Simulation of the Directional Dark Matter Detector (D³) and Directional Neutron Observer (DiNO)

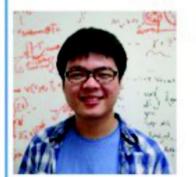
Igal Jaeglé University of Hawaii

- collaboration
- introduction
- simulation status (early stage of development)
- **D**³ reach plots (highly preliminary)
- conclusion

Collaboration


Igal Jaegle Postdoc

Jared Yamaoka Postdoc


Marc Rosen Mechanical Engineer

John Kadyk

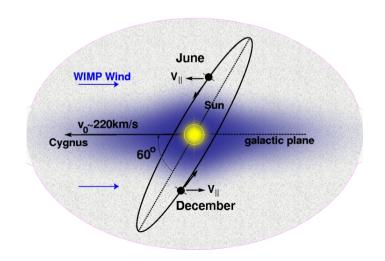
Maurice Garcia-Sciveres

Haolu Feng Graduate Student

Steven Ross Graduate Student

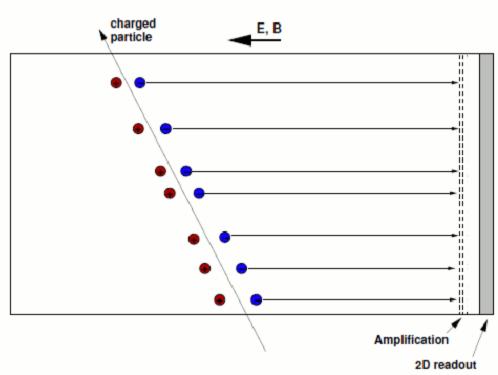
Thomas Thorpe Unclassified Graduate Student

Sven E. Vahsen



(UC Berkeley Student)

What do we want to detect?


- neutron emitted by Special Nuclear Materials e.g. plutonium
- ~ 1 GeV mass, few MeV in kinetic energy with a flux of several 100 g⁻¹s⁻¹
- interact through strong force

- **Weakly Interacting Massive Particle emitted by Cold Dark Matter**
- existence hypothetical
- mass unknown, few keV in kinetic energy
- interact through gravitational and weak forces
- hypothesis: behaves as a slow moving heavy neutron

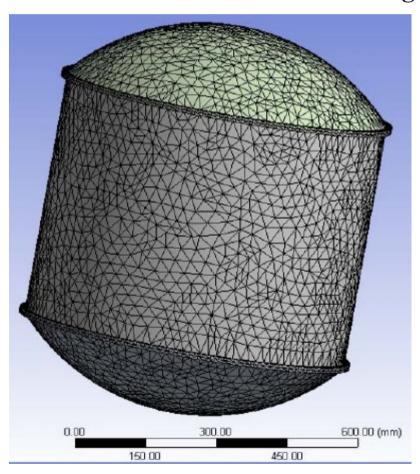
Detection principle

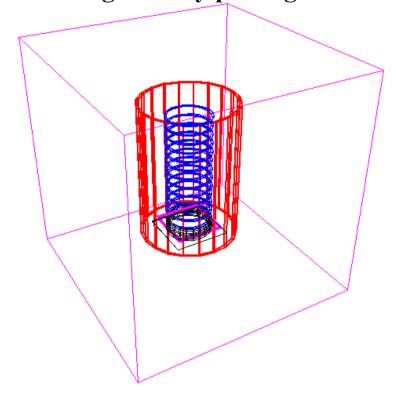
- be detect the ionization produced when a particle scatters off nucleus of the gas material
- neutron: C_4H_{10} (iso-butane) gas $-m_{neutron} \sim m_H$
- WIMP: 4 He, CF₄, 40 Ar and 131 Xe gas ${}^{m}_{WIMP}$?
- identifiable if elastic scattering occurse.g. n + H → n + H
- ▶ amplification with GEMs enables detection of electrons produced by the nuclear recoil with nearly 100 % efficiency estimated

Simulation steps

NB: a complete simulation is not yet implemented

- signal and background sources
- geometry and materials
- neutron/WIMP interaction with the detector
- creation of the ionization in the gas target
- **electron** transport from the primary ionization to the readout
- electronic readout

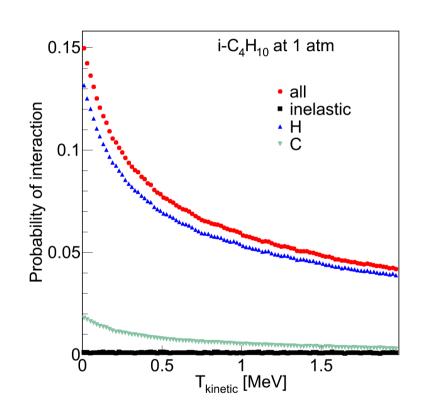

Signal and background sources


- neutron
- neutron sources (240 Pu or laboratory source 252 Ca)
- background sources (alpha, beta etc ...)
- => PLUTO, PYTHIA, EvtGen, MCPNX, GEANT3 and GEANT4
- WIMP
- WIMP sources
- background sources (neutron, ²²²Rn)
- => PLUTO, PYTHIA, EvtGen, GEANT3 and GEANT4

Geometry and materials

CAD can be transformed to **GEANT3** and **GEANT4** format

shown: DiNO/D³-micro model using CAD and ROOT geometry package



Probability of interaction

$$P = \sigma . l . \rho$$

- σ cross section [b] (barn = $1e^{-24}$ cm²)
- l target length [cm]
- ρ density [cm⁻³] = ρ_0 [g/cm³] . \mathcal{N}_A [mol⁻¹] / \mathcal{M}_A [g/mol]
- between a neutron and a H belonging to C₄H₁₀
- => 0.11 % for 1 cm
- between a neutron and a F belonging to CF₄
- => 0.003 % for 1 cm
- ► GEANT4 results for DiNO
- => 50 cm³, C_4H_{10} (1 atm) ~ 5 % efficiency at 1 MeV

- => good agreement between geant4 and analytical calculation
- => efficiency can be adjusted by varying size and pressure

Reach plot - general formula

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112 Particle Dark Matter (Cambridge ed.)

differential energy spectrum of nuclear recoils

$$\frac{dR}{dT_{R}} = R_{0}S(T_{R})F^{2}(T_{R})I$$

- R is the event rate per unit mass
- T_R is the recoil energy
- \bullet \mathbf{R}_{0} is the total event rate
- S is the modified spectral function
- F is the form factor
- I is an interaction function

Total cross section off nucleus and off nucleon

$$\frac{d\sigma^A(M_{_X})}{dT_{_R}} = \frac{1}{V \, \rho \, \phi(M_{_X}) \, \Delta t \in (M_{_X})} \frac{dN(M_{_X})}{dT_{_R}} \, \text{and} \, \frac{d\sigma^N(M_{_X})}{dT_{_R}} = \frac{\mu_N^2(M_{_X})}{\mu_A^2(M_{_X})} \, \Gamma^N \, \frac{d}{dT_{_R}} \frac{\sigma^A(M_{_X})}{\Gamma^A(T_{_R})}$$

- N event number if N = 2.3 CL = 90 %, in this work N = 1
- **▶** V detector volume [cm³]
- ho target density [cm⁻³] = ho_0 [g/cm³] . \mathcal{N}_A [mol⁻¹] / \mathcal{M}_A [g/mol]
- **♦ WIMP flux [cm⁻²s⁻¹] − model dependent**
- **Δ**t exposure time [s]
- **ε** detection efficiency

$$M_{_X} + A \rightarrow M_{_X} + A$$

 $ightharpoonup \Gamma^{N,A}$ "interaction" between the WIMP and the nucleon/nucleus: $\Gamma^A = F^2$ I

model dependent

 $\triangleright \mu_{N}$ nucleon reduced mass

μ nucleus reduced mass

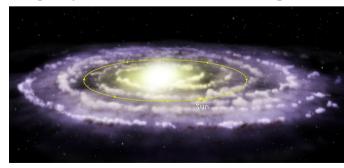
- I = A^2 for SI or I = $C^2\lambda^2J(J+1)$ for SD
- F^2 (qr_n) is the form factor

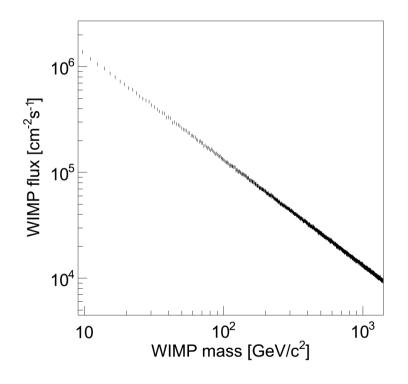
WIMP flux

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112 Particle Dark Matter (Cambridge ed.)

$$\Phi = \rho_D v_D / M_D [cm^{-2}s^{-1}]$$

$$\rho_{\rm D} = 0.3 \ [{\rm GeV/c^2/cm^3}]$$

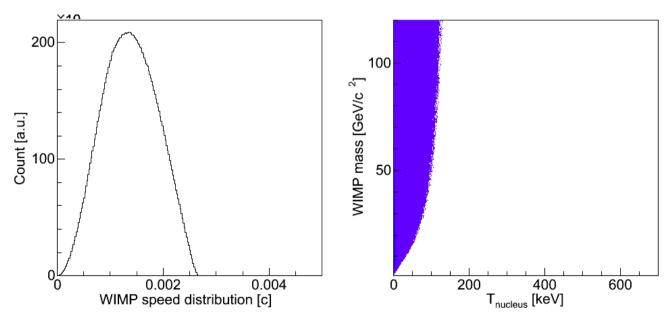

• v_D depends on WIMP velocity distribution choice


Gaussian velocity distribution

$$f(v) = \frac{1}{\sqrt{2\pi\sigma}} exp(-\frac{|v|^2}{2\sigma^2})$$

- σ is the speed dispersion = $(3/2)^{1/2}v_c$,
- v local circular speed (= 220 km/s)

$$\mathbf{v}_{\text{detector}} = \mathbf{v}_{\text{galaxy}} + \mathbf{v}_{\text{sun}} + \mathbf{v}_{\text{earth}}, \, \mathbf{v}_{\text{escape}} = 530 \, \text{km/s}$$


Elastic scattering

$$T_{\text{nucleus}}^{\text{cm}} = \frac{M_{\text{D}}^2}{(M_{\text{T}} + M_{\text{D}})^2} \frac{M_{\text{T}}}{2} v^2$$

- T nucleus kinetic energy in CMS
- ullet \mathbf{M}_{D} and \mathbf{M}_{T} respectively WIMP and nucleus masses

v WIMP velocity in CMS

Interaction function

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112 Particle Dark Matter (Cambridge ed.)

 \triangleright SI : $\sigma \alpha |A|^2$

 \triangleright SD : $\sigma \alpha J^2$

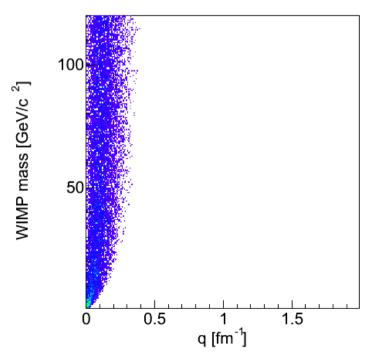
 $I = C^2 \lambda^2 J(J+1)$

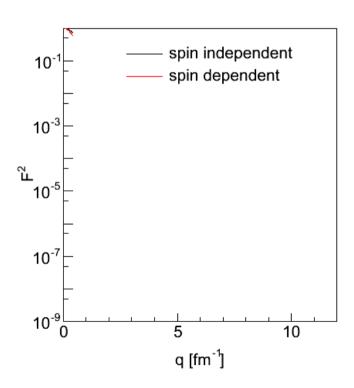
C related to the quark spin

 $^{\bullet}$ $\lambda^2 J(J+1)$ related to nuclear magnetic moment and the unpaired nucleon spin

Isotope	J	$\lambda^2 J(J+1)$		
		single particle	odd group	
$^{1}\mathrm{H}$	1/2	0.75	0.75	
¹⁹ F	1/2	0.75	0.647	
²³ Na	3/2	0.15	0.041	
²⁷ Al	5/2	0.35	0.087	
⁴³ Ca	7/2	0.321	0.152	
⁷³ Ge	9/2	0.306	0.065	
⁹³ Nb	9/2	0.306	0.162	
¹²⁷ I	5/2	0.35	0.007	
¹²⁹ Xe	1/2	0.75	0.124	
$^{131}\mathrm{Xe}$	3/2	0.15	0.055	
1		1	1	

Table 3: Values of λ	$^{2}J(J+1)$ for	various isotopes
------------------------------	------------------	------------------

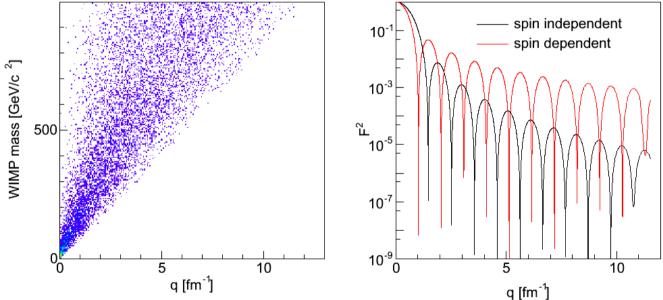

WN	C_{WN}^2			$\left.\sigma_{WN}\right _{snin}$	$\left.\sigma_{WN}\right _{spin}$	
,,,,,	NQM	EMC [36]	EMC [4]	$rac{\left.\sigma_{WN} ight _{spin}}{\mu^2 I_s}$	$\sigma_{\nu_M N}$	
$ ilde{\gamma} p$	0.14 ± 0.01	0.096 ± 0.009	0.06 ± 0.02	$4 \left(e \right)^4$	$\left(\frac{M_F}{m_{\tilde{q}}}\right)^4$	
$\tilde{\gamma}n$	0.002 ± 0.001	0.012 ± 0.003	0.03 ± 0.01	$\frac{4}{\pi} \left(\frac{e}{m_{\tilde{q}} c} \right)^4$		
$\tilde{H}p$	0.40 ± 0.02	0.46 ± 0.04	0.55 ± 0.10	$\frac{8G_F^2}{\pi\hbar^4}\cos^2 2\beta$	$4\cos^2 2\beta$	
$\tilde{H}n$	0.40 ± 0.02	0.34 ± 0.03	0.26 ± 0.07	$\frac{\pi\hbar^4}{\pi\hbar^4}\cos^2 2\beta$		
$\tilde{B}p$	0.16 ± 0.01	0.10 ± 0.01	0.06 ± 0.02	$1 \left(\begin{array}{c} e \end{array}\right)^4 1$	$\left(rac{M_F}{m_{ ilde{q}}} ight)^4rac{1}{4\cos^2 heta_W}$	
$\tilde{B}n$	$(7 \pm 5) \times 10^{-4}$	0.010 ± 0.003	0.03 ± 0.01	$\overline{\pi} \left(\overline{m_{ ilde{q}} c} \right) \ \overline{\cos^2 \theta_W}$		
$\tilde{Z}p$	1.9 ± 0.1	0.9 ± 0.1	0.3 ± 0.2	$4 \left(\begin{array}{c} e \end{array}\right)^4$	$\left(rac{M_F}{m_{ ilde{q}}} ight)^4 an^4 heta_W$	
$ ilde{Z}n$	0.21 ± 0.04	0.002 ± 0.006	0.1 ± 0.1	$\frac{4}{\pi} \left(\frac{e}{m_{\tilde{q}} c} \right)^4 \tan^4 \theta_W$		


Table 4: Values of WIMP-nucleon spin factors; $M_F = \sqrt{8} M_W \sin \theta_W \simeq 109 \, {\rm GeV} c^{-2}$

Nuclear Form Factor

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112 Particle Dark Matter (Cambridge ed.)

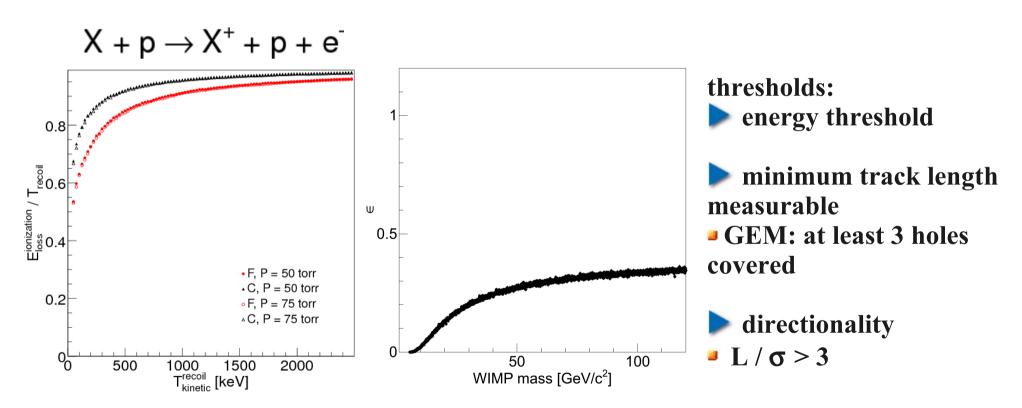
- one nuclear form factor per nucleus
- momentum transfer $q = |p_{\text{nucleus at rest}} p_{\text{nucleus after elastic scattering}}|$
- spin dependent
- spin independent



Nuclear Form Factor

J.D. Lewin, P.F. Smith Astr. Phys. 6 (1996) 87-112 Particle Dark Matter (Cambridge ed.)

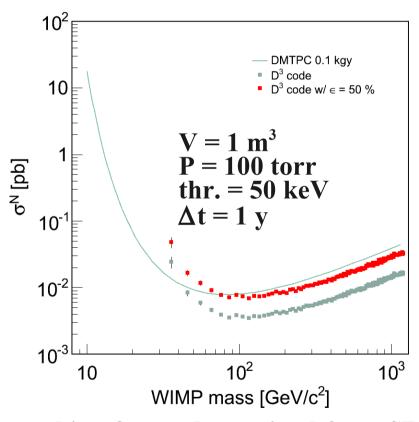
- one nuclear form factor per nucleus
- **momentum transfer** $q = |p_{\text{nucleus at rest}} p_{\text{nucleus after elastic scattering}}|$
- spin dependent
- spin independent



remark: if enough energy is transferred one can deduce from the position of the minima

what kind of interaction did occur

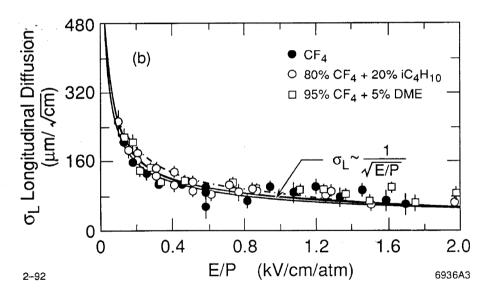
Detection efficiency


- depends on the thresholds and WIMP velocity distribution
- energy deposited eg through ionization

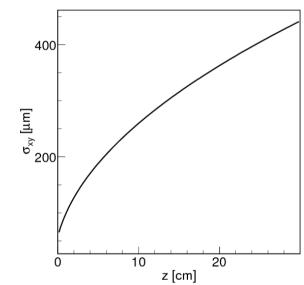
SRIM simulation and quenching factor

Code validation

- **code tested by putting the input parameters corresponding to DMTPC and XENON100**
- **detection** efficiency approximated by a constant value


10⁻³ XENON100 10-D³ code D^3 code w/ ϵ = 25 % 10⁻⁵ م_N [bb] 40 kg thr. = 4.5 keV $\Delta t = 11.17 d$ 10⁻¹⁰ 10^{2} 10³ 10 WIMP mass [GeV/c²]

quenching factor determined from SRIM


constant quenching factor 25 %

Design optimization

- ▶ 1 m³ divided into 3 detectors of drift length of 33.33 cm
- **other** key ingredients
- energy threshold 1 keV
- spacing between GEM holes 0.140 mm
- pad size 0.2 mm
- transverse diffusion

$$\frac{C_{D}}{\sqrt{N_{eff}}} = 80 \; \mu m / \sqrt{cm}$$

$$\sigma_{xy} = \sqrt{\left(\frac{pad}{\sqrt{12}}\right)^2 + \frac{C_D^2}{N_{eff}}} z$$

- pad: pad size
- C_D transversal diffusion constant
- N_{eff} effective number of primary electrons

S. Biagi, Nucl. Instr. & Meth. A283 (1989) 716.

- S. Biagi, Nucl. Instr. & Meth. A310 (1991) 133.
- J. Va'vra, P. Coyle, J. Kadyk, and J. Wise, SLAC-PUB-5728 (1992).

Design optimization

- ▶ 1 m³ divided into 3 detectors of drift length of 33.33 cm
- **other** key ingredients
- energy threshold 1 keV
- spacing between GEM holes 0.140 mm
- pad size 0.2 mm
- transverse diffusion

$$\sigma_{xy} = \frac{1}{\sqrt{P}} f(\frac{E}{P})$$

by changing only the pressure

- S. Biagi, Nucl. Instr. & Meth. A283 (1989) 716.
- S. Biagi, Nucl. Instr. & Meth. A310 (1991) 133.
- J. Va'vra, P. Coyle, J. Kadyk, and J. Wise, SLAC-PUB-5728 (1992).

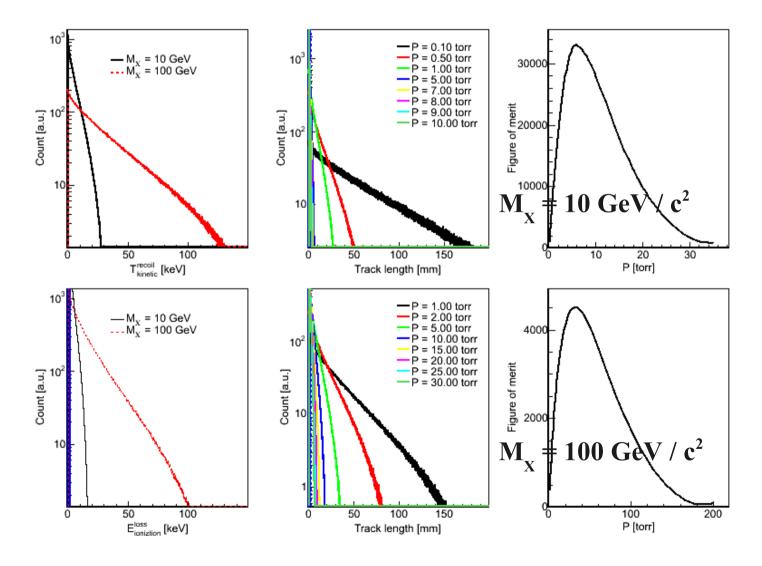
Design optimization

- ▶ 1 m³ divided into 3 detectors of drift length of 33.33 cm
- **other** key ingredients
- energy threshold 1 keV
- spacing between GEM holes 0.140 mm
- pad size 0.2 mm
- \triangleright transverse diffusion if E changed accordingly σ remains the same for all pressure

$$\sigma_{xy} = \frac{1}{\sqrt{P}} f(\frac{E}{P})$$

by changing only the pressure

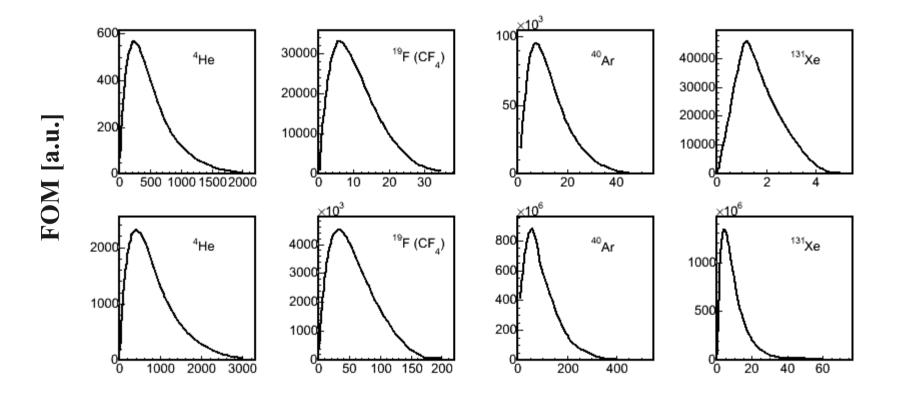
- S. Biagi, Nucl. Instr. & Meth. A283 (1989) 716.
- S. Biagi, Nucl. Instr. & Meth. A310 (1991) 133.
- J. Va'vra, P. Coyle, J. Kadyk, and J. Wise, SLAC-PUB-5728 (1992).


Pressure optimization

- ▶ 1 m³ of CF₄ divided into 3 detectors of drift length of 33.33 cm
- **other** key ingredients
- energy threshold 1 keV
- 3 GEM holes covered L > 0.7 mm
- $^{\square}$ L / $\sigma > 3$
- Figure of merit calculated for two WIMP masses 10 GeV / c² and 100 GeV / c²

Pressure optimization

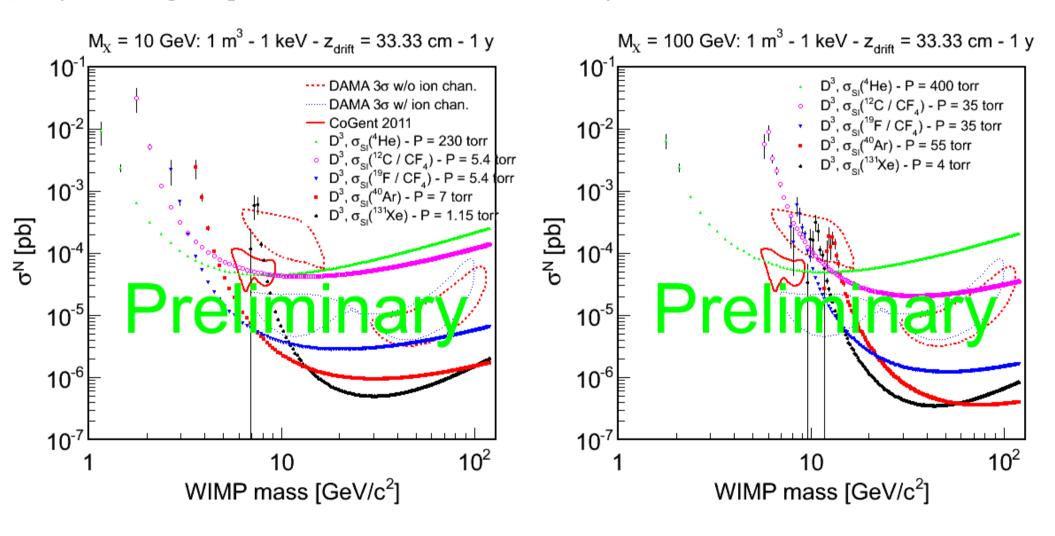
figure of merit for SI


$$\frac{d \ FOM(P)}{dT_R} = \frac{\mu_A^2}{\mu_N^2} \cdot \rho(P) \ V \cdot A^2 \cdot \frac{d}{dT_R} \ F^2(qr_n) \cdot \int_0^z \frac{L(T_R, P) \ above \ thres}{L(T_R, P)} \ dz$$

Pressure optimization

figure of merit for SI

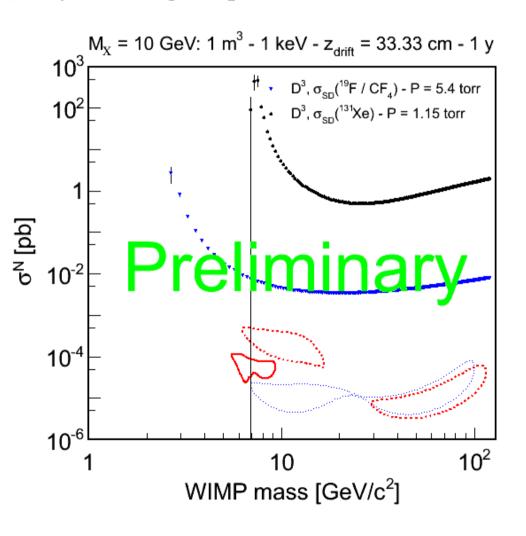
$$\frac{d \ FOM(P)}{dT_R} = \frac{\mu_A^2}{\mu_N^2} \cdot \rho(P) \ V \cdot A^2 \cdot \frac{d}{dT_R} \ F^2(qr_n) \cdot \int_0^z \frac{L(T_R, P) \ above \ thres}{L(T_R, P)} \ dz$$

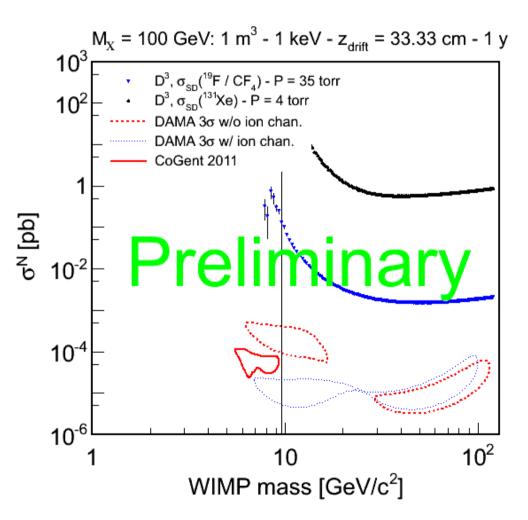


Pressure [torr]

D³ reach plot HIGHLY PRELIMINARY

SI case


> by lowering the pressure the directional sensitivity increases for low mass WIMP



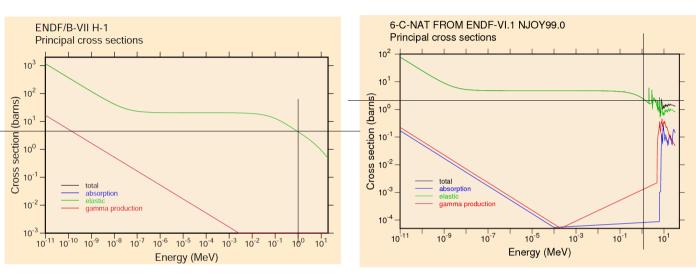
D³ reach plot HIGHLY PRELIMINARY

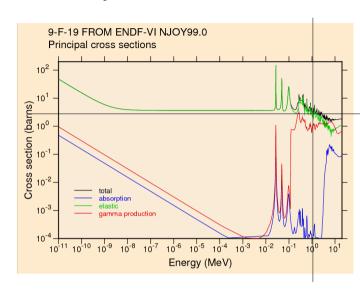
SD case

by lowering the pressure the directional sensitivity increases for low mass WIMP

Conclusion

- currently integrating different simulation programs on a single platform
- **e** geant4 and analytical calculation for the interaction probability are in good agreements
- preliminary design optimization of directional dark matter detector, D³
- by lowering the pressure the directional sensitivity increases for low mass WIMP
- still room for improvements
- validation against measurements of DiNO/D³-micro this year


Thanks for your attention


Neutron interaction with matter depend on the neutron kinetic energy

- **elastic scattering from nuclei: n+A->n+A => dominant in the MeV region**
- inelastic scattering: $n+A->n'+A^*$, A^* excited state of the nucleus $A^*->A+\gamma$
- => > 1 MeV neutron enough to excite the nucleus
- => hydrogen has no excited state
- **radiative neutron capture:** $n+(Z,A) \rightarrow \gamma+(Z,A+1)$
- => since $\sigma \sim 1$ / v, the neutron is most likely absorbed when it is slow
- **other nuclear reactions: (n,p),(n,d),(n,α) etc ...**
- => the neutron is captured and charged particles are emitted
- \Rightarrow $\sigma \sim 1 / v i.e. eV to keV$
- fission => thermal energies below eV
- high energy hadron shower > 100 MeV

H, C and F cross sections

generated by ACE-MCNP using ENDF/B-VI Cross Section Library 2006

ENDF/B-VI Cross Section Library 2006 combined

- measured cross section (by Time-of-Flight technique)
- calculation from N-body physics
- **elastic scattering is the dominant process (> 95 %) in all 3 cross sections**
- $\sigma(H \text{ at } 1 \text{ MeV}) \sim 4.5 \text{ b}$
- $\sigma(C \text{ at } 1 \text{ MeV}) \sim 2 \text{ b}$
- $\sigma(F \text{ at } 1 \text{ MeV}) \sim 3.2 \text{ b}$