp} converted to v_{\parallel}

$$if \sin \theta \ge \sqrt{\frac{B_0}{B_1}}$$

Particle **reflected** and **confined**!

Some physical basis

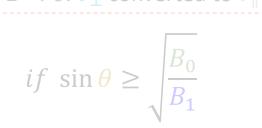
Electron Cyclotron Resonance (ECR)

Electron e^- in magnetic field \vec{B} and transverse time varying electric field $\vec{E}(t)$ rotating at ω_{HF} .

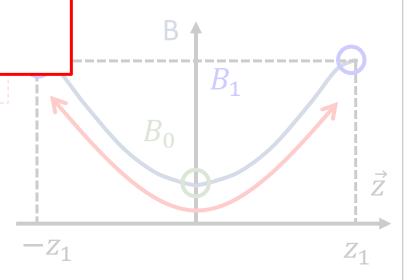
 $ightharpoonup e^{-}$ gain \perp energy from $\vec{E}(t)$ if $\omega_{WE} = \Omega = \frac{eB}{-}$

 e^{-} rotating at frequency Ω

Two main physical phenomena inside ECRIPAC


• Gyromagnetic autoresonance.

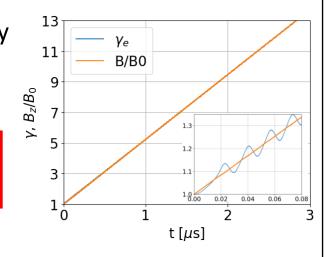
Ion entrainment.

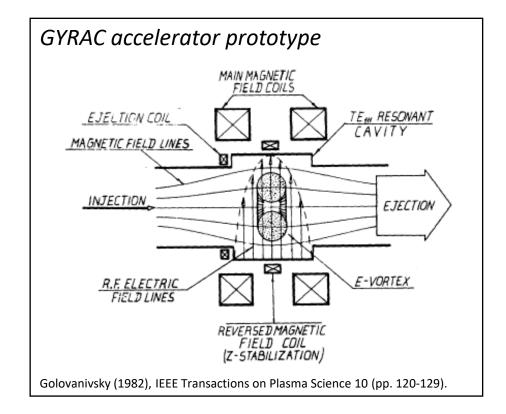


$$\frac{v_{\perp}}{2} = \frac{\vec{v}}{2} + \frac{1}{2} m v_{\perp}^{2} = const$$

$$\mu = \frac{m v_{\perp}^{2}}{2B} \sim const$$

Particle **reflected** and **confined**!


GYRAC principle: Gyromagnetic autoresonance (GA)

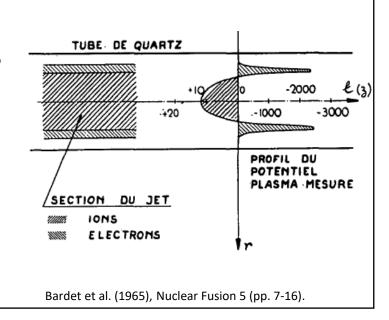

Autoresonant acceleration of electrons in magnetic field smoothly growing in time.

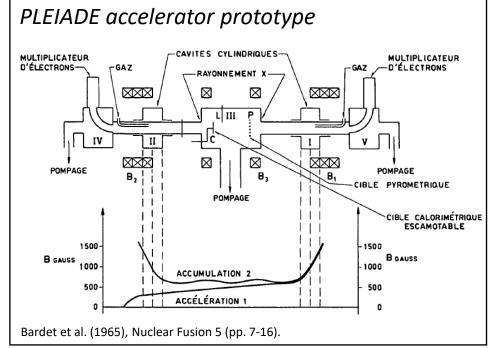
Experimentally verified!

 $ightharpoonup \gamma_e$ increases quasi-synchronously with magnetic field growth through relativistic ECR.

$$\omega_{HF} = \Omega = \frac{qB(t)}{m_e \gamma_e}$$
 $\gamma_e(t) \approx \frac{B(t)}{B_0}$

PLEIADE principle: Ion entrainment

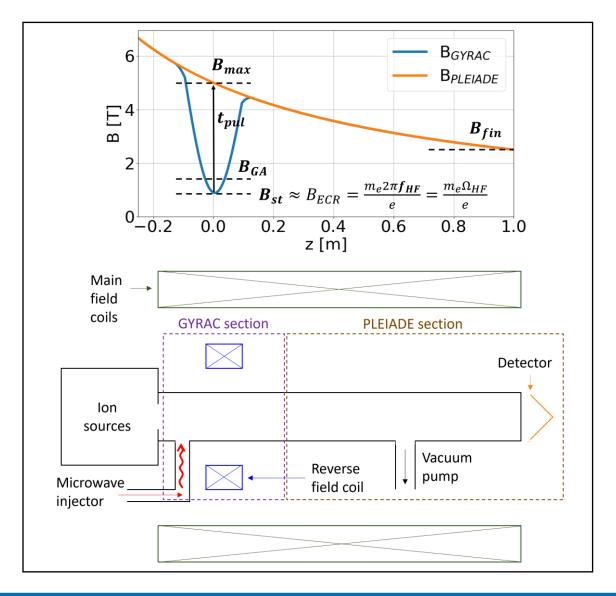

Local **difference in** ion and electron **density** arising from electron displacement in a magnetic field with $\nabla B < 0$ generates a space-charge field which **accelerates** the **ions**.


✓ Experimentally verified!

Cylindrical plasma shape

- Electron in outher region and ions in inner region.
- $v_{e\parallel} \approx v_{i\parallel}$.

$$W_{e\perp}^{res} - W_{e\perp}^{ext} \approx W_{i\parallel}^{ext}$$


ECRIPAC structure

Structure

- **Injector**: ion source (ECRIS or EBIS).
- **GYRAC section:** resonant cavity, main coils and reverse field coil (magnetic mirror).
- **PLEIADE section:** beam transport tube, main coils.

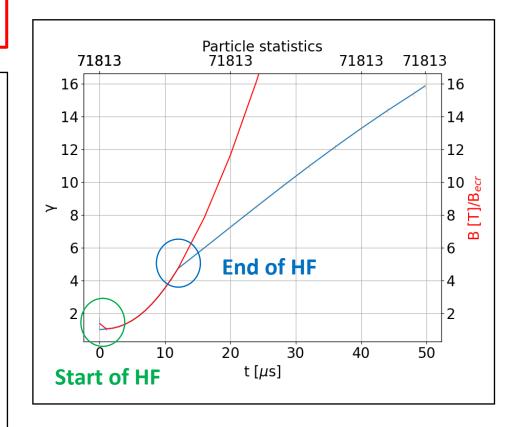
Working cycle phases:

- Gyromagnetic autoresonance (GA).
- Plasma compression (com).
- PLEIADE (PL).

Gyromagnetic autoresonance (GA) phase

Role

Increase electron energy through gyromagnetic autoresonance.


Plasma and HF wave injection at reverse field peak value.

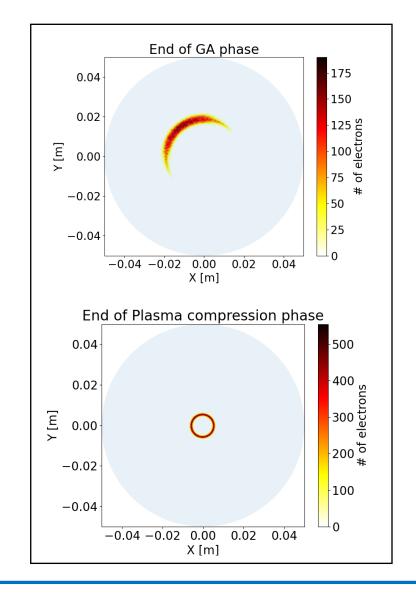
$$B(t)$$
 sinusoidal increase in time $f_{HF} = 2.45 \ GHz$

$$B_{st} \leq B_{res}$$
 for stability reasons

$$\gamma_{GA} \approx \frac{B(t_{GA})}{B_{st}}$$
 $r_{orbit} = \frac{v}{\omega_{HF}} \le \frac{c}{\omega_{HF}} \approx 1.95 \ cm$

- Limitation: Results obtained in single electron approximation.
 - > PIC simulations required for behaviour inside a plasma.

Plasma compression (com) phase

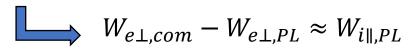

Role

Compress electron cloud and further increase electron energy.

- **HF wave injection stops**, magnetic field continues to increase up to the main field restoration.
- **Plasma compressed** into a thin disk by electric field induced by time-varying magnetic field.

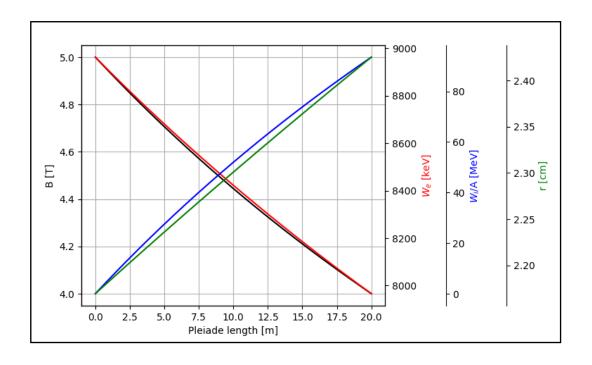
 - Constant of motion in adiabatic approximation. $\begin{cases} p^2/B = const \\ r^2B = const \end{cases}$

$$\gamma(t) = \left(1 + (\gamma_{GA}^2 - 1) \frac{B(t)}{B(t_{GA})}\right)^{\frac{1}{2}}$$



PLEIADE (PL) phase

- $\frac{dB_{PL}}{dz} < 0$: ∇B force converts $W_{e\perp}$ in $W_{e\parallel}$.
- $\frac{d^2B_{PL}}{dz^2} > 0$: Minimize macroscopic instabilities.
- $v_{e\parallel} pprox v_{i\parallel}$: Collective field converts W_e into W_i .



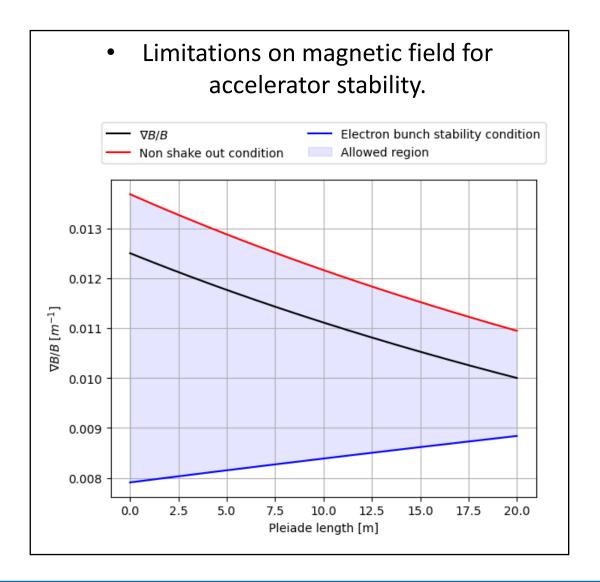
• N_{ions} << N_{electrons}

$$\frac{W_i}{A} \approx 469 \frac{\gamma_{e,com}^2 - 1}{\gamma_{e,com}^2} \left(1 - \frac{B_{fin}}{B_{max}}\right) \frac{MeV}{nucleon}$$

Role

Ion acceleration due to ion entrainment by electrons.

PLEIADE phase: Stability

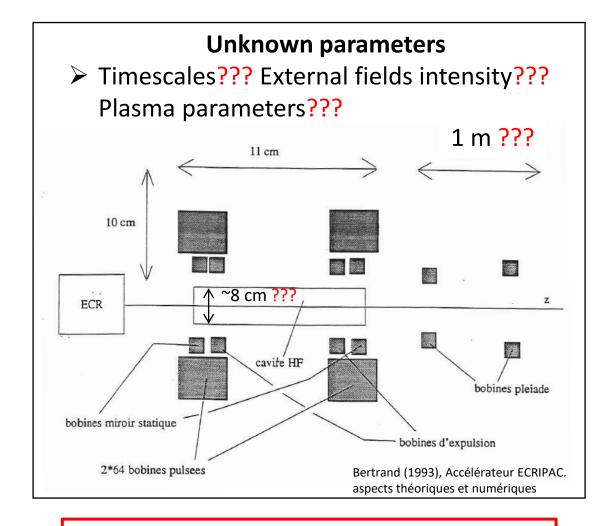

• Non shake out condition: Ion (charge Ze, $mass\ Am_a$) acceleration is larger than electron acceleration.

$$\left| \frac{\nabla B_z}{B_z} \right| \le \frac{2Ze}{m_a c^2 A} E_{sc}$$

• **Electron bunch stability**: Coulomb repulsion is weaker than ∇B force.

$$\left| \frac{\nabla B_z}{B_z} \right| \ge \frac{2e}{m_e c^2 (\gamma_{e,com}^3 - \gamma_{e,com})} E_{sc}$$

- Minimum γ for stable acceleration. $\gamma_{e,com} > \gamma_{e,lim} = \left(\frac{m_a A}{m_e Z}\right)^{\frac{1}{3}}$
- Error in original paper: underestimation by a factor of 7.



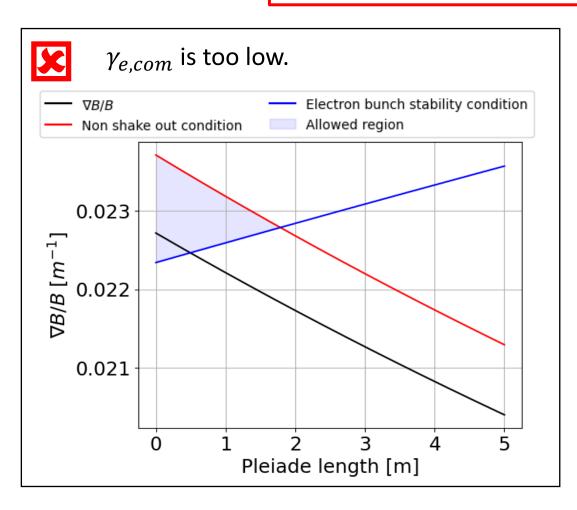
Problems in state of the art

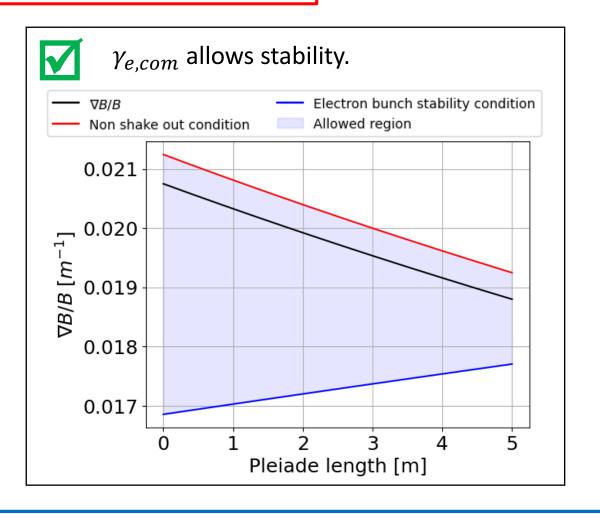
ECRIPAC numerical simulations

- Bertrand (1992, EPAC 92 Third European Particle Accelerator Conference).
- Umnov et al. (2004), Kube et al. (2005),
 Kube thesis (2007).
- Only 2 studies, quite old and not selfconsistent.

Need for a new and accurate selfconsistent simulation of ECRIPAC!

Need theoretical investigation to set the parameters of the accelerator!

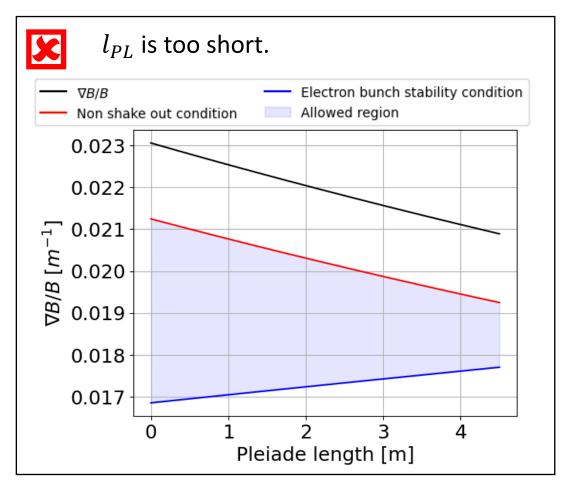


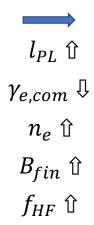

Main limitations: Existence of stability for ion acceleration

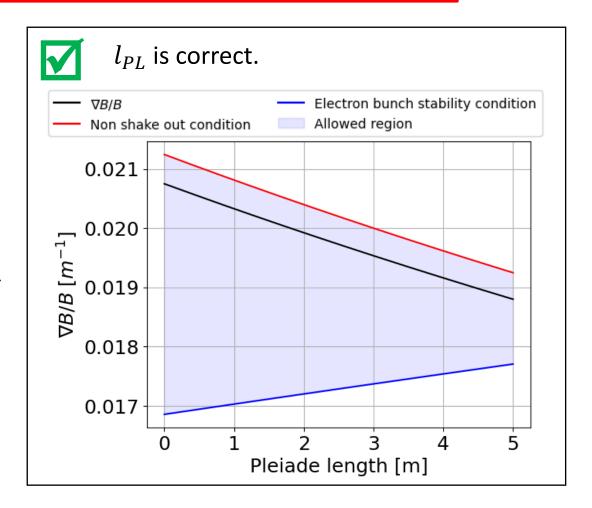
Need $\gamma_{e,com} >> \gamma_{lim}$ to ensure existence of stability region.

$$\gamma_{e,com} > \gamma_{e,lim} = \left(\frac{m_a A}{m_e Z}\right)^{\frac{1}{3}}$$

 $\gamma_{e,com}$ Ω B_{max} Ω B_{fin} Ω







Main limitations: PLEIADE section cavity length

PLEIADE section cavity length (l_{PL}) must be tuned to allow accelerator stability.

ECRIPAC parameters analysis

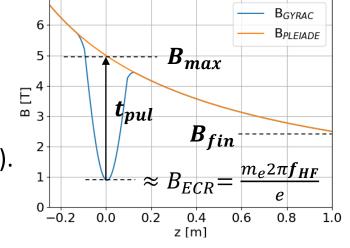
Aim

Obtain ions of desired energy keeping a reasonable accelerator length.

 \succ Study through parameter space analysis $\gamma_{e,com}$ vs B_{fin} .

* Nominal values

Plasma parameters

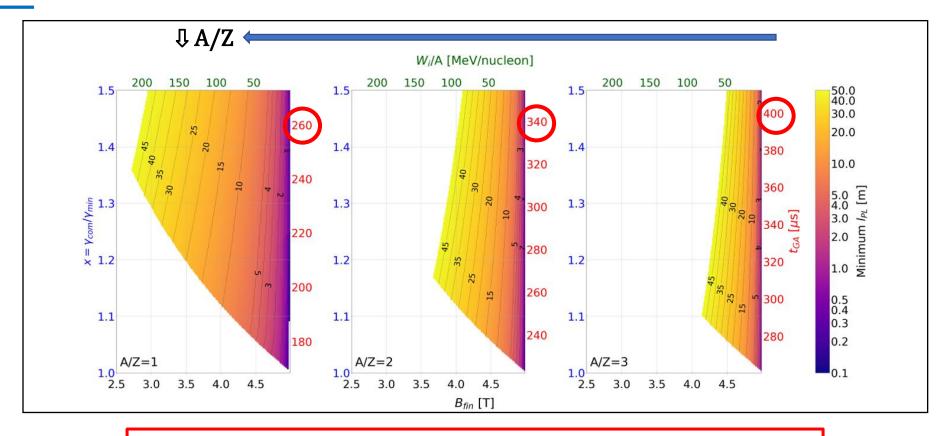

- A/Z ratio of accelerated ions (2).
- Electron plasma density n_e (10% n_c).
- Initial plasma disk radius $r_{disk,0}$ (2 cm).

Requirements

- $\gamma_{e,com}$: Lowest value ensuring stability existence.
- l_{PL} : Lowest value allowing stability.

External field parameters

- t_{pul} (1 ms).
- B_{max} (5 T).
- f_{HF} (2.45 GHz).
- B_{fin} .



ightharpoonup Optimized B_{PL} profile: $B(z) = \frac{1}{B_{max}^{-1} - k \cdot z}$

Example of parameter space: A/Q

- 🕂 🕆 Stability region surface (stability at \mathbb{Q} B_{fin} and \mathbb{Q} W_i/A).
- \P \P l_{PL} for stability.
- \P \P t_{GA} (\P γ_{lim} required to accelerate ions).

ECRIPAC parameters influence

- ✓ Detailed investigation of ECRIPAC parameter successfully completed.
- More details in backup slide due to time constraints.

ECRIPAC suited to accelerate **highly-charged** ions with **small mass over charge** using a **dense plasma**.

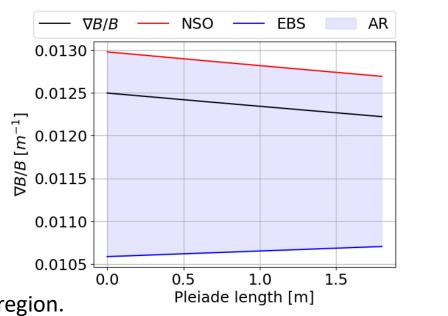
- B_{max} has beneficial effect but introduces technological complications.
- f_{HF} must be tuned according to applications.

Prototype design for a He²⁺ compact accelerator

$$@ f_{HF} = 2.45 \ GHz$$
:

•
$$n_e = 15\% n_c = 1.12 \cdot 10^{10} \text{ cm}^{-3}$$

•
$$B_{fin} = 4.89 T$$

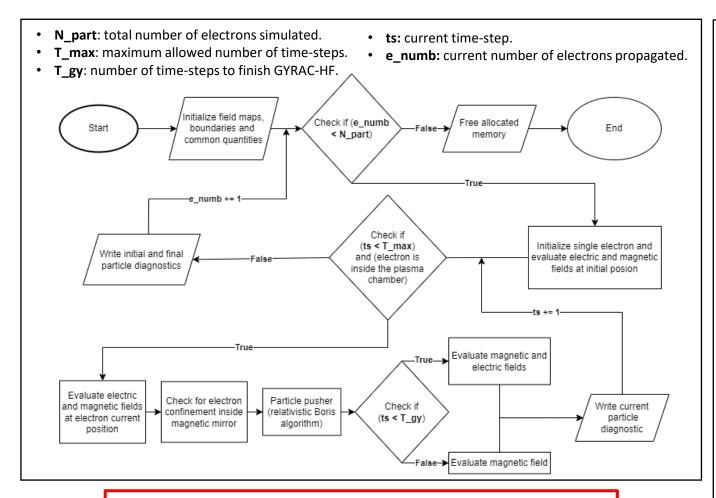

•
$$t_{GA} = 240.8 \, \mu s$$

• $l_{PL} = 1.8 \text{ m}$

•
$$W_{e,com} = 7.9 \text{ MeV}$$

•
$$\Delta r_{PL} = 0.02 \text{ cm}$$

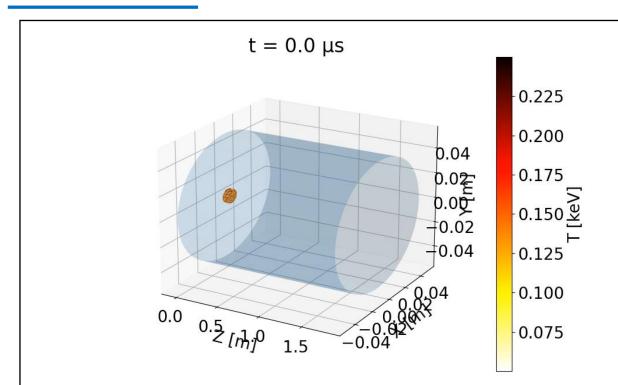
• $W_i/A = 9.53 \text{ MeV/nucl.}$

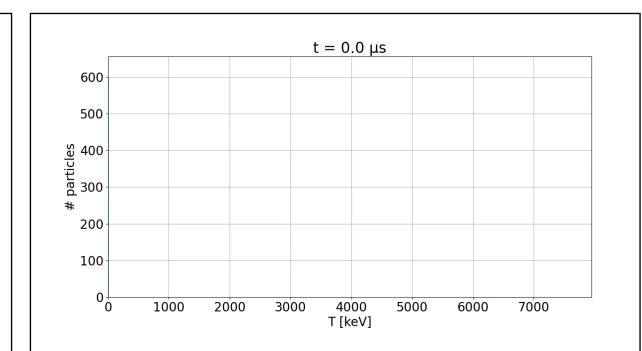


NSO: Non shake out condition. - EBS: Electron bunch stability. - AR: Allowed region.

3D Monte Carlo Particle-Tracking code

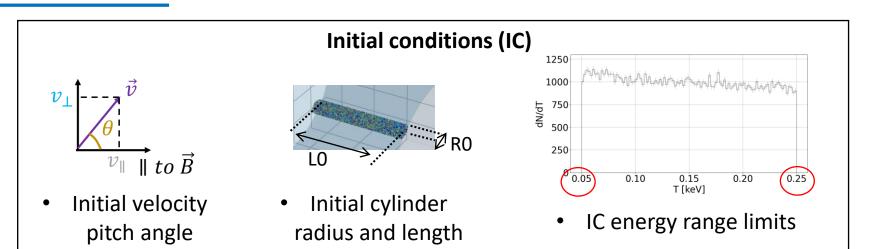
Validated with literature on GYRAC accelerators (simulations + experiments) (backup slides).

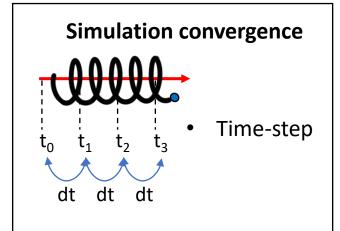

- **Single-electron approximation** (no collisions)
 - Common variables:
- **➤ Number of e**⁻: 100000.
- > Chamber radius: 5 cm.
- > Static field: $B_0 \approx 0.0875 \ T$, $B_{max} = 5 \ T$, $B_{fin,PL} = 4.89 \ T$
- > IC: electrons inside a cylinder, random energy in given range, electrons must survive at least 10% of t_{SGA} .
 - External fields:
- > Static B, pulsed B, induced E: 2D axisymmetric field map (Poisson Superfish, COMSOL).
- ➤ Microwave: analytical *TE111* mode @ 2.45 GHz.

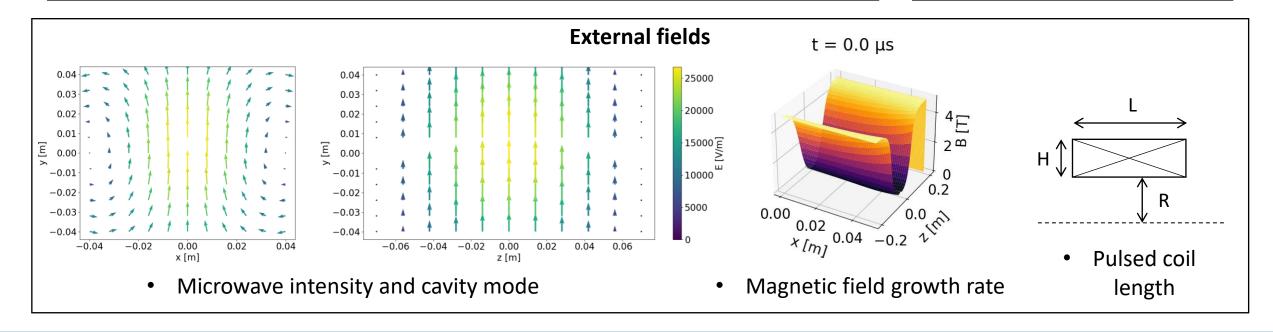


Monte Carlo simulations – Full electron population

- GA phase: rotating electron bunch with increasing energy.
- **Compression phase**: electron ring that gradually compresses and increases its energy.
- **PLEIADE phase**: electron cloud descending magnetic field gradient converting ⊥ into || energy.


- Electrons trapped in GA (≈70%): bunch with approximately gaussian shape in energy continuously increasing its energy.
- Electrons not trapped in GA (≈30%): mostly located in the centre of the cavity, energy slowly increasing during compression phase.





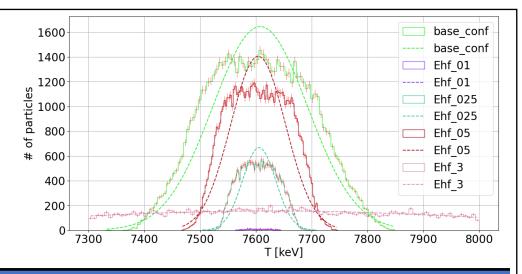
Monte Carlo simulations – Parametric study

Parametric study – Microwave intensity

Microwave intensity

Ehf_01: $E_{hf} = 0.1 \ kV/cm$

Ehf_025: $E_{hf} = 0.25 \ kV/cm$


Ehf_05: $E_{hf} = 0.5 \ kV/cm$

base: $E_{hf} = 1 \, kV/cm$

Ehf_3: $E_{hf} = 3 \ kV/cm$

 $\ \widehat{\mathbf{L}}_{HF}$ leads to lower confinement, better trapping and larger energy spread.

- \triangleright If E_{HF} is too high (Ehf_3), drastic reduction in confinement also lowers trapping.
- > Same findings as Kube PIC simulation.

Simul.	% conf.	% trap. SGA	T0 [keV]	σ [keV]
Ehf_01	83.55%	0.68%	7606	25
Ehf_025	79.13%	27.46%	7606	30
Ehf_05	84.00%	68.45%	7604	49
base	76.89%	71.81%	7608	85
Ehf_3	23.44%	19.81%	7625	416

Conclusions and perspectives

Conclusions

- ECRIPAC great promises and lack of literature motivates further studies.
- Complexity of the system requires a study in successive steps
 - ✓ **Theoretical study**: highlighted accelerator limitations and influence of ECRIPAC parameters. Reversed pulsed field coil feasible with current technology.

Paper ready to be submitted

- ✓ Monte Carlo simulation: properly simulates electron behaviour inside ECRIPAC. Allowed to study effect of several parameters on electron behaviour.
 - > Fixed geometry and external fields for particle-in-cell (PIC) simulation.

Results will be presented at conferences this year

Perspectives

- Choose/Write/Adapt PIC code and its settings for full-scale simulation.
 - Considerations for PIC code: 3D is required, EM can be advantageous, allow use of external fields.
 - Best candidate at the moment is SMILEI (open source EM 3D PIC).

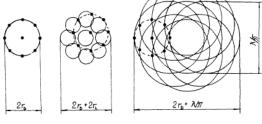
Bibliography

- [1] O. Otero et al., 2021, Proceedings of the 12th International Particle Accelerator Conference, Sao Paulo, Brasil, MOPAB049
- [2] J. A. Hernandez et al., 2019, Journal of Physics: Conference Series, Vol. 1403, pp. 012017
- [3] V. V. Andreev et al., 2012, Instruments and Experimental Techniques, Vol. 55, No. 3, pp. 301-312
- [4] V. V. Andreev et al., 2016, Plasma Physics Reports, Vol. 42, No. 6, pp. 633-636
- [5] V. V. Andreev et al., 2017, Physics of Plasmas, Vol. 24, pp. 093518
- [6] V. V. Andreev et al., 2016, Plasma Physics Reports, Vol. 42, No. 3, pp. 293-297
- [7] V. V. Andreev et al., 2017, Plasma Physics Reports, Vol. 43, No. 11, pp. 1114-1118
- [8] V. V. Andreev et al., 2018, Journal of Physics: Conference Series, Vol. 1094, pp. 012013
- [9] V. V. Andreev et al., 2018, Journal of Physics: Conference Series, Vol. 1094, pp. 012014
- [10] V. V. Andreev et al., 2019, Journal of Physics: Conference Series, Vol. 1383, pp. 012023
- [11] V. V. Andreev et al., 2020, Plasma Physics Reports, Vol. 46, No. 8, pp. 756-764
- [12] V. V. Andreev et al., 2021, Physics of Plasmas, Vol. 28, pp. 092507

GA phase: limitations

Previous results obtained for single electron approximation.

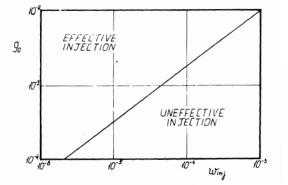
- > Pure electron population: collective and external fields sufficiently low.
- > Plasma: behaviour is NOT clear, need PIC simulation


$$g_0 = \frac{eE}{m_e c \omega_{HF}} = \frac{E}{c B_{res}}$$

Main limitations

- Acceleration stability $\propto B(t)/B0$ and magnetic mirror trap.
- Synchrotron radiation limits γ_{max} .
- Collective effects could limit number of electron accelerated.

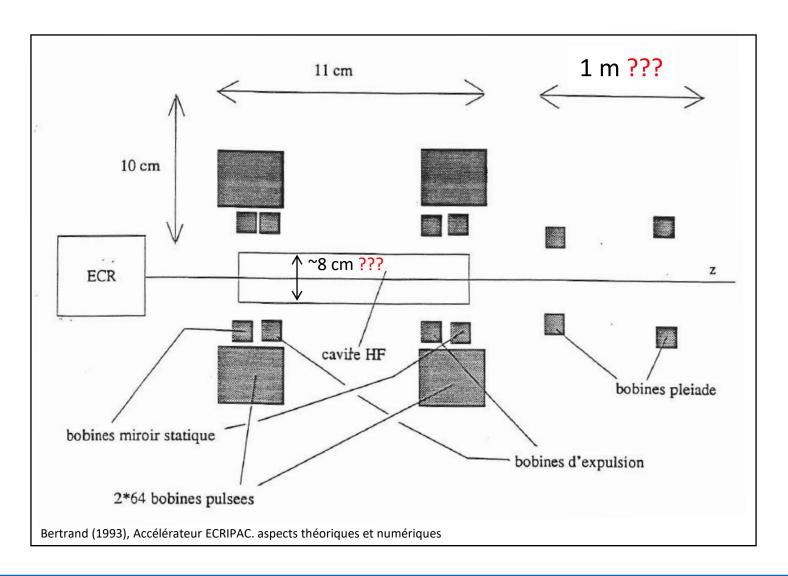
Collective fields: limitations on numbers of electrons.


$$\begin{cases} N < N_{max} = 2.230 \cdot 10^{12} \cdot \lambda g_0 & when g_0 < 1 \\ N < N_{max} = 5.648 \cdot 10^{12} \cdot \lambda & when g_0 > 1 \end{cases}$$

Golovanivsky (1982), IEEE Transactions on Plasma Science

Mirror field: limitations on mirror ratio.

$$g_{0,crit} = 1.895 \cdot w_{inj,e}^{\frac{3}{4}}$$



Golovanivsky (1982), IEEE Transactions on Plasma Science

ECRIPAC: Approximative working parameters

Timescales

- GA phase (RF ON) \approx 10-100 μ s ???
- Compression phase (RF OFF) ≈ 1 ms
- PLEIADE phase (RF OFF) ≈ 1-10 ns

Magnetic fields

- NbTi magnets + pulsed Cu coil
- Peak field ≈ 5 T ????
- Final field ≈ 2.5 T ???

μwave injector

- Frequency = 2.45 GHz ???
- Power ≈ 30 kW
- Mode = TE011 ????

Plasma parameters

Electron density ≈ 10¹0 cm⁻³ ????

Existing ECRIPAC numerical studies

Bertrand (1992, EPAC 92 - Third European Particle Accelerator Conference)

- Time dependent Vlasov equations solver in 6D phase space (with and without gyrokinetic approach).
- Not self-consistent simulation: Each phase simulated individually with IC obtained from theory.

Umnov et al. (2004), Kube et al. (2005), Kube thesis (2007)

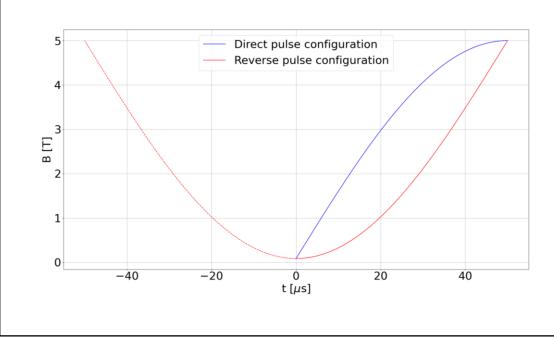
- 1D electrostatic (ES) PIC simulation and 3D electromagnetic (EM) PIC simulation of a proton plasma.
- Most valuable source for information/validation, but still incomplete:
 - > **Dubious PIC settings**: coarse spatial and temporal grid (CFL condition not respected).
 - GYRAC-HF and GYRAC-compression do not use ECRIPAC settings.
 - > PLEIADE is **not self-consistent**: theoretical IC and analytical fields.

Need for a new and accurate self-consistent simulation of ECRIPAC!

• Study in successive steps: Theoretical study. → MC simulation of electrons. → Full PIC simulation.

Kube thesis - Overview

Context


- Work developed between 2005 and 2007 in Russia.
- Results presented only in Russian conferences and Russian journals.
- Simulations on **personal computer**.
 - Best CPU (2005-2007): dual/quad core, 2.5/3 GHz.
- Unknown programming language.

Thesis structure

- Synchrotron Gyromagnetic Autoresonance (SGA) simulations.
- 2. Plasma compression.
- Collective acceleration of protons (1D ES PIC).
- 4. Collective acceleration of protons (3D EM PIC).

Interesting notions from literature (experimental result)

- $\hat{\Box} \frac{dB}{dt} \Rightarrow$ better trapping in magnetic mirror.
- Direct pulse configuration leads to higher capture into SGA compared with reverse pulse configuration.

Kube thesis - SGA

3D electrostatic PIC code

- **Populations**: 10^5 macroparticles per species (e^- relativistic, i^{1+} non-relativistic).
- Spatial grid: $dx = 3.12 \ mm \ or \ 1.56 \ mm \ (\lambda_{D,max} \approx 0.1 \ mm)$.
- Temporal grid: $dt = \frac{T_{HF}}{250}$ (1.63 ps @ 2.45 GHz).
- External fields: magnetic fields with field maps (?), microwave with TE111 analytical formulation.
- IC: homogeneous plasma inside cylinder (dynamically injected or statically generated).

Results

- **Effect of IC**: No significant effect → Static one for lower computational cost.
- Effect of cylinder radius: $\sqrt[3]{\frac{r_0}{r_{Lar}}}$ (< 1) \rightarrow $^{\circ}$ Ion losses.
- Effect of plasma: pure electron beam has much higher losses than full plasma.
- Effect of HF wave: $\widehat{\Box} E_{HF} \rightarrow$ More e^{-} trapped in SGA, broader energy spectrum.
- **Effect of mirror ratio**: $\hat{1} R \rightarrow \hat{1} n_e$ (shorter e^- bounces), more e^- trapped in magnetic mirror (?).
- Magnetic field increase rate (constant propagation time): $\hat{U} = \frac{dB}{dt} \rightarrow \hat{U} W_e (\hat{U} B_{final})$, more e^- trapped in magnetic mirror and in SGA, $\hat{U} W_i$, after optimal value \hat{U} ion losses.

(?): settings not specified, hence supposed as most probable approach.

Kube thesis – SGA simulations - Settings

❖ Populations: Electrons *e*-

- > Relativistic.
- $> N_e = 10^5 macroparticles.$

Ions i*

- > H or Ar plasma.
- Unmagnetized and non-relativistic.
- > Singly-charged.
- $\triangleright N_i = 10^5 \ macroparticles.$

3D electrostatic (ES) PIC

❖ PIC settings:

Particles at wall are lost.

Spatial grid ($10 \times 10 \times 10 \text{ cm}$)

- \Rightarrow 32 x 32 x 32 (dx = 3.12 mm).
- \triangleright 64 x 64 x 64 (dx = 1.56 mm).

Temporal grid

> Timestep : $dt = \frac{T_{HF}}{250}$ (1.63 ps @ 2.45 GHz).

***** External fields and other settings

- Magnetic fields: field maps (?).
 - Pulsed coil increases linearly with time.
- **Microwave**: TE111 analytical formulation (Bessel @ 1st order).
- All other parameters as experimental design.

Initial conditions: homogeneous plasma inside cylinder $(r=r_0)$

1st condition: dynamic

- Cylinder axially injected at low speed.
- Injection time according

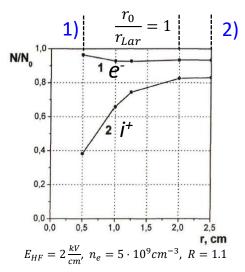
to
$$\frac{B_{max}(0)}{B_0} = 1 + 1.89g_0^{\frac{2}{3}}$$

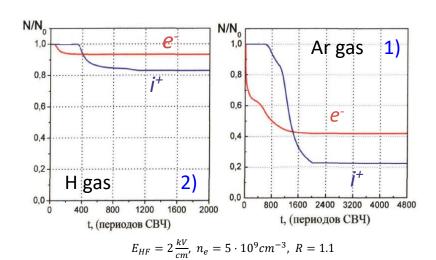
2nd condition: static

- Cylinder @ t = 0.
- Monoenergetic electrons
 with random velocity
 direction.
- $W_{i^+} = 0$.

(?): settings not specified, hence supposed as most probable approach.

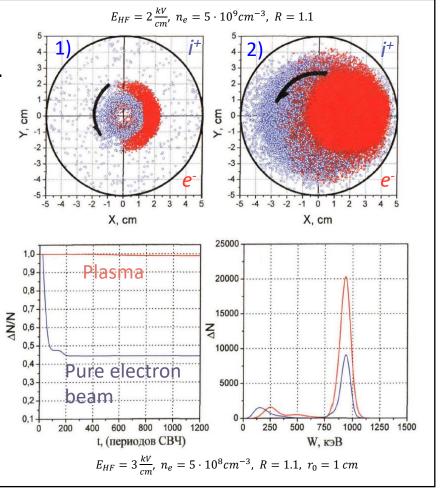
Input settings

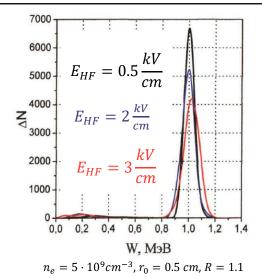

- $W_e = 1 10 \, eV$
- $n_e = 5 \cdot 10^9 5 \cdot 10^{10} \ cm^{-3}$
- $r_0 = 0.4 3 cm$
- $E_{HF} = 0.5 3 \frac{kV}{cm}$
- *Mirror ratio:* R = 1.04 *and* 1.1

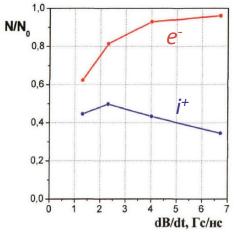

35

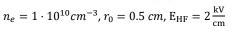
Kube thesis – SGA simulations - Results

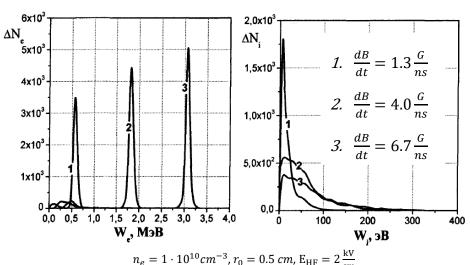
Effects of initial condition

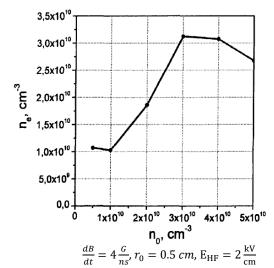

- **Dynamic vs static IC** → **No difference**! Use static condition to reduce computational cost.
- Effect of cylinder radius r_0 (1) $r_0 = 0.5$ cm, 2) $r_0 = 2.5$ cm)
- $ightharpoonup \hat{T} \frac{r_0}{r_{Lar}} \ (>1) \
 ightharpoonup$ Weak charge separation $ightharpoonup \mathbb{I} \frac{E_{pl}}{E_{HF}} \ (<1) \
 ightharpoonup \mathbb{I}$ Ion losses.

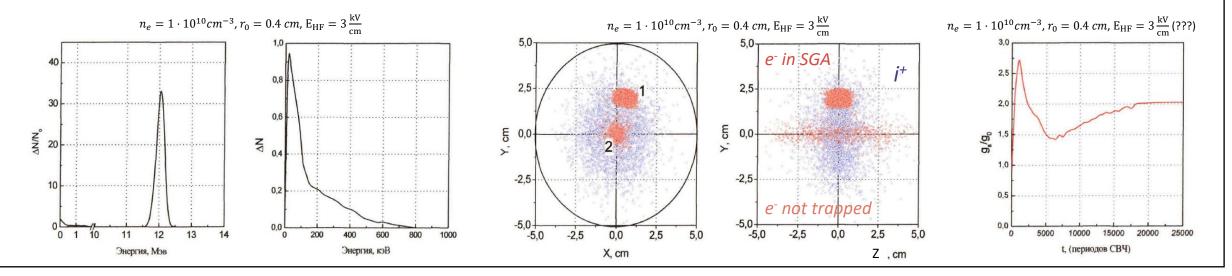





> Pure electron beam suffer much more losses than plasma.




- HF wave intensity: $\bigcirc E_{HF} \rightarrow More \ e^- trapped$ in SGA, broader energy spectrum.
- Mirror ratio: $\hat{\Pi} R \rightarrow \hat{\Pi} n_e$ (shorter e^- bounces), more e^- trapped in magnetic mirror (?).
- Magnetic field rate of increase (constant propagation time):
 - $ightharpoonup ext{$\stackrel{\circ}{\Omega}$} rac{dB}{dt}
 ightharpoonup ext{$\stackrel{\circ}{\Omega}$} W_e (\hat{\Pi} B_{final}), \text{ more } e^{-} \text{ trapped in magnetic mirror } (\propto also on n_0).$
 - ❖ If $\frac{E_{pl}}{E_{HF}} \approx 1$: more e^- trapped in SGA.
 - ightharpoonup
 igh



- Possible to control bunch parameters in wide ranges.
- After bunch formation (W>1~MeV), its parameters change slowly with $\mathop{\hat{\square}} W_e$.
 - $ightharpoonup n_e$ slowly increases due to axial compression ($V_{bunch} \approx 2 \ cm^3$).
- Plasma self electric field maximum right after charge separation, reach asymptotic value of $\approx 2 \cdot E_{HF}$.

Bunch extraction (Not really of interest for the project)

- Radial extraction (plasma decompression): $2 \left| \frac{dB}{dt} \right| \rightarrow \mathbb{I} \ t_{extraction}$, $2 \ P_{deposited}$.
- **Axial extraction** (as PLEIADE): more effective than radial ($\mathbb{J} t_{interaction} \approx ns, \mathbb{T} N_{particles})$, multiple (n) bunches at same time with TE_{11n} cavity mode.

Kube thesis – Plasma compression

3D electromagnetic PIC code

- **Populations**: 10^5 macroparticles per species (e^- relativistic, i^{1+} relativistic).
- Spatial grid: $dx = 1.56 \ mm \ or \ 0.78 \ mm \ (\lambda_{D,max} \approx 0.1 \ mm)$.
- Temporal grid: $dt = \frac{T_{HF}}{250}$ (1.63 ps @ 2.45 GHz) (?).
- External fields: magnetic fields with field maps (?), microwave with TE111 analytical formulation (?).
- IC: new simulations or results from previous phase.

Results

- Effect of SGA time (fixed pulsed rise time): $\mathring{1} t_{SGA} (J t_{comp}) \rightarrow \mathring{1} W_e$, J plasma compression.
- No electron losses during compression, for \mathbb{J} r_0 no ions losses.
- Magnetic field increase rate: \exists upper critical upper value for dB/dt (\propto IC, 20 G/ns in thesis) over which plasma disintegrate and SGA/compression don't take place.

(?): settings not specified, hence supposed equal to previous step or most probable approach.

Kube thesis – Plasma compression - Settings

❖ Populations: Electrons e⁻

- > Relativistic.
- $N_e = 10^5 \ macroparticles$ (?).
- ➤ H or Ar plasma (?).
- ➤ Magnetized and Relativistic.
- ➤ Singly-charged (?).
- $> N_i = 10^5 macroparticles$ (?).

3D electromagnetic (EM) PIC

❖ PIC settings:

Particles at wall are lost.

Spatial grid ($10 \times 10 \times 10 \text{ cm}$)

- \rightarrow 64 x 64 x 64 (dx = 1.56 mm)
- \triangleright 128 x 128 x 128 (dx = 0.78 mm).

Temporal grid

> Timestep : $dt = \frac{T_{HF}}{250}$ (1.63 ps @ 2.45 GHz) (?).

- ***** External fields and other settings
- Magnetic fields: field maps (?).
 - Pulsed coil increases linearly with time (?).
- **Microwave**: TE111 analytical formulation (Bessel @ 1st order).
- All other parameters as experimental design (?).

(?): settings not specified, hence supposed equal to previous step or most probable approach.

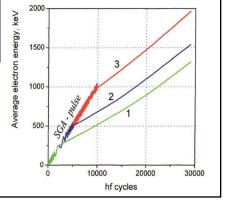
Initial conditions: homogeneous plasma inside cylinder $(r=r_0)$.

- Simulate once again with previous IC.
- Use directly **previous results**.

Input settings

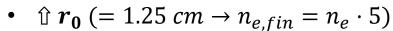
- $W_e = 10 \ eV$
- $W_i \approx 1 \, eV$
- $n_e = 5 \cdot 10^9 5 \cdot 10^{10} \ cm^{-3}$
- $r_0 = 0.4 2.5 cm$
- $\bullet \quad E_{HF} = 2 \frac{kV}{cm}$
- $t_{SGA} = 1 4 \,\mu s$

Kube thesis – Plasma compression - Results

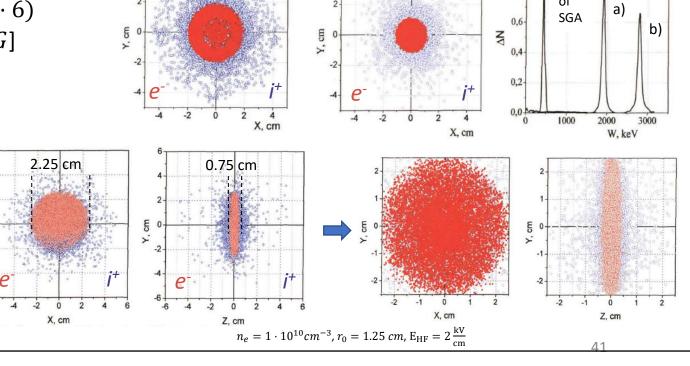

\Leftrightarrow Fixed pulsed field rise time t_{pul} .

- $ightharpoonup \hat{t}_{SGA} (I t_{comp}) \rightarrow \hat{t} W_e$, I plasma compression.
- $ightharpoonup \downarrow t_{comp} \ (\hat{l} t_{SGA}) \rightarrow \downarrow W_e$, \hat{l} plasma compression.

Optimal SGA up to $W_e = 250 - 500 \text{ keV}.$

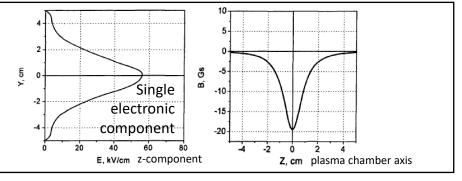

- 1. $t_{SGA} = 1 \,\mu s$
- 2. $t_{SGA} = 2 \mu s$ 3. $t_{SGA} = 4 \mu s$

 $n_e = 1 \cdot 10^{10} cm^{-3}, r_0 = 0.5 cm, E_{HF} = 2 \frac{kV}{m}$

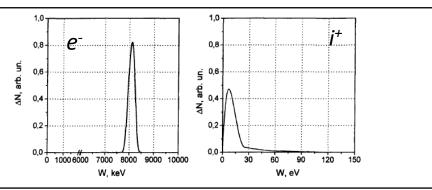


\clubsuit Effect of cylinder radius r_0 during compression.

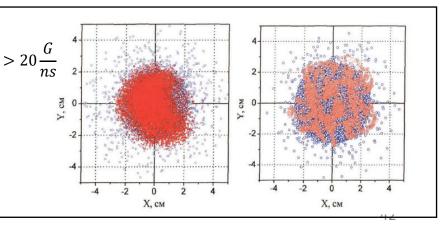
- \triangleright Electron bunch morphs into a half-ring [a) B = 8kG] and later into a **disk** [b) B = 12kG].
- > No ions and electron losses.
- \triangleright During compression, e^- energy spectrum broaden.


- > No electron losses.
- > Axial compression more significant than radial one.
- ightharpoonup Inhomogeneous n_e and $n_i \rightarrow$ Max in the center.

Kube thesis – Plasma compression - Results


Induced fields

- \triangleright Electric field $E_{ind} \rightarrow$ MAX at r=0 (plasma chamber axis).
- \triangleright Magnetic field $B_{ind} \rightarrow$ Opposite to main field generated by coils.


• $\frac{r_0}{r_L} > 1$ simulation

- \triangleright Energy: $W_e = 5 8 \, MeV$ (almost fully transversal), $W_i < 100 \, eV$.
- ightharpoonup Density: $n_e = 5 \cdot 10^{10} 5 \cdot 10^{11} \ cm^{-3}$.
- ➤ Charge: e^{-1} losses $< i^{+1}$ losses \rightarrow Plasma negatively charged (< 10%).

• \exists critical upper value for dB/dt (\propto IC)

 $\succ E_{ind}$ too strong: electron disintegrate into separate bunch, loss of axisimmetry and compression phenomena.

Kube thesis – Proton acceleration (1D ES PIC)

1D electrostatic PIC code

- **Populations**: 25000 macroparticles per species (e^- relativistic, p^+ non-relativistic), 400 macroparticles per cell.
- Spatial grid: $dx = 0.5 \ mm \ (\lambda_{D,max} \approx 0.1 \ mm)$.
- Temporal grid: $dt = \frac{T_{HF}}{250}$ (1.63 ps @ 2.45 GHz) (?).
- $\mathbf{I} n_e$ due to $\mathbf{I} r_{Lar}$ when moving **towards** $\mathbf{I} B$ taken into account in charge density calculations.
- External fields: Linear or exponential field profile with analytical formulation (?).
- IC: Gaussian spatial distribution of e^- and p^+ for disk-shaped plasma (?).

Results

- $\sim \frac{\ddot{dB}}{dz} \rightarrow$ charge separation with $n_e \approx n_i$ central region (10-12 cm), \mathbb{I}_p accelerated, \mathbb{I}_p W_i .
- $\hat{U} \xrightarrow{dB} \rightarrow$ plasma disintegration ($\mathbb{Q} \mathbb{Q} N_p < 1\%$), $\hat{U} \hat{U} W_i$.
- More compact acceleration with exponential profile and same parameters compared to linear profile.

(?): settings not specified, hence supposed equal to previous step or most probable approach.

Kube thesis – Proton acceleration (1D ES PIC) - Settings

Populations:

➤ Particles per cell = 400.

Electrons e

- > Relativistic.
- \triangleright $N_e = 25000 \ macroparticles$.

Protons p⁺

- Unmagnetized and non-relativistic.
- $\triangleright N_p \le 25000 \ macroparticles.$

$$\chi = \frac{N_e - N_p}{N_e} \cdot 100 \le 100\%$$

1D electrostatic (ES) PIC

(due to axial size << radial size)

❖ PIC settings:

- Particles at wall are lost.
 Spatial grid (300 cm)
- > 6000 (dx = 0.5 mm). Temporal grid
- > Timestep : $dt = \frac{T_{HF}}{250}$ (1.63 ps @ 2.45 GHz) (?).

- ***** External fields and other settings
- Magnetic fields: analytical formulation (?).
 - > Linear or exponential profile.

$$> B_0 = 21870 G, \frac{dB}{dz} = 5 - 60 \frac{G}{cm}$$

• \P n_e due to \P r_{Lar} when moving towards \P B taken into account in charge density calculations.

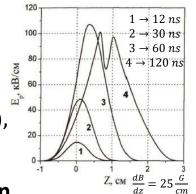
(?): settings not specified, hence supposed equal to previous step or most probable approach.

Initial conditions: hypothesis from previous calculations

- **Gaussian** spatial distribution of e^- and p^+ .
- Disk-shaped plasma (?).

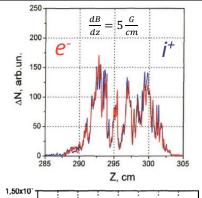
Values used for specific simulation.

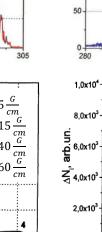
Input settings

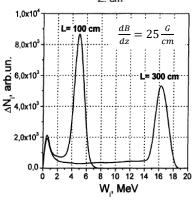

- $W_e = W_{e,\perp} (= 12 \, MeV)$
- $W_i = 0$
- $n_e = 5 \cdot 10^{10} 5 \cdot 10^{11} \ cm^{-3}$ (?) $(= 1 \cdot 10^{11} \ cm^{-3})$
- $\chi = 5 80\%$

Kube thesis – Proton acceleration (1D ES PIC) - Results

Linear profile

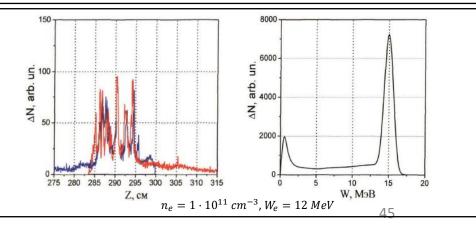

- Induced field: $E_{ind, MAX} = 108 \ kV/cm$
- Magnetic field gradient:


 - $\sim \frac{d\vec{B}}{dz} \rightarrow$ charge separation with $n_e \approx n_i$ central region (10-12 cm), $\Downarrow N_p$ accelerated (20%), $\Uparrow W_i$ (16 MeV with L = 3 m).
 - $ightharpoonup
 eal_{dz}
 ightharpoonup$ plasma disintegration ($\mathbb{Q}\mathbb{Q} N_p < 1\%$), $\mathbb{Q}\mathbb{Q} W_i$.
- More results on paper:
 - $> n = 3 \cdot 10^{12} cm^{-3}, W_e = 10 \text{ MeV}, B_0 = 1.75 \text{ T},$ $> 7B = 100 \text{ G/cm}, \chi = 80\%, L = 100 \text{ cm} \rightarrow W_i = 200 \text{ MeV}$



For all pictures: $n_e = 1 \cdot 10^{11} \text{ cm}^{-3}$,

 $W_e = 12 MeV$



Exponential profile

- More compact acceleration with same parameters compared to linear profile.
 - \succ L = 300 cm, 18% N_p accelerated, $W_i = 15~MeV$, narrower energy spectra.

Kube thesis – Proton acceleration (3D EM PIC)

3D electromagnetic PIC code

- **Populations**: 100000 macroparticles per species (e^- relativistic, p^+ non-relativistic).
- Spatial grid: $dx = 2.84 \ or \ 1.42 \ mm \ (\lambda_{D,max} \approx 0.1 \ mm)$.
- Temporal grid: $dt = \frac{T_{HF}}{250}$ (1.63 ps @ 2.45 GHz) (?).
- External fields: analytical formulation (?) with $\frac{d^2B}{dz^2} > 0$.
- IC: Gaussian spatial distribution (?) of e^- and p^+ for disk-shaped plasma (?).

Results

- \exists optimal $\left(\frac{dB}{dz}\right)_{opt}$ for given IC.
 - $> \frac{dB}{dz} > \left(\frac{dB}{dz}\right)_{opt}$: $\mathbb{Q} \mathbb{Q} N_p$ (shaking-off: charge separation is too fast), $W_i < W_{i,opt}$.
 - $> \frac{dB}{dz} < \left(\frac{dB}{dz}\right)_{opt}$: 1 N_p , V_i (plasma remains too compact).
- Energy lower than theoretical calculations.
- More stable than relativistic e⁻ rings.

(?): settings not specified, hence supposed equal to previous step or most probable approach.

Kube thesis – Proton acceleration (3D EM PIC) - Settings

❖ Populations:Electrons *e*⁻

- > Relativistic.
- \triangleright $N_e = 100000 \ macroparticles$.

Protons p⁺

- ➤ Magnetized and non-relativistic.
- $> N_p \le 100000 \ macroparticles.$

$$\chi = \frac{N_e - N_p}{N_e} \cdot 100 \le 100\%$$

3D electromagnetic (EM) PIC

❖ PIC settings:

- Particles at wall are lost.
 - **Spatial grid** (5 x 5 x 100 cm)
- \Rightarrow 32 x 32 x 352 (dx = 2.84 mm).
- \triangleright 64 x 64 x 704 (dx = 1.42 mm).
- > Timestep : $dt = \frac{T_{HF}}{250}$ (1.63 ps @ 2.45 GHz) (?).

- ***** External fields and other settings
- Magnetic fields: analytical formulation (?).

$$\geq \frac{d^2B}{dz^2} > 0, \ \frac{dB}{dz} = 5 - 40 \frac{G}{cm}.$$

(?): settings not specified, hence supposed equal to previous step or most probable approach.

Initial conditions: hypothesis from previous calculations (?)

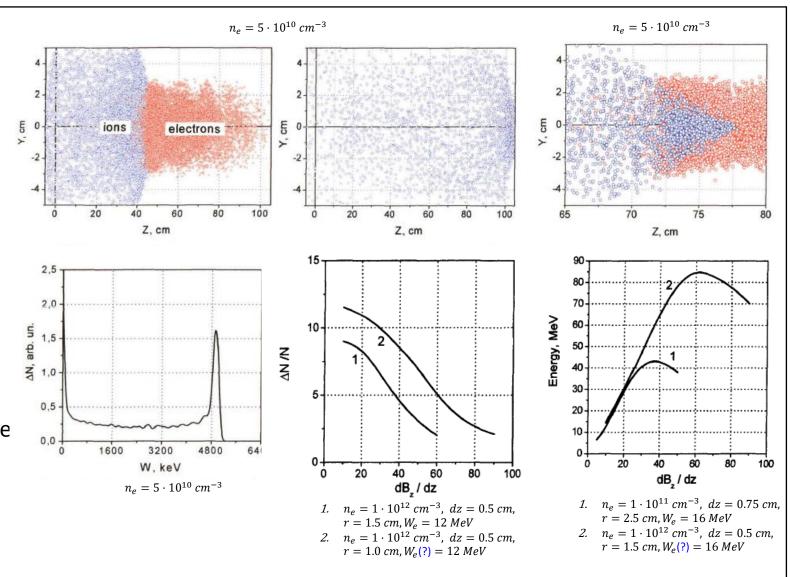
- **Gaussian** spatial distribution of e^- and p^+ (?).
- Disk-shaped (*r*, *dz*) plasma (?).

Values used for specific simulation.

Input settings

- $< W_e \ge 8 \, MeV \, (= W_{e,\perp}?)$
- $W_i = 0$ (?)
- $n_e = 5 \cdot 10^{10} 5 \cdot 10^{11} \ cm^{-3}$ (?)
- dz = 0.75 cm
- r = 2.5 cm
- $\chi = 10\%$

47


Kube thesis – Proton acceleration (3D EM PIC) - Results

General considerations

- Axial separation of charges (partial/almost total) leads to p^+ acceleration by induced field E_{ind} .
 - Not captured p^+ ($\approx 85-90\%$) are scattered at wall.
- Energy **lower than theoretical** calculations (5 MeV with L = 1 m @ given IC).
- More stable than relativistic e⁻ rings.

Effect of magnetic field gradient

- \exists **optimal** $\left(\frac{dB}{dz}\right)_{opt}$ for given IC.
- $\frac{dB}{dz} > \left(\frac{dB}{dz}\right)_{opt}$: $\mathbb{Q}\mathbb{Q}$ N_p (shaking-off: charge separation is too fast), $W_i < W_{i,opt}$.
- $\frac{dB}{dz} < \left(\frac{dB}{dz}\right)_{opt}$: 1 N_p , $\downarrow W_i$ (plasma remains too compact).

Kube thesis – Outcome and problems

Interesting outcome

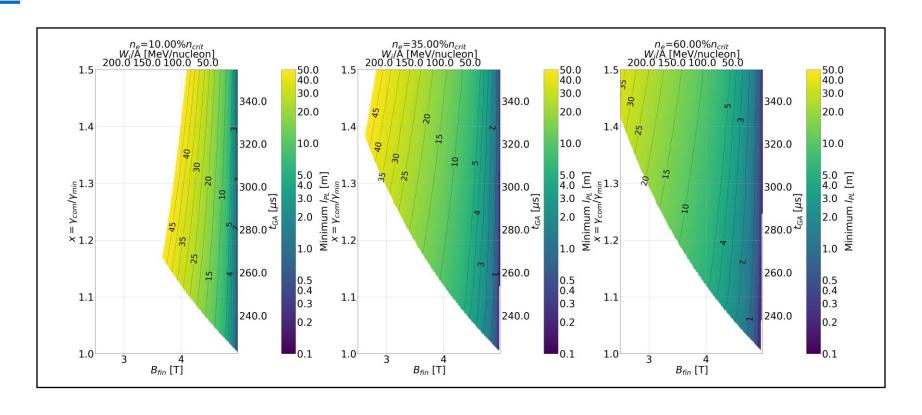
ECRIPAC seems to work!

1st Phase: SGA

- Plasma leads to much better trapping than pure electron beam.
- Settings for **improving SGA**: \hat{u} r_0 , \mathbb{J} A (probably \mathbb{J} A/Q ratio). \rightarrow Same as my theoretical study!
- Parameters to tune: E_{HF} , dB/dt.

2nd Phase: Plasma compression

- Minimize t_{SGA} to obtain correct W_e to improve compression.
- Attention to critical value of dB/dt.


3rd Phase: PLEIADE

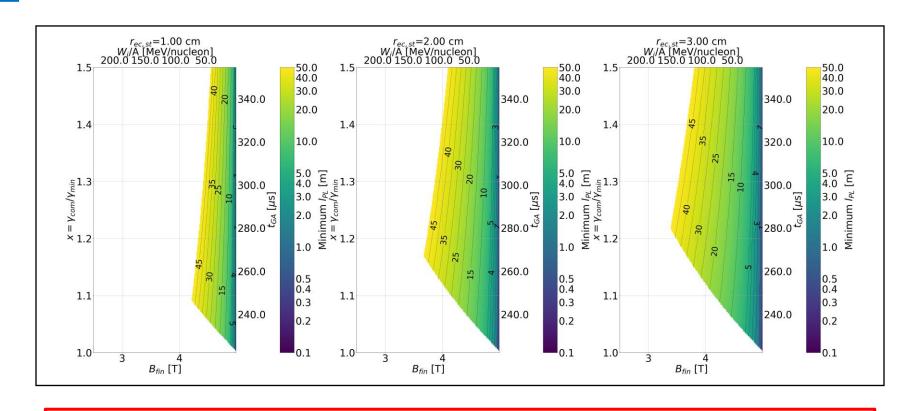
- Tune dB/dz to optimal value.
- Choose correct field profile.

Problems

- Results are not reproducible: missing information, especially for IC and field configuration.
- Doubt on grid precision: $dx_{grid} > \lambda_D$
 - > SGA/compression: $dx_{grid,min} = 0.78 \text{ mm}$, $\lambda_{D,max} \approx 0.1 \text{ mm}$.
 - > **PLEIADE**: $dx_{grid,min} = 0.5 \text{ mm}, \ \lambda_{D,max} \approx 0.1 \ mm.$
- Doubt on timestep precision: $dt \approx 1.6 \ ps$, CFL condition (3D, $dx = \lambda_{D,max}$) $\approx 0.2 \ ps$
- Necessity for 3D PIC: not axisymmetric rotating bunch in SGA.
- Not self-consistent: PLEIADE phase starts from hypothesis and not previous simulations' data.
- **Unphysical assumptions**: how can you generate 12 MeV electrons with 2.1 T maximum fields?

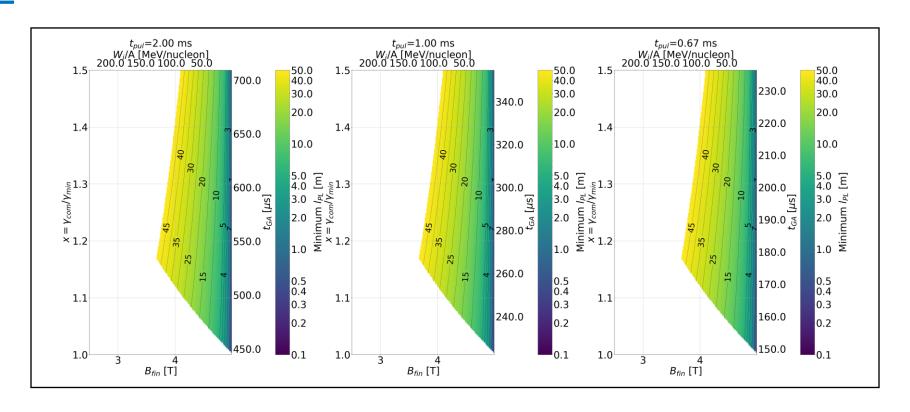
Parameter space: n_e

$\hat{\mathbf{n}}_{e}$:


- \P \P Stability region surface (stability at \P B_{fin} and \P W_i/A).
- \Join Possible problem near critical density n_{cr} ?

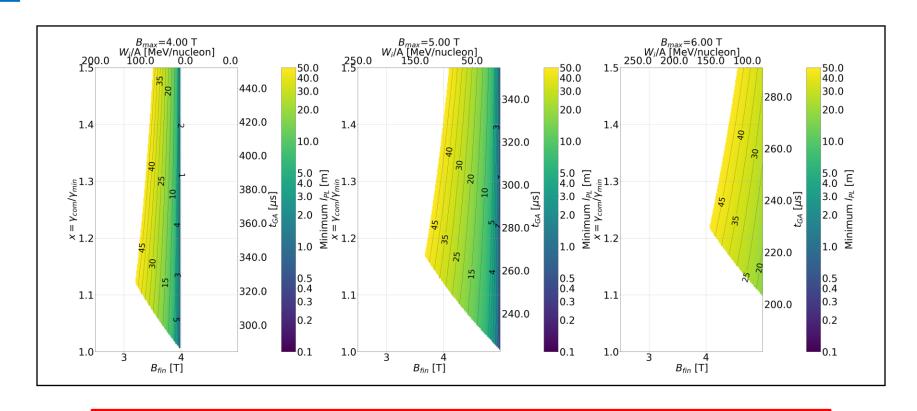
Parameter space: $r_{disk,0}$

$\hat{r}_{disk,0}$:


- **\dip 1 Stability** region surface (stability at \mathbb{Q} B_{fin} and \mathbb{Q} W_i/A due to \mathbb{Q} N_e).
- **※ û** Cavity dimensions → Technological complications.
- N.B.: $r_{cavity} > r_{disk,0} + r_{Lar,GA}$.

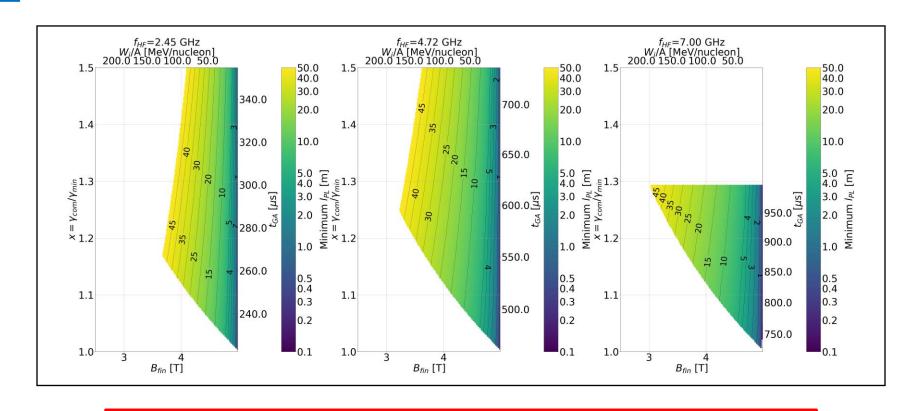
Parameter space: t_{pul}

U t_{pul} :


- \P \P t_{GA} (same γ_{lim} required to accelerate ions).
- Risk to **not respect adiabatic** hypothesis.
- N.B.: no significant effect, affects only $t_{\it GA}$.

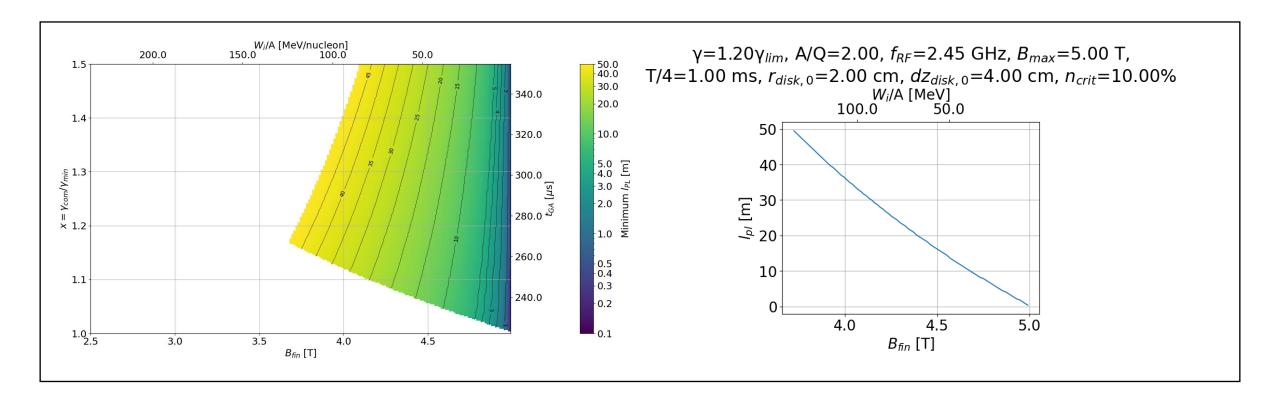
Parameter space: B_{max}

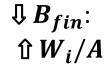
 $\hat{\mathbf{b}} \; \boldsymbol{B_{max}}$:


- $extstyle lackbr{\psi} \ extstyle oldsymbol{W}_i/A$ and $ar{\mathbb{Q}} \ oldsymbol{t}_{GA}$.
- 🕂 🕆 Stability region surface.
- \Rightarrow Shift stability region to \widehat{u} B_{fin} \Rightarrow Technological complications.

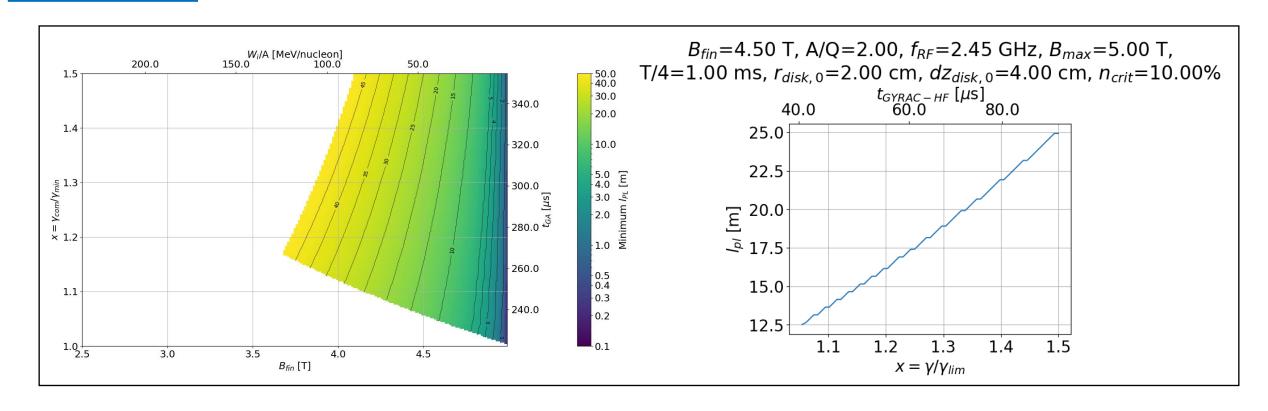
Parameter space: f_{HF}

$\hat{\mathbf{f}} f_{HF}$:


- 🕂 🕆 Stability region surface (stability at $\mathbb{Q}\ B_{fin}$ and $\mathbb{Q}\ W_i/A$) .
- \bigstar î t_{GA} (because î B_{ECR}).
- \Join If $\gamma_{e,GA} > \gamma_{e,com}$ it can \Im **Stability** region surface.



Magnetic field at end of PLEIADE



Electron energy at end of GYRAC - Compression

- \bigstar î t_{GA}
- lpha û l_{PL}
- N.B.: more a requirement than a parameter. **Best is lowest value** which allows stability

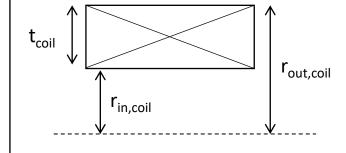
ECRIPAC parameters effects

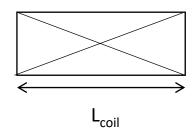
*WP: Wave-plasma interaction

Parameter	Parameter behaviour	Advantages	Disadvantages		
B_{max}	Û	• $\mathop{\bigcirc} W_i/A$ • $\mathop{\bigcirc} t_{GA}$ • $\mathop{\bigcirc} l_{PL}$	• $\mathop{ \widehat{}} olimits_{fin}$ required		
t_{pul}	$\hat{\mathbb{T}}$	$ullet$ $\begin{cases} ullet$ t_{GA}	 Weaker adiabatic hypothesis 		
f_{HF}	Û	$ullet$ l_{PL}	• $\mathcal{1} t_{GA}$ • Can $\mathcal{1}$ stability region		
B_{fin}	$\hat{\mathbb{T}}$	• $\bigcirc W_i/A$	• Ωl_{PL}		
A/Z	Û	$ullet \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	-		
n_e	①	$ullet$ $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	• $\mathit{WP*}$ problems near n_{cr}		
$r_{disk,0}$	仓	$ullet$ $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	• \hat{v}_{cavity}		

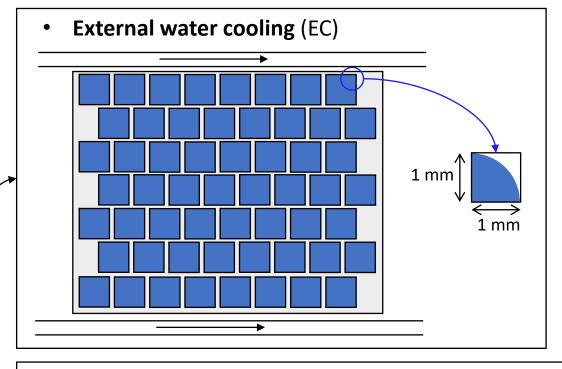
ECRIPAC suited to accelerate highly-charged ions using a dense plasma.

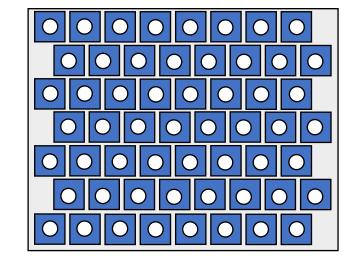
> External fields must be tuned according to accelerator applications.

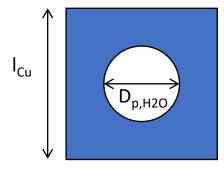




Pulsed coil design


Basic geometry




Furter details:

- Uniform epoxy thickness
- Conductor volume correction

Internal water cooling (IC)

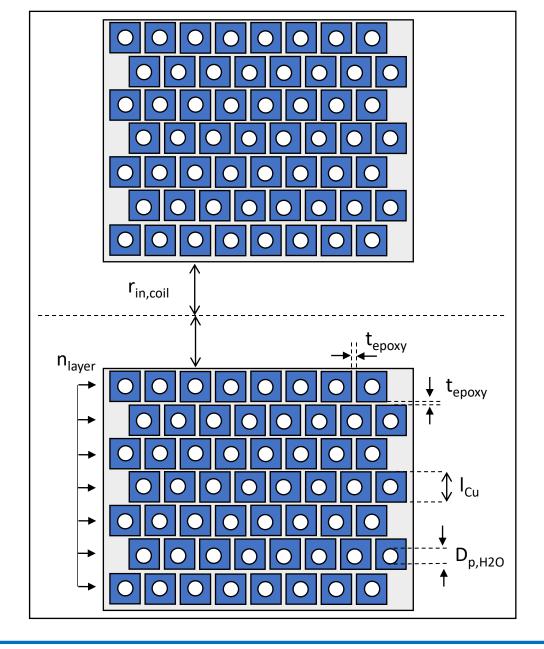
- Water channel
- Conductor
- Epoxy impregnation

Preliminary pulsed coil design

Design coil Hp:

- Internal water cooling, copper windings.
- Uniform epoxy thickness.

Inputs:


- r_{in,coil}
- n_{layer}
- N_{winding}
- |_{Cu}
- t_{epoxy}

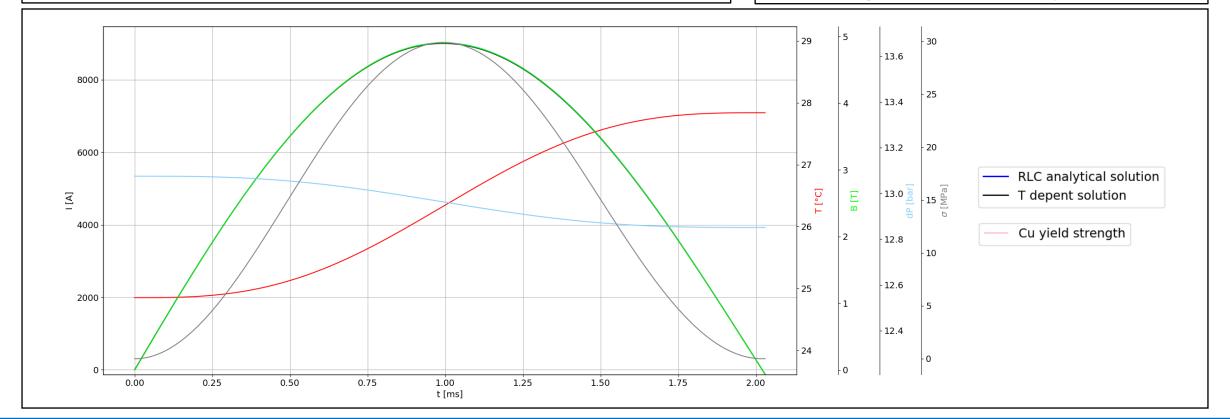
- D_{p,H2O}
- B_{max}
- High Voltage (HV)
- Q_{H2O}

Requirements:

- $t_{coil} \approx 2 \text{ ms } (2 \cdot t_{pul})$
- $\c C < 1 \text{ mF}$
- $\Delta P_{H20} < 15 \text{ bar}$

- \mathbb{J} W_{heat}

Possible pulsed coil prototype

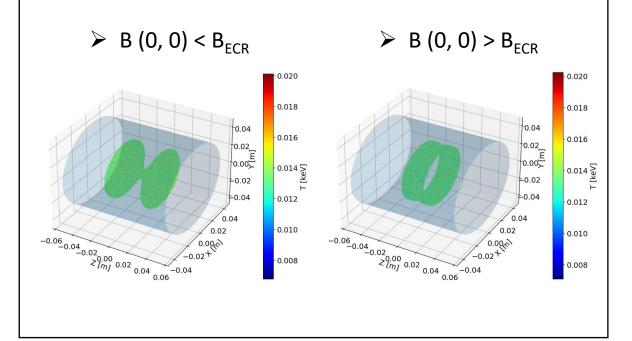

Inputs:

- $r_{in,coil} = 5 cm$
- $n_{layer} = 7$
- $N_{\text{winding}} = 59$
- $t_{epoxy} = 0.5 \text{ mm}$ HV = 10 kV
- $I_{Cu} = 4 \text{ mm}$ $B_{max} = 4.91 \text{ T}$

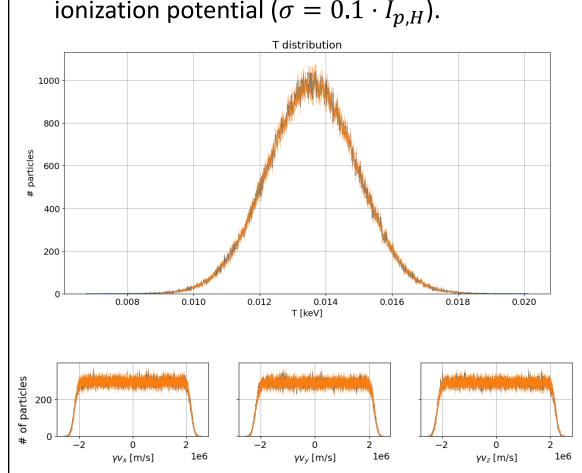
 - $D_{p,H2O} = 2 \text{ mm}$ $Q_{H2O} = 0.4 \text{ l/min}$

Requirements:

- $T_{\text{pulse}} = 4.04 \text{ ms}$
- C = 0.92 mF
- $\Delta P_{H20} = 13.08 \text{ bar}$
- $\Delta T_{H20} = 2.99 \, ^{\circ}C$
- $W_{heat} = 3.03 \text{ kJ}$



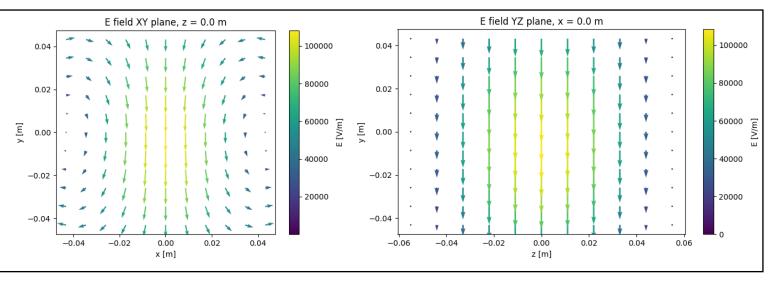
3D Monte Carlo PT code – IC (for [3-5])

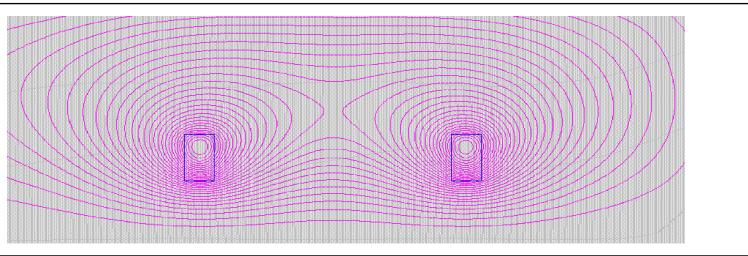

Position

- Satisfying $0.98 \cdot B_{ECR} \le B \le 1.02 \cdot B_{ECR}$ inside centered sphere of radius 2.8 cm.
- Alternative approach: consider only particles which remain confined for 10 μs in the starting mirror trap

Energy

• Gaussian distribution around hydrogen ionization potential ($\sigma = 0.1 \cdot I_{p,H}$).



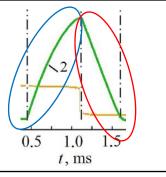

3D Monte Carlo PT code – E and B field modeling (for [3-5])

• **TE111 mode**: analytical formulation (both E and B fields).

 $ightharpoonup f_{HF} = 2.45 \text{ GHz}, R_{cavity} = 4.315 \text{ cm}, L_{cavity} = 11 \text{ cm}, E_{HF} \approx 1 \text{ kV/cm}$

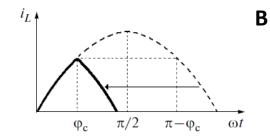
- Static field coils: field maps through Poisson Superfish.
 - R from 4.82 cm to 8.32 cm, z from ± 6 cm to ± 7.5 cm

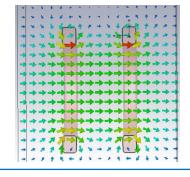


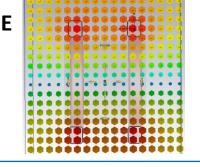


3D Monte Carlo PT code – E and B field modeling (for [3-5])

Pulsed field coils (B + induced E)

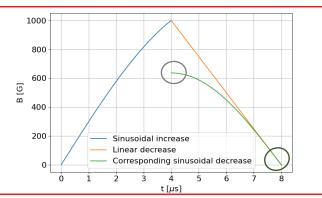

- Field maps in frequency domain from CST studio or COMSOL.
- R from 6.18 cm to 7.23 cm, z from ± 3.28 cm to ± 4.12 cm.
- Sinusoidal increase.
- Linear decrease.





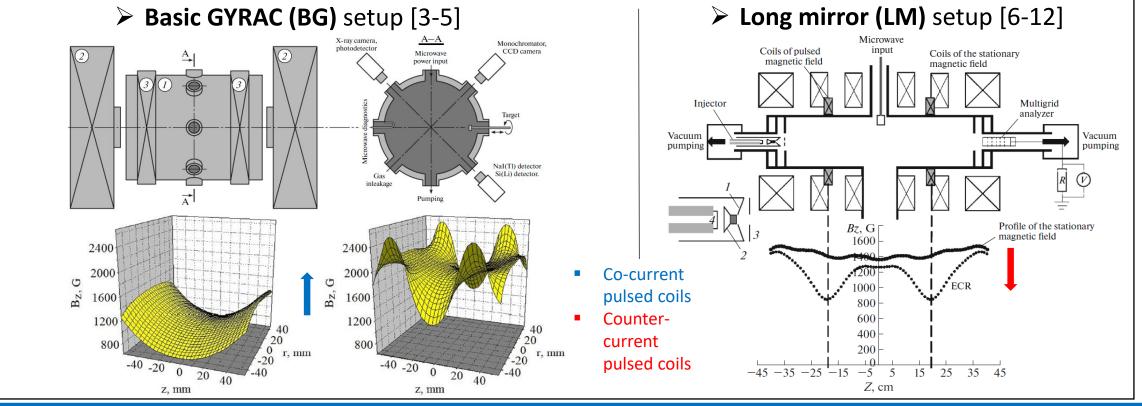
Sinusoidal increase

- $B_{pulsed,max}$ at commutation angle $\phi_c = \pi/3$
- Rise time $t_{pulsed} = 4 \mu s$: $f_{pulsed} = 41.67 \text{ kHz}$, $B_{\pi/2} = 2 \cdot B_{pulsed,max} / \sqrt{3}$



Linear increase

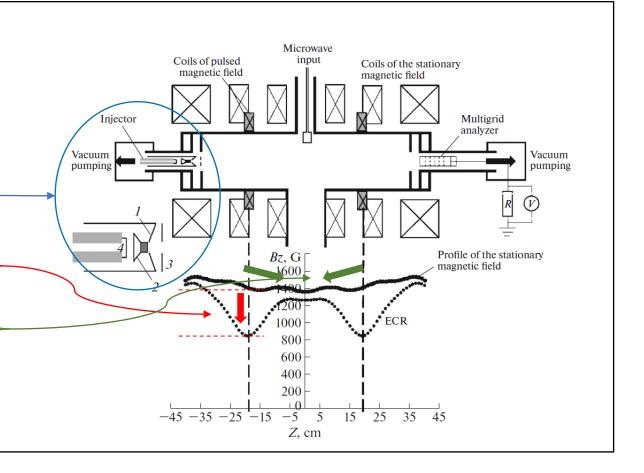
- **B:** linear interpolation between B_{pulsed,max} map and null field.
- **E:** Field maps in frequency domain of corresponding sinusoidal decrease for small time values $(\sin(x) \approx x, \cos(x) \approx 1)$ $f_{pulsed} = 62.5$ kHz, $B_{\pi/2} = 2 \cdot B_{pulsed,max}/\pi$



Available literature: GYRAC numerical simulations

- Orozco team (Colombia) MC PT code in SEA, both spatially homogeneous magnetic field and magnetic mirror trap [1,2]. \rightarrow Used for preliminary validation.
- Andreev team (Russia) ES PIC code, magnetic mirror trap (GA + Decompression), comparison with experimental results.

 Most complete results for main comparison.



Andreev team (LM) – Paper [6-12]

Numerical and experimental results for processes in common with ECRIPAC **not** present in previous paper

Physical insights and possible material for code validation

- Injection of external electron beam inside resonant cavity
- Current in pulsed coils in opposite direction with respect to main coils
- Experimental observations of ion energy increase due to PLEIADE effect
- Further phenomena: electron bunches merging,
 TE118 cavity mode ...

MC code validation summary

✓ Good agreement

X Small discrepancies

Otero team – Paper [1,2]

- Limitations and problems
- [1]: Wrong reported implementation for TE011.
- [2]: Unreliable data → Impossible to reproduce results.

❖ Validation

- [1] Single particle: Comparison of γ_e and r_{Lar} for $\neq \alpha$.
- [1] Electron cloud: Final γ_e distribution, Trapping efficiency and deconfinement.
- [2] Comparison with Golovanivski analytical (same approach): Good agreement with plane wave HF, Premature de-trapping with TE_{111} HF.

Andreev team – Paper [3-5]

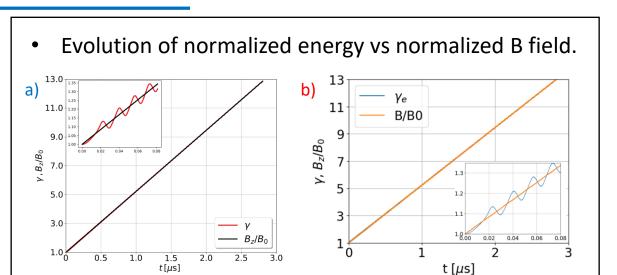
! Limitations and problems

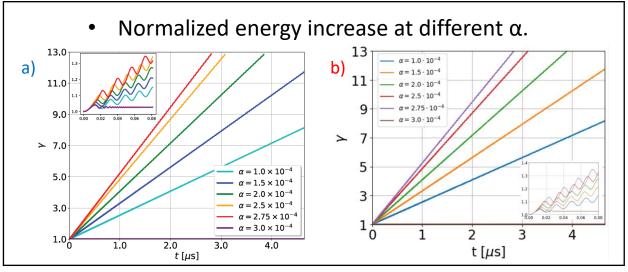
- No data for magnetic field distribution.
- Unclear initial condition.
- Electrostatic interactions (PIC).

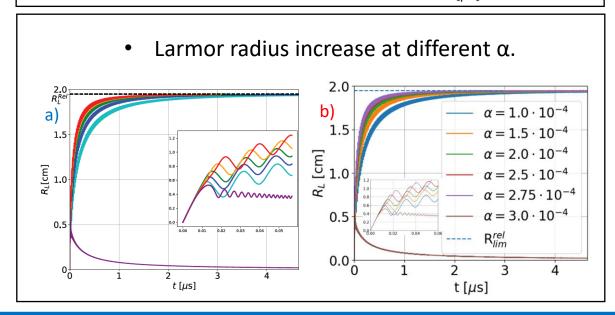
Validation

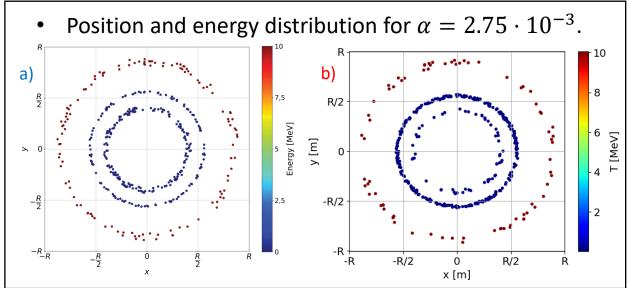
- **Electron behaviour**: γ_e and r_{Lar} evolution, $W_{e\perp}$ accumulation, Electron de-trapping, Electron cloud distribution.
- **Deconfinement spectrum**: GA and decompression deconfinement peaks, $\langle W_e \rangle$ loss spectrum.
- Energy spectrum: $\Downarrow W_e$ region (ECR electrons), $\Lsh W_e$ region (De-trapped electrons), $\Lsh \Lsh W_e$ region (Trapped electrons \rightarrow Depends only on B_{pu}).
- Trapping efficiency: Depends on B_{in} and is maximum at optimal B_{in} .

More details in backup slide due to time constraints.








MC code preliminary validation: Paper [1]

- a) Paper results
- b) My results

Orozco team – Paper [1]

• **Simulation**: PT code in single-electron approximation, TE011 mode at 2.45 GHz and homogeneous magnetic field $B(t) = B_0(1 + \alpha \tau)$.

Results:

- 1. Physical quantities evolution for electron at rest in (0, R/2, 0) for $10^{-4} < \alpha < 3 \cdot 10^{-4}$
- 2. Evolution of ring-like cloud of electrons at rest in (3R/8 < r < 9R/16) for $10^{-4} < \alpha < 2.75 \cdot 10^{-4}$

α	Data	% CP	% UCP	% EP	T_{max} [MeV]
$1.0 \cdot 10^{-4}$	Mine	96.1	0	3.9	3.67
	Otero	95.9	0	4.1	3.64
$1.5 \cdot 10^{-4}$	Mine	57.6	0	42.4	5.49
	Otero	68.4	0	31.6	5.45
$2.0 \cdot 10^{-4}$	Mine	33.1	0	66.9	7.32
	Otero	48.8	0	51.2	7.27
$2.5 \cdot 10^{-4}$	Mine	19.3	0	80.7	9.15
	Otero	35.3	0	64.7	9.08
$2.75 \cdot 10^{-4}$	Mine	7.8	33.3	58.9	10.07
	Otero	12.3	29.2	58.5	10

CP: captured particles, UCP: not captured particles, EP: escaped particles

Problems:

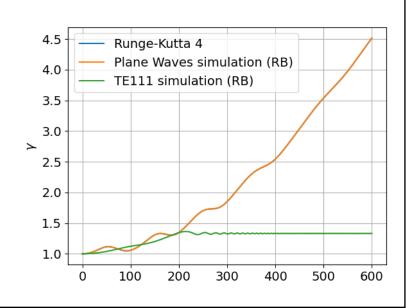
- Discrepancies in electron distribution.
- Wrong analytical formulation of TE011 mode in the paper.

Orozco team – Paper [2]

• **Simulation**: PT code in single-electron approximation, TE111 mode at 2.45 GHz.

Results:

- 1. Comparison of numerical solution with Golovanivski analytical solution (PDE system solved with RK-4) for given initial condition and homogeneous magnetic field $B(t) = B_0(1 + \alpha \tau^2)$.
- 2. Evolution of spherical electron cloud (R = 2.28 cm, Maxwellian energy distribution around case 1 = 2 eV and case 2 = 5 keV) inside mirror trap increasing as $B(t) = B_0(1 + \alpha \tau)$ and $\alpha = 7 \cdot 10^{-4}$.
 - Problems: Completely unreliable data Impossible to reproduce results.
 - Initial condition of 1) are wrong.
 - \triangleright Coil data provided in the paper do not produce $\alpha = 7 \cdot 10^{-4}$.


MC code preliminary validation: Paper [2]

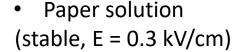
Unreliable data, impossible to reproduce results.

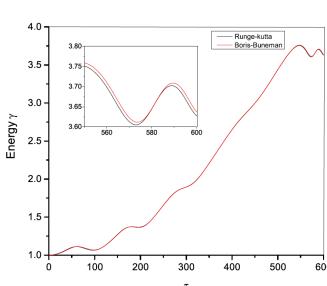
- Same validation approach: Comparison of numerical solution with Golovanivski analytical solution (PDE system solved with RK-4) for given initial condition and homogeneous magnetic field $B(t) = B_0(1 + \alpha \tau^2)$
- Hp: plane wave approximation

$$\begin{cases} \frac{d\gamma}{d\tau} = -g_0 \left(1 - \frac{1}{\gamma^2}\right)^{\frac{1}{2}} \cos \phi \\ \frac{d\phi}{d\tau} = \frac{b - \gamma + 1}{\gamma} + g_0 (\gamma^2 - 1)^{-\frac{1}{2}} \sin \phi \end{cases}$$

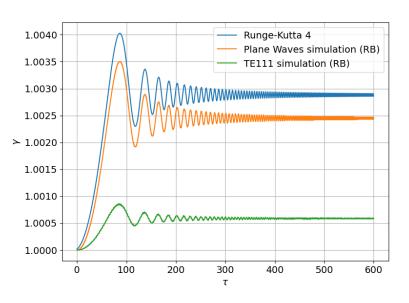
- NR: Not relativistic
- RB: Relativistic Boris algorithm

- ✓ Good agreement with plane waves simulation.
- Early de-trapping with TE111 simulation.

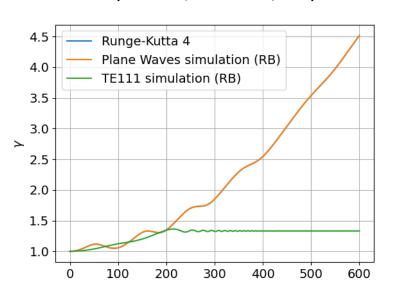

Orozco team – Paper [2] validation


For given initial condition, **GYRAC should not be theoretically possible**:

$$\mu_{0,NR} = \frac{2b}{g_0^2 \tau^2} = 1.53$$
, stability for $\mu_{0,NR} < 1$


NR: Not relativistic

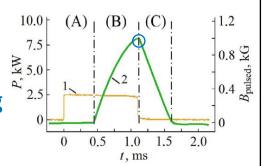
RB: Relativistic Boris algorithm

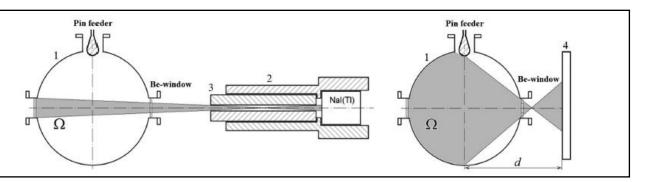


Simulation solution
 (NOT stable , E = 0.3 kV/cm)

 Test at stable solution (stable, E = 3 kV/cm)

Good agreement of analytical solution (plane waves approximation) and TE111 mode numerical solution **not** observed in simulations.




Andreev team (BG) – Paper [3-5]

- **Simulation**: ES PIC, TE111 mode at 2.45 GHz and magnetic mirror trap, plasma generated inside cavity through ECR.
 - Same parameters as experimental setup except pulsed field rise time (from \approx 500 μs to 5 μs).
- > HF wave
- Pulsed field
- \triangleright Commutating angle ≈ π/3

Experimental diagnostics:

- Bremsstrahlung measurement.
- X-ray imaging.

GYRAC parameters study

- Variation of B_{in} (0,0): 860 G, 875 G, 900 G, 925 G, 960 G (Nom.)
- Variation of B_{pu}: 800 G, 1000 G c1200 G
- **Variation of E_{HF}:** 0.8 kV/cm, 1.0 kV/cm (**Nom.**), 1.2 kV/cm

Problems and differences

- No data for magnetic field distribution.
- Unclear initial condition.
- Electrostatic interactions (PIC).

3D MC PT code – Simulation details (for [3-5])

Pulsed field time-behaviour

- Frequency = 41.67 KHz
- Commutation angle = $\pi/3$
- Linear field decrease.

Simulated time constants

- $T_{max} = 8 \mu s$
- $T_{gyrac} = 4 \mu s$
- T_{ECR} = None (IC-AP) 10 μ s (IC-C)
- Time-step saving (MTS only) = 0.2 μs

Statistics

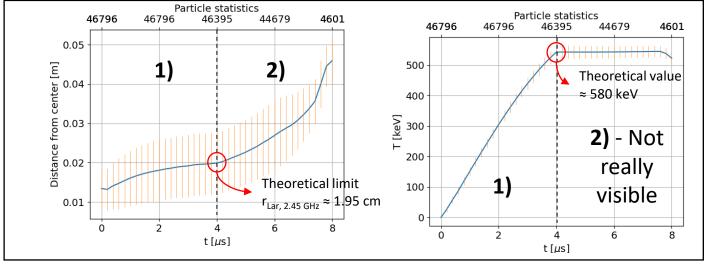
- IFTS = 5e5 particles
- MTS = 1e5 particles

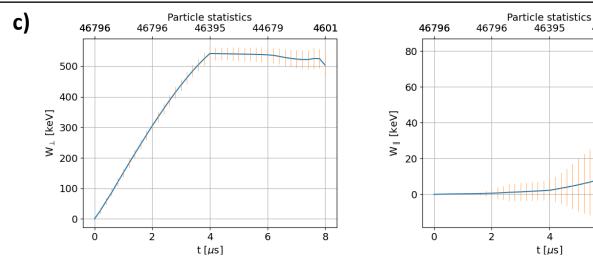
Particle initial position

- $0.98 \cdot B_{ECR} \le B_{e0} \le 1.02 \cdot B_{ECR}$
- All particles (IC-AP) or confined for 10
 μs (IC-C): No significant difference

Configuration	B _{initial} (0,0) [G]	B _{pulsed} [G]	E _{HF} [kV/cm]
Nominal	960	1000	1
Bin860	860	1000	1
Bin875	875	1000	1
Bin900	900	1000	1
Bin925	925	1000	1
Bpu800	960	800	1
Bpu1200	960	1200	1
Bpu1500	960	1500	1
Ehf0.8	960	1000	0.8
Ehf1.2	960	1000	1.2

IFTS: initial and final time-steps. - **MTS**: multi time-steps.

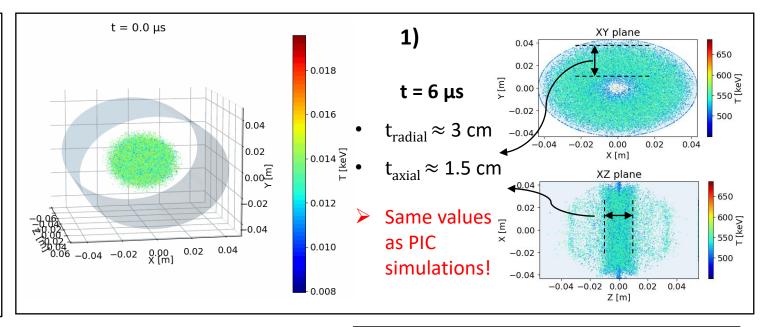


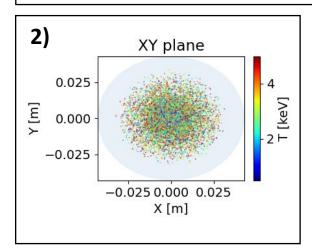

Trapped electron cloud

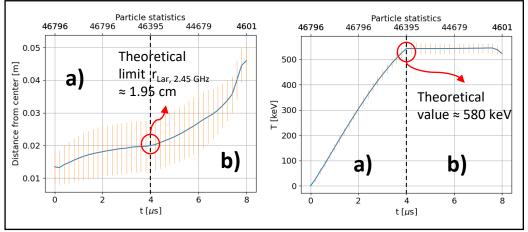
- Theoretical behaviour
- 1) GA: $\hat{\mathbf{I}}$ bunch dimension, $\hat{\mathbf{I}}$ $T_{e^-,av}$.
- 2) Decompression: 1 bunch dimension, 1 $T_{e^{-},av}$.
 - Observed behaviour
- a) Counter clockwise rotation of electron cloud (N) \rightarrow Verified.
- b) Only a fraction of electron trapped in $GA(N+E) \rightarrow Next slides$.
- c) Accumulation of \bot electron energy during GA (N+E).

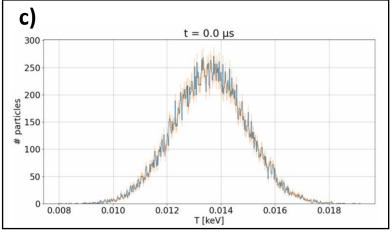
N: Numerical results. - E: Experimental results.

Bin875 configuration used for higher statistics on trapped electrons.

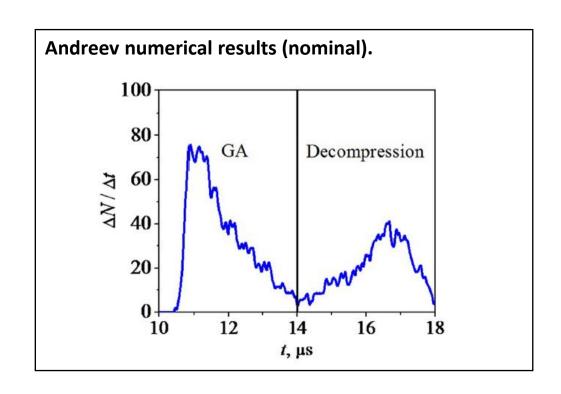

4601

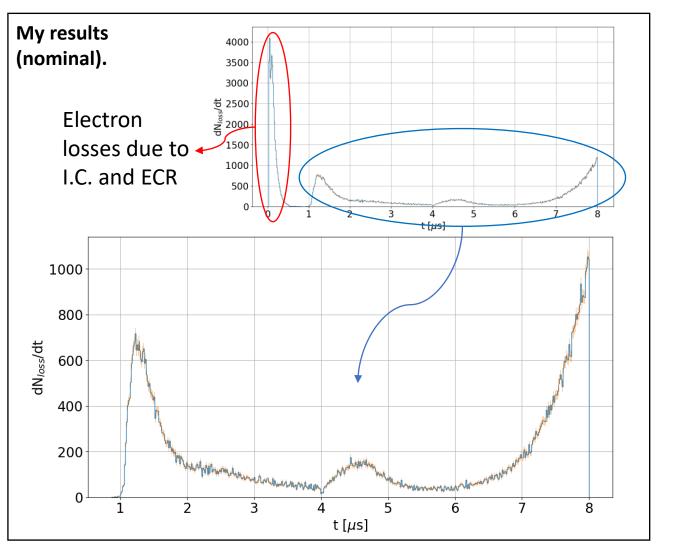

Electron cloud distribution


- **1) Trapped electrons**: ring-like structure during decompression.
- **2) Non-trapped electrons**: mostly located in the center.

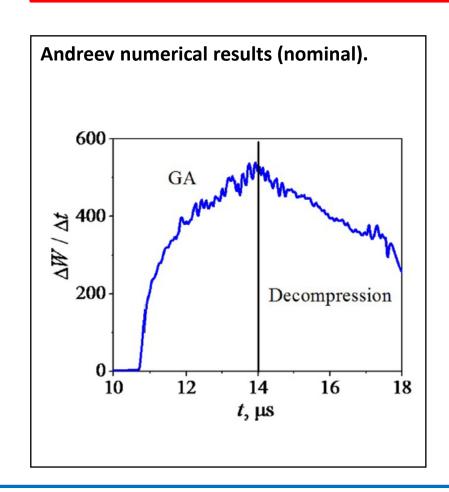

Electron behaviour

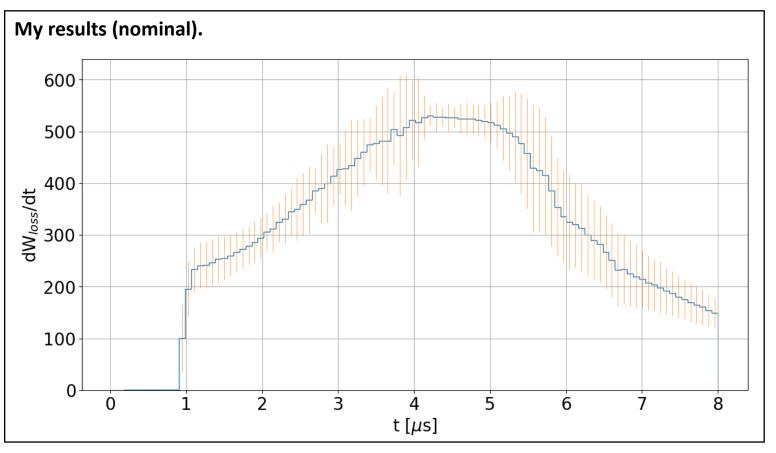
- a) GA: $ext{the } r_{bunch}$, $ext{the } T_{e^-,av}$.
- b) Decompression: $\hat{1} r_{bunch}$, $\mathbb{J} T_{e^-,av}$.
- c) De-trapping during GA.





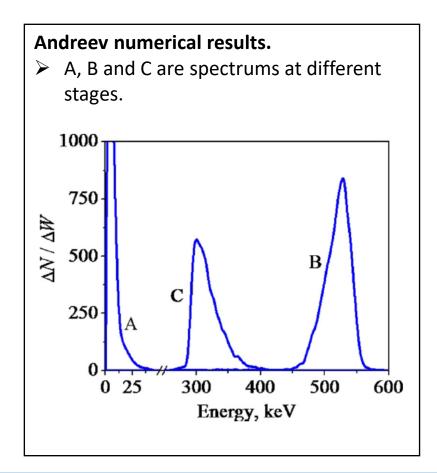
Electron losses both in Gyromagnetic
Autoresonance (GA) and decompression.
Possible discrepancies: PIC, low statistics.

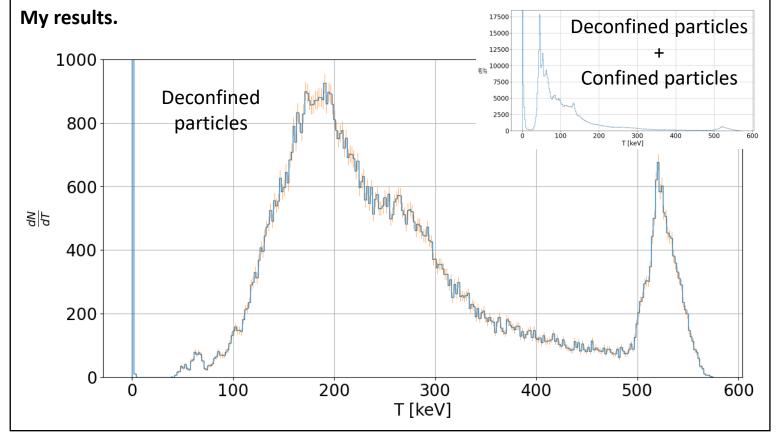




Maximum energy loss at the end of GA, decrease during decompression.

 \triangleright Good agreement for **peak** (≈ **500 keV**), final value differs by ≈ 100 keV.

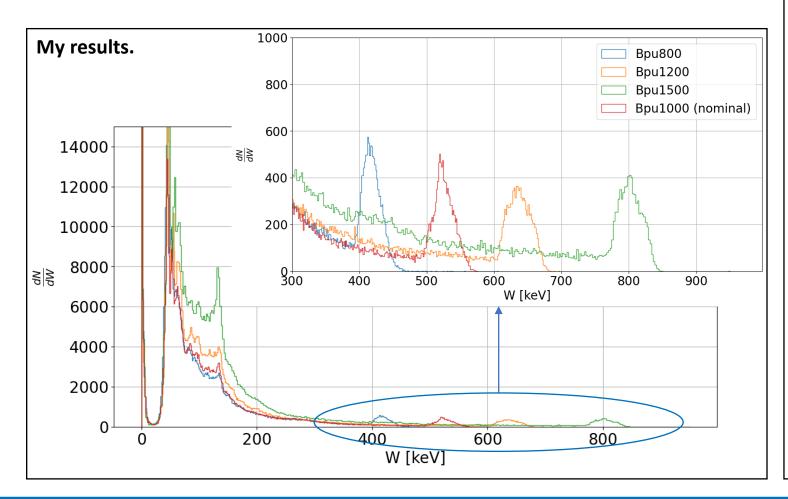


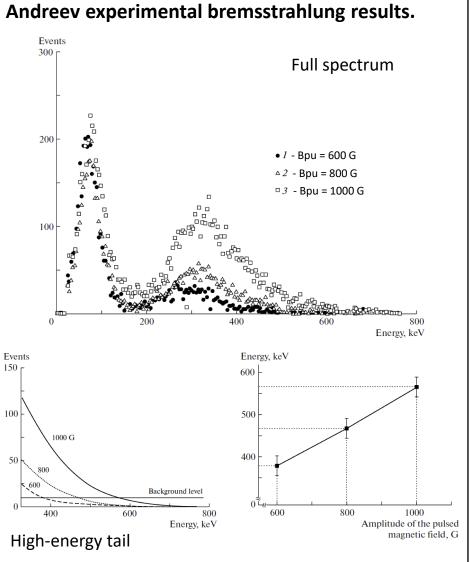


Spectrum peak of trapped electrons at \approx **520 keV.**

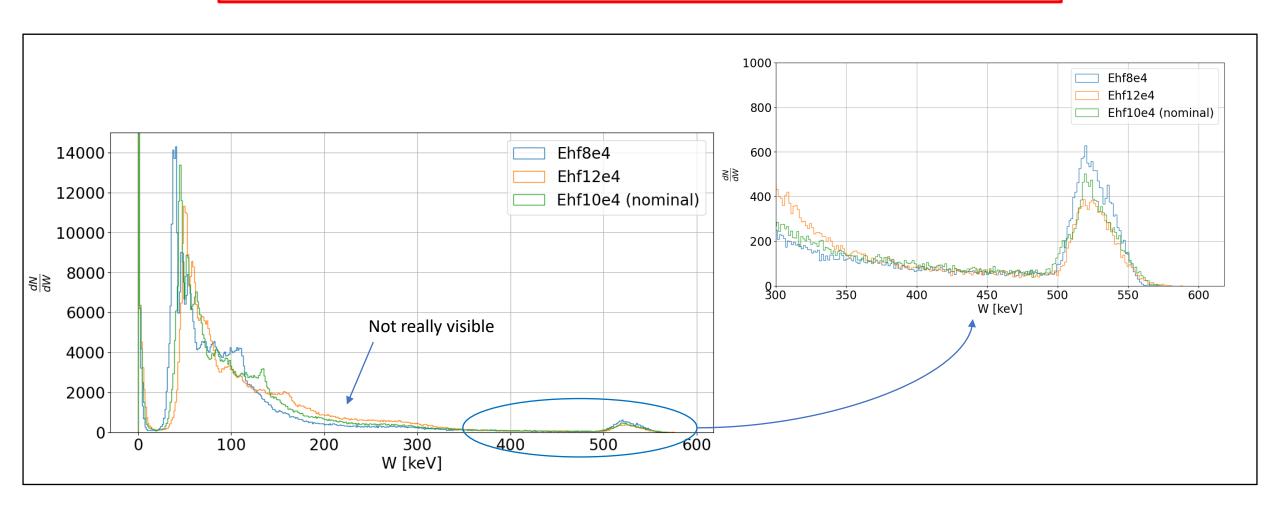
Very good agreement between simulations.

- A: Initial plasma electrons (due to ECR).
- B: Trapped electrons at end of GA.
- C: De-trapped electrons.

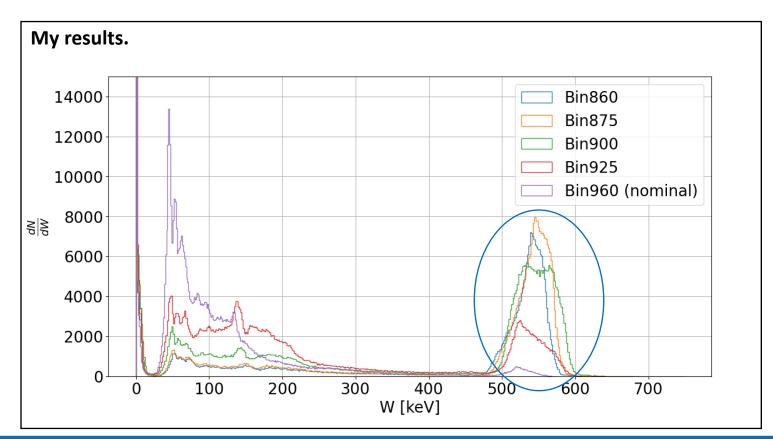


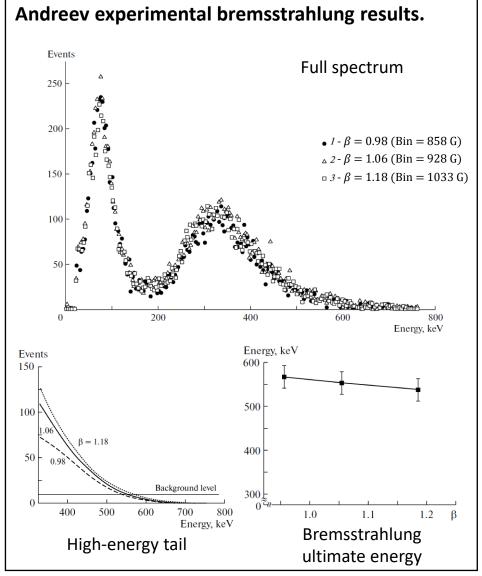


Electron energy **only** depends on amplitude of B_{pulsed}.



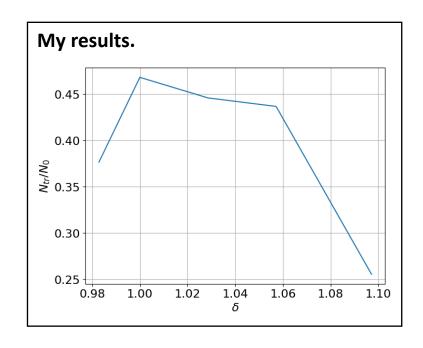
1 E_{HF} does **not** increase electron energy but leads to energy spreading.

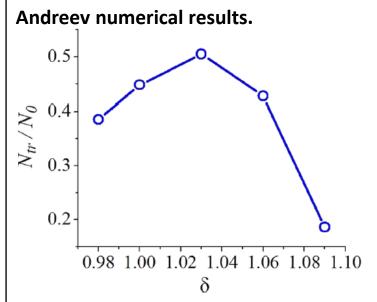




Electron energy does **not** depends on B_{in}.

> Trapping efficiency in GA influenced by B_{initial}.

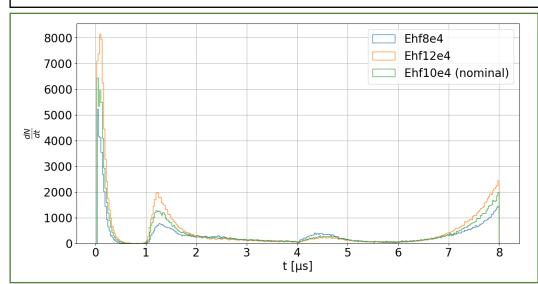


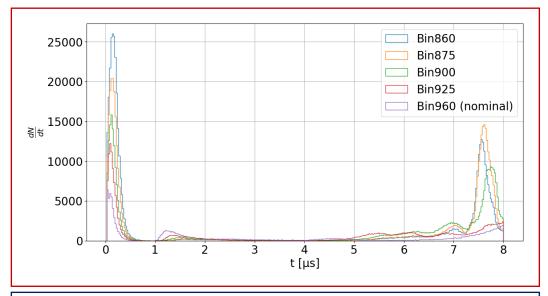


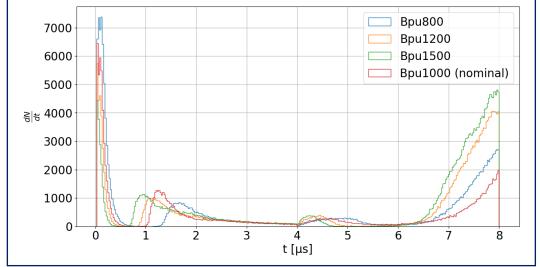
Trapping efficiency in GA depends on B_{in}.

- Difficult to establish number of trapped particles due to de-trapping. → My criteria: T > 400 keV.
- $B_{pu} = 1000 \text{ G}$ and $t_{pul} = 4 \mu s \rightarrow \alpha_{linear} = 1.85 \cdot 10^{-5}$, $\alpha_{sin} = 2.92 \cdot 10^{-5}$

$$\delta = B_{initial}(0,0)/B_{ECR}$$

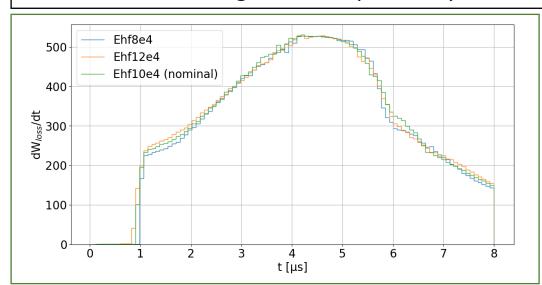


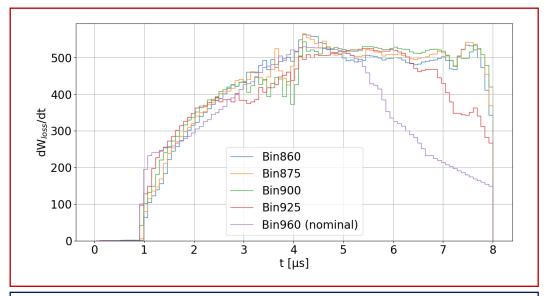

MC code Paper [3-5]: Loss spectrum

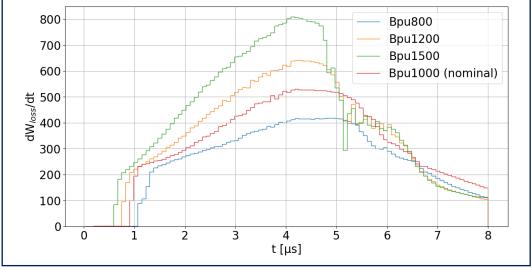

Parameters effect						
	ECR losses	GA losses	Dec. losses			
1 Bin	Û	Û	Û			
បិ Bpu	Û	Shift ←	û			
û Ehf	Û	Û	Û			

ECR: Electron Cyclotron Resonance, GA: Gyromagnetic Autoresonance, Dec.: Decompression.

> Trends are not regular, in-depth study needed.

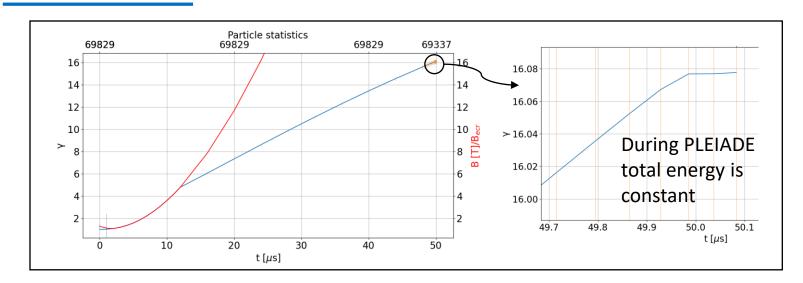


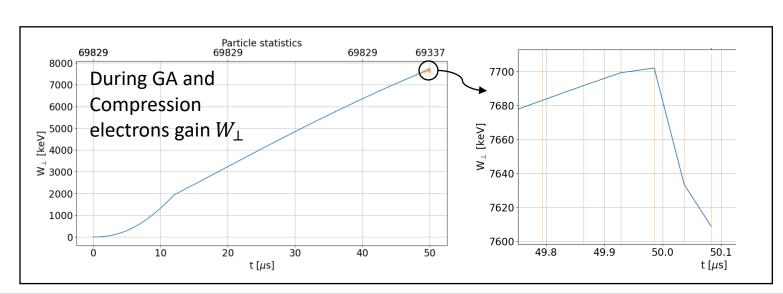

MC code Paper [3-5]: Average energy loss spectrum

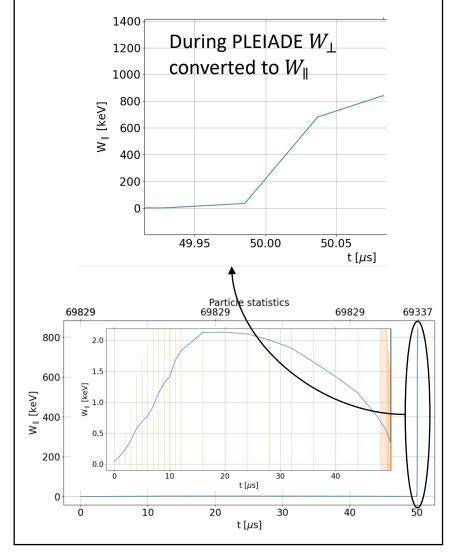

Parameters effect GA av. E.L. Dec. av. E. L. Bin No effect □ Bpu □, shift ← Steeper decrease □ Ehf No effect No effect

GA av. E.L.: Gyromagnetic Autoresonance average electron losses, Dec. av. E.L.: Decompression average electron losses.

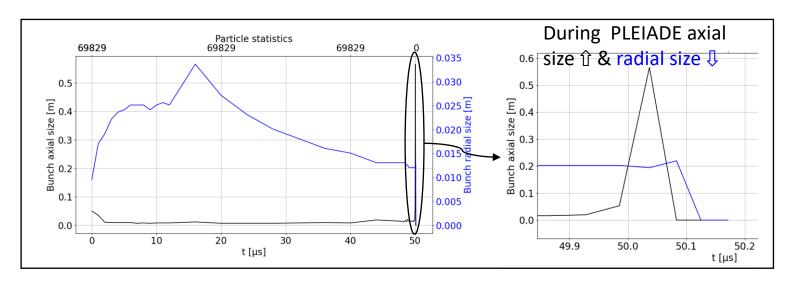
> Trends are not regular, in-depth study needed.

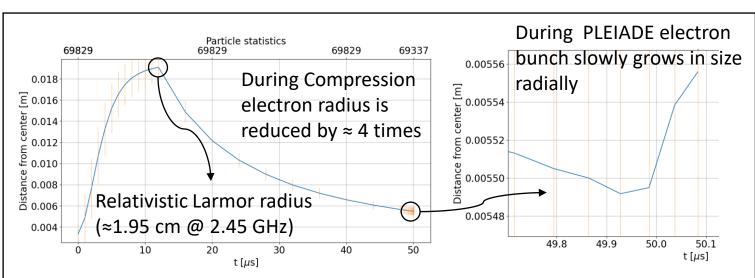


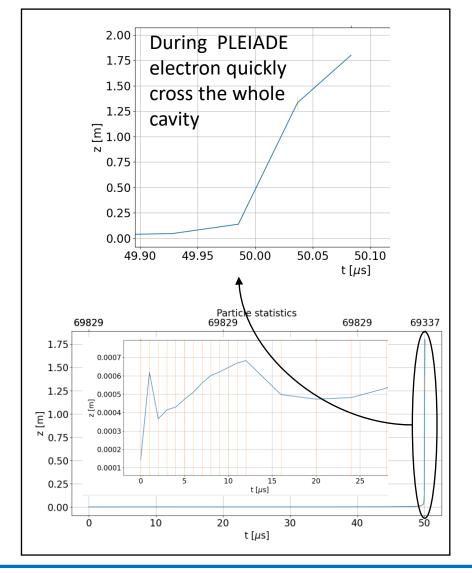




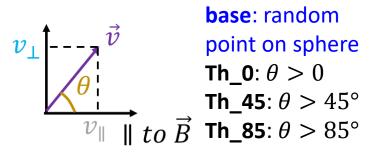
Monte Carlo simulations - Trapped electrons energy

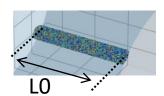






Monte Carlo simulations - Trapped electrons bunch size

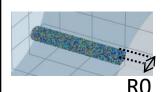



Parametric study – Initial pitch angle, length and radius of bunch

Initial velocity pitch angle

• **No major influence** on the simulation.

Initial cylinder length

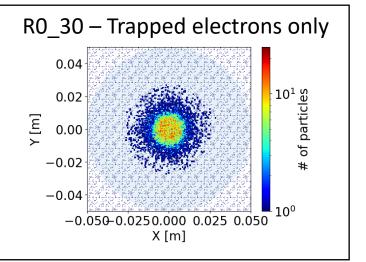

LO_2: $L_0 = 2 \ cm$

base: $L_0 = 5 \ cm$

LO_Lcav: $L_0 = L_{cav} (8.64 cm)$

- No major influence on the simulation.
- \triangleright Lower trapping (-3%) in LO_Lcav due to e^- generated nearby walls.

Initial cylinder radius


base: $R_0 = 5 mm$

R0_15: $R_0 = 15 \ mm$

R0_30: $R_0 = 30 \ mm$

Simul.	% conf.	% trap. SGA
base	76.89%	71.81%
R0_15	38.38%	30.60%
RO 30	17.29%	12.19%

- $\mathbf{\hat{l}} R_0$ leads to lower trapping and confinement.
- ightharpoonup Missing effect: in Kube PIC simulation $\mathbb{I} R_0$ leads to larger ion losses.

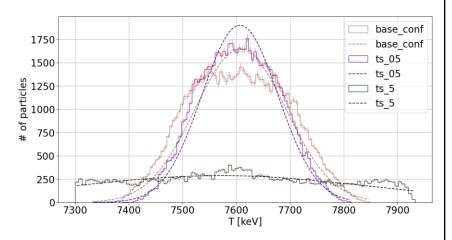
Parametric study – TE_{mnp} mode, Time-step

TE_{mnp} mode

base: TE(1)(1)(1) *mode*

TE_1110: TE(1)(1)(10) mode

- No major influence on the simulation.
- ➤ Slightly lower trapping (-5%) for TE_1110.
- ➤ Higher p modes are needed for longer cavities.

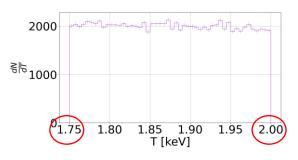

Time-step

 $ts_05: ts = 0.5 ps$

base: ts = 1 ps

 $ts_5: ts = 5 ps$

Simul.	% conf.	% trap. SGA	T0 [keV]	σ [keV]
ts_05	77.16%	72.49%	7606	71
base	76.89%	71.81%	7608	85
ts_5	72.51%	32.18%	7570	277


- ts_5 breaks down simulation.
- > ts 05 improves energy dispersion, but base is a better trade-off due to computational cost.

Parametric study – Initial electron energy

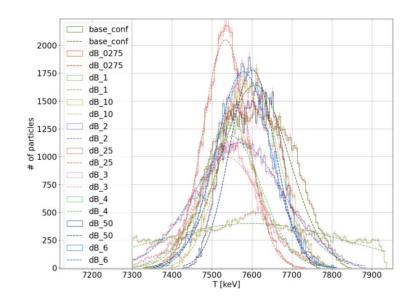
IC energy range limits

base: $50 \ eV < E_0 < 250 \ eV$

E0_750_1000: $750 \ eV < E_0 < 1000 \ eV$ **E0_1750_2000**: $1750 \ eV < E_0 < 2000 \ eV$ **E0_2750_3000**: $2750 \ eV < E_0 < 3000 \ eV$ **E0_3750_4000**: $3750 \ eV < E_0 < 4000 \ eV$ **E0_4750_5000**: $4750 \ eV < E_0 < 5000 \ eV$

- $\mathbf{\hat{I}} E_0$ leads to worse trapping in SGA.
- Closer to theory hyp. considering electrons at rest.
- Also lower confinement with exception of base.

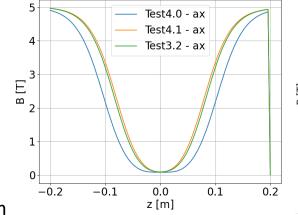
Simul.	% conf.	% trap. SGA
base	76.89%	71.81%
E0_750_1000	82.10%	61.15%
E0_1750_2000	81.84%	50.77%
E0_2750_3000	80.17%	47.19%
E0_3750_4000	78.45%	46.46%
E0_4750_5000	77.09%	46.01%

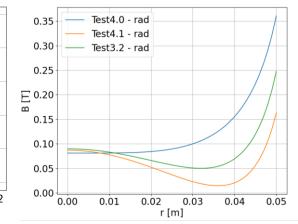


Parametric study – Magnetic field growth rate

Simul.	f_{pul} [kHz]	dB/dt [G/ns]	% conf.	% trap. SGA	T0 [keV]	σ [keV]
dB_0275	0.275	0.05	93.75%	0%	-	-
dB_1	1	0.20	71.60%	39.15%	7598	240
dB_2	2	0.39	57.77%	53.69%	7567	111
dB_3	3	0.59	44.40%	40.68%	7540	82
dB_4	4	0.79	48.85%	44.86%	7549	76
base	5	0.98	76.89%	71.81%	7608	85
dB_6	6	1.18	70.81%	66.78%	7579	69
dB_10	10	1.97	80.85%	75.06%	7595	67
dB_25	25	4.91	77.24%	71.21%	7534	56
dB_50	50	9.82	91.76%	78.82%	7601	57

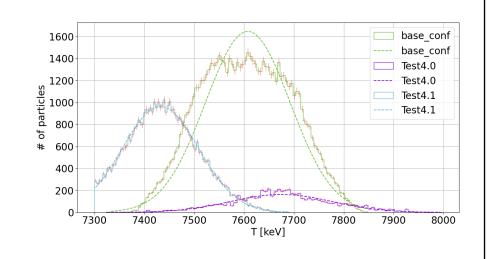
- f_{pul} < 5 kHz leads to worse trapping and confinement of the electrons in general.
- Similar findings to Kube PIC simulation.
- → dB_50 having the best results is good news for the PIC simulation (lower computational cost).





Parametric study – Pulsed coil length

- **Test4.0 Longer pulsed coils**: longer magnetic mirror, but more regular radial field profile.
- Test4.1 Shorter pulsed coils: shorter magnetic mirror, but less regular radial field profile.
- **Test3.2 base_configuration**: compromise between the two.



- GA very sensitive to magnetic field profile.
- > Longer magnetic mirror is simply not able to confine particles.

Simul.	% conf.	% trap. SGA	T0 [keV]	σ [keV]	dr [cm]	dz [cm]
base	76.89%	71.81%	7608	85	1.3	1.6
Test4.0	13.53%	6.69%	7674	102	1.3	2.8
Test4.1	65.25%	47.51%	7432	76	1.3	1.6

PLEIADE phase

