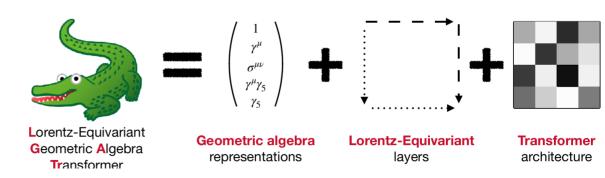

Discussing about ML4Jets 2024, Paris

ML4Jets

- ML conference, not only about hadronic Jets
 - It's more ML4HEP
 - also a bit of astro & cosmo topics
- 106 talks, 140 persons
 - plenary & 2 parallel sessions
- I could only attend ~4 days
 - dense but very interesting program
 - vary between report of "production usage" of ML technique in experiment to state of the art R&D

Timetable with talk slides & videos

Session topics


- Event Generation
 - fast parton shower & hadronization with ML
- Simulation & reconstruction
 - Generative NN to speed-up detector simulation
 - Technologies: GAN, VAE, Diffusion models, (normalizing) Flows
 - GNN for tracking at HL-LHC
 - DNN for calibration of electron/y/jets
- Tagging
 - Identify types/origin of hadronic jets (top vs W/Z vs Higgs vs QCD vs...)
 - Multiple techniques (transformers become dominant)

Session topics

- Astro & cosmo
- Uncertainties & interpretability
 - self/semi/weakly supervised training on dataset
 - ex: "TRANSIT" technique
- Anomaly Detection
- Unfolding
 - various measurements, various tools
 - diffusion/generative models, OmniFold
- Foundation models
 - ex: OmniLearn/Jet, "JetCLR"

Lorentz-equivariant models

- Transformer-based model which is lorentz equivariant
 - i.e Model(boost(x)) = boost(Model(x))
- Lorentz-Gatr model
 - inputs, embeddings are build with elements of a "Geometric algebra" (scalar, vector, pseudo-scalar,... 16 dim)
 - Base architecture very efficient to solve
 - event generation pbm
 - jet classification

Foundation models

Idea:

- pre-train large models on data, unsupervised
 - do it once on very large datasets
- Then fine tune the model for specific tasks
 - can be very quick and/or with small datasets
- Example : OmniLearn based models
 - applications to unfolding (OmniFold), anomaly detction, tagging...

Flow models

- Normalizing flow
 - procedure to learn multidimensional p.d.f with a NN
 - and to be able to sample from them
- Conditional flow matching
 - Fast methods to train & infer "continuous" flow network
 - complex but extremely efficient in generative tasks
 - see talk "The Fast Calorimeter Challenge 2022"
 - also used in unfolding & anomaly detection tasks (?)