Loop Quantum Gravity: state of the art

Karim NOUI

Laboratoire de Mathématiques et de Physique Théorique, TOURS Fédération Denis Poisson

Overview

Quantum Gravity: Why and How?

1. Classical framework: Ashtekar variables

Ashtekar Gravity looks like Yang-Mills

2. Quantum Geometry

- Polymer representation
- Kinematical States and Geometric Operators

3. Quantum Dynamics?

From Wheeler-de Witt to Spin-Foams

Successes and failures

Quantum Gravity: a general discussion WHY?

Physics of a relativistic system of mass m and length ℓ

 $\triangleright \ell \sim \lambda_c = \frac{h}{mc}$: quantum physics $\triangleright \ell \sim r_s = \frac{Gm}{c^2}$: general relativity $\triangleright \ell \sim \sqrt{\lambda_c r_s} = \ell_p$: quantum gravity

Where is quantum gravity: at the GR singularities!

- ▶ Hawking-Penrose theorem
 - Origin of the universe : quantum cosmology
 - ▶ Black holes: "microscopic" explanation of entropy

But quantum physics and general relativity are not compatible

- Quantum Field theory based on a fixed background
- ▶ General Relativity is a non renormalisable theory
- ▶ Related problems : time, observables and diffeomorphisms etc...

Quantum Gravity: a general discussion HOW?

One thinks that General Relativty fails at ℓ_p

- ▶ GR is the Fermi model of a Standard model?
- ▶ Modify classical paradigms : String theory (extra-dimensions ...)
- \triangleright GR appears as an effective theory with corrections at ℓ_p

One thinks that Quantum methods fail for GR

- ▶ New quantisation roads : Loop Quantum Gravity (polymer states)
- ▶ Problem of singularities similar of H atom : classical instability but existence of quantum ground state
 - ▶ Quantisation resolves singularities : discretisation, minimal length...

Two or more roads... for one solution!

- ▶ Loops and Strings are orthogonal directions
- ▶ For loops : GR is fundamental ⇒ background independence
- ▶ For Strings : QFT with Fock spaces and so on...

Classical framework: Ashtekar variables

Many classical actions for General Relativity

Lagrangian formulation : all actions lead to GR equations

▶ Einstein-Hilbert action : functional of the metric g

$$S_{EH}[g] = \int d^4x \sqrt{|g|} R$$

 \triangleright Hilbert-Palatini action : functional of g and the connection Γ

$$S_{HP}[g] = \int d^4x \sqrt{|g|} R[g, \Gamma]$$

ho Cartan formalism : $g_{\mu\nu}=e^I_{\mu}e^J_{\nu}\eta_{IJ}$ and $F=d\omega+\omega\wedge\omega$

$$S_C[e,\omega] = \int \langle e \wedge e \wedge \star F[\omega] \rangle = \int d^4x \, \epsilon^{\mu
u\rho\sigma} \epsilon_{IJKL} \, e^I_\mu e^J_
u F^{KL}_{
ho\sigma}$$

▶ Ashtekar-Barbero-Holst action : generalisation of Cartan

$$S_{ABH}[e,\omega] = \int \langle e \wedge e \wedge \star F[\omega] \rangle + rac{1}{\gamma} \langle e \wedge e \wedge F[\omega]
angle$$

Classical framework: Ashtekar variables

Hamiltonian analysis : GR phase space

Hamiltonian formulation : $M = \Sigma \times \mathbb{R}$ ('61)

- \triangleright ADM variables : $ds^2 = N^2 dt^2 (N^a dt + h_{ab} dx^b)(N^a dt + h_{ac} dx^c)$
- \triangleright ADM action : (h, π) canonical variables

$$S_{ADM}[h,\pi;N,N^a] = \int dt \int d^3x (\dot{h}\pi + N^a H_a[h,\pi] + NH[h,\pi])$$

 \triangleright Equations, $H=0=H_a$, very complicated and highly non-linear

Ashtekar formulation : originally $\gamma = \pm i$ ('86)

- \triangleright Partial gauge fixing (time gauge) : $SL(2,\mathbb{C}) \rightarrow SU(2)$
- \triangleright Variables : A:SU(2)-connection and E: electric field
- \triangleright Equations $H=0=H_a$ become polynomial!
- $\triangleright \gamma$ real : same structure but H not polynomial

Classical framework: Ashtekar variables

A summary of the classical formulation

First order Lagrangian: variables are Cartan data

- \triangleright A tetrad e_{μ}^{I} such that $g_{\mu\nu}=e_{\mu}^{I}e_{\nu}^{J}\eta_{IJ}$
- \triangleright a sl(2,C) spin-connection $\omega = \omega^i R_i + \omega^{0i} B_i$; $F(\omega)$ its curvature
- ho Classical action depends on the free parameter $\gamma
 eq 0$

$$S_P[e,\omega] = \int e^I \wedge e^J \wedge (\star F_{IJ}(\omega) - \frac{1}{\gamma} F_{IJ}(\omega))$$

 \triangleright Time gauge : partial gauge fix $SL(2,\mathbb{C})$ to SU(2)

Hamiltonian analysis: similarities with Yang-Mills

New variables: $E_i^a = \frac{1}{2} \epsilon_{ijk} \epsilon^{abc} e_b^j e_c^k$ and $A_a^i = \omega_a^i + \gamma \omega_a^{0i}$

$$\{A_a^i(x), E_j^b(y)\} = (8\pi\gamma G)\delta_a^b\delta_j^i\delta^3(x, y)$$

▶ The constraints are "almost" polynomial

$$H_a = F^i_{ab}E^b_i, \ \ H = (F^{ij}_{ab} + (\gamma^2 + 1)K^i_{[a}K^j_{b]})E^a_iE^b_j$$

 \triangleright One more constraint : Gauss $\mathcal{G}_i = D_a E_i^a$

Quantum geometry

Quantisation of a point particle

Algebra of quantum operators

- \triangleright Phase space : $\{P,Q\}=1$
- \triangleright Quantisation leads to Weyl algebra $[\hat{P}, \hat{Q}] = i\hbar$

Quantum states from representation theory

 \triangleright Schrodinger representation : $\varphi \in L^2(\mathbb{R})$

$$(\hat{Q}\varphi)(q) = q\varphi(q)$$
 , $(\hat{P}\varphi)(q) = -i\hbar \frac{\partial \varphi(q)}{\partial q}$

 \triangleright Fock like representation : $[a, a^{\dagger}] = 1$

$$|0
angle
ightarrow |n
angle \sim (a^\dagger)^n |0
angle$$

Stone-Von Neumann : unique representation!

Quantum Field Theory

- Representation is not unique
- ▶ The Fock representation is the good one

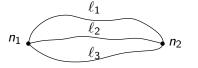
The Polymer representation

Schrodinger like representation

- \triangleright States are functionnals of connection : $\varphi(A)$
- $\triangleright \hat{A}$ acts by multiplication, \hat{E} as a derivation
- \triangleright Problem : no scalar product $\langle \varphi_1 | \varphi_2 \rangle \stackrel{?}{=} \int [\mathcal{D}A] \overline{\varphi_1(A)} \varphi_2(A)$

The polymer representation: states are "one-dimensional"

 \triangleright Let Γ a graph : L links, V vertices



 $:\ell_i$ are oriented links

 $: n_i$ are nodes

- ▶ Let f a function on $SU(2)^L$
- ho State : $\varphi_{\Gamma,f}(A)=f(U_{\ell_1},\cdots,U_{\ell_L})$ where $U_\ell=P\exp(\int_\ell A)\in SU(2)$
- ▶ Ashtekar-Lewandowski measure :

$$\langle arphi_{\Gamma,f} | arphi_{\Gamma',f'}
angle = \delta_{\Gamma,\Gamma'} \int (\prod d\mu(U_{\ell_i})) \overline{f(U_{\ell_i})} f'(U_{\ell_i})$$

Quantum geometry

Imposing the constraints

The Gauss constraint

- ho Gauge action : $A \mapsto A^g = g^{-1}Ag + g^{-1}dg \Longrightarrow U_\ell \mapsto g(s_\ell)^{-1}U_\ell g(t_\ell)$
- ▶ States are invariant under gauge action
- \triangleright Orthonormal basis : ℓ_i with spins I_i and v_i with Clebsh-Gordan

The diffeomorphisms constraint

- \triangleright Diffeomorphisms $Diff(\Sigma)$ on Γ and A
- States are now labelled by knots [Γ]
- \triangleright Unique representation compatible with $Diff(\Sigma)$

The Hamiltonian constraint

- $\triangleright \hat{H}\varphi = 0$ is Wheeler-de Witt
- ▶ Very few not interesting solutions
- \triangleright Thiemann trick to define \hat{H}
- ▶ Spin-foams models from covariant quantisation

So far, no physical solutions...

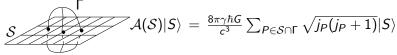
Physical interpretation and discretisation of the space

Area operator $\mathcal{A}(\mathcal{S})$ acting on \mathcal{H}_0

- ightharpoonup Classical area of a surface $\mathcal{S}:\mathcal{A}(\mathcal{S})=\int_{\mathcal{S}}\sqrt{n_aE_i^an_bE_i^b\,d^2\sigma}$
- ho Quantum area operator : $\mathcal{S} = \cup_n^N \mathcal{S}_n$

$$\mathcal{A}(S) = \lim_{N \to \infty} \sum_{n} \sqrt{E_i(S_n)E_i(S_n)}$$
 with $E_i(S_n) = \int_{S_n} E_i$

 $\,{\,\vartriangleright\,}$ Spectrum and Quanta of area

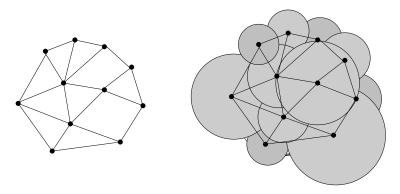


Volume operator $\mathcal{V}(\mathcal{R})$ acting on \mathcal{H}_0

- ▷ Classical volume on a domain $\mathcal{R}: \mathcal{V}(\mathcal{R}) = \int_{\mathcal{R}} d^3x \sqrt{\frac{|\epsilon_{abc}\epsilon_{ijk}E^{ai}E^{bj}E^{ck}|}{3!}}$
- \triangleright It acts on the nodes of $|S\rangle$: discrete spectrum,

Picture of space at the Planck scale

From the kinematics, Space is discrete...



... It is also non-commutative in 3 dimensions

Hamitonian constraint

Classical Hamiltonian constraint

First part of Hamiltonian :

$$H(N) = \int_{\Sigma} d^3x \, N(x) \, \frac{Tr(F_{ab}E^aE^b)}{\sqrt{|det(E)|}}$$

▶ Regularization using Thiemann trick :

$$H(N) = -\frac{1}{\kappa} \int_{\Sigma} N(x) Tr(F(x) \wedge \{A(x), V(R_x)\})$$

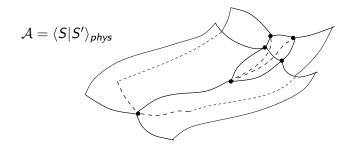
 $\triangleright V(R_x)$ is the volume of a region R_x around x

Quantization of the constraint:

- $\triangleright V$ is a well-defined positive self-adjoint operator on \mathcal{H}
- ▶ It creates new edges on Spin-network states
- ▶ Ultra-locality : action is confined around a vertex
- ▶ Ambiguities : ordering, representations etc... → (□) (□) (□) (□)

An alternative solution : Spin-Foam models

Transition Amplitudes between states



- ▶ From Topological QFT
- ▶ Relation to LQG not clear
- ▶ Some promissing models

Successes and failures

Very interesting program for Quantum Gravity

- ▶ A new quantisation scheme : polymer representation
- ▶ Uniqueness theorem of the representation
- Complete description of kinematical states
- ▷ Discrete spectrum of area : Black Hole entropy, Cosmology

But NO physical states

▶ No difference with a topological theory

Role of Immirzi parameter is unclear

 \triangleright Value fixed by S = A/4

Compact vs. non compact gauge group?