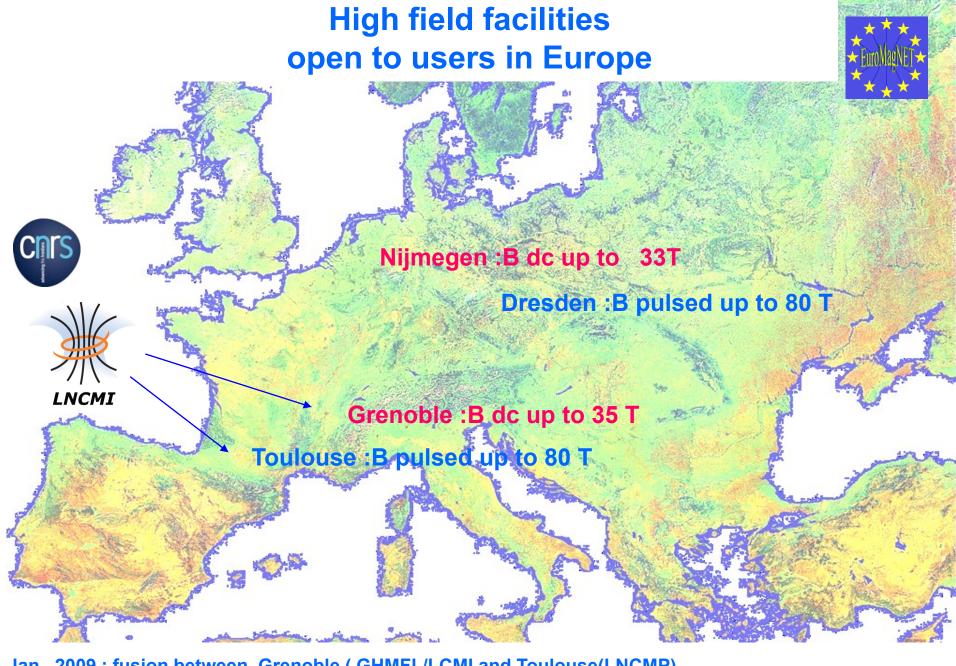
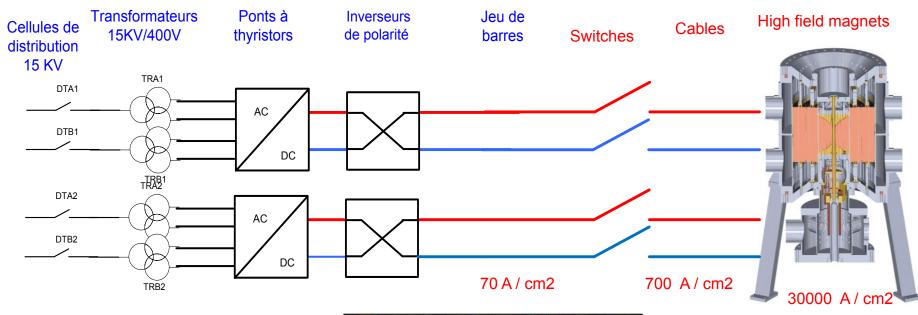
High field magnets at the LNCMI


F. Debray, Laboratoire National des Champs Magnetiques Intenses LNCMI CNRS, France

B (T) Material	DC Magnetic Fields	Projects

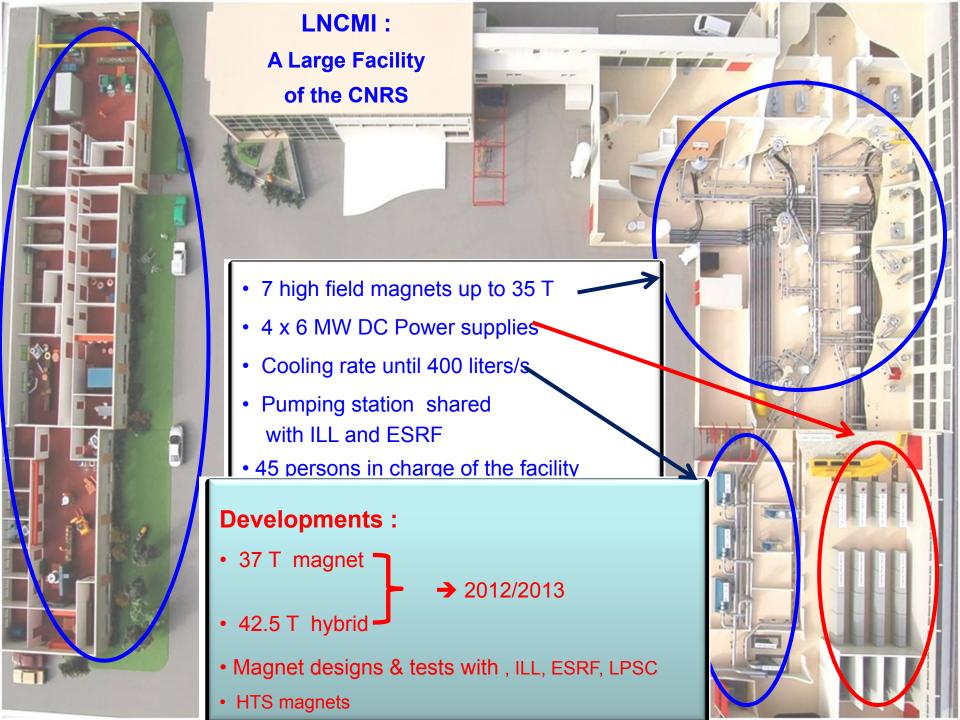
S U P	12 T	NbTi	 20000 IRM (+ 2000 each year) 1232 dipoles for LHC (8.4 Teslas / 1.8 K) High field MRI: Iseult: 1m diam /360 MJ/11,75 T (~2013) 			
E R	23 T	Nb3Sn	 NMR magnets record Magnet in operation 23.48 T (1 GHz proton res.) ITER development 			
Copper	35 T	Cu alloy	In 3 places: Nijmegen (20 MW), Grenoble (24 MW), Tallahassee (48 MW)			
H Y B R I	35 to 45 T	NbTi, Nb3Sn & Cu Alloys	Operationals: → Tsukuba, Japan → Tallahassee, US ~ Planned for 2013/2015: → Grenoble, France → Nijmegen, The Netherlands → Hefei, China → Tallahassee, US	35 T = 14 T (Nb3Sn) + 21/23 T (~14 MW) 45 T = 11 T (Nb3Sn) + 34 T (~30 MW) 42 T = 8 T (NbTi) + 34 T (24 MW) 42 T = 12 T (Nb3Sn) + 30 T (20 MW) 42 T = 11 T (Nb3Sn) + 29 T (20 MW) 36 T = 14 T (Nb3Sn) + 22 T (12 MW)		
D S	Next generation 40 to 50 T with less power	Supra HTS YBaCuO BISCO MgB2 Copper Alloy	2005/20015 : R&D and prototypes : → SMES : NEXANS/CNRS : 1MJ / 5,5 T → Inserts in 20 T environment : (NEXANS/CNRS/CEA FZK, Tallahassee) → R&D for futur accelerators (EUCARD) → Development of compact magnets : for futur hybrid magnets for others "communities" : neutron/XRay/ ions sources)			

Jan. 2009 : fusion between Grenoble (GHMFL/LCMI and Toulouse(LNCMP)

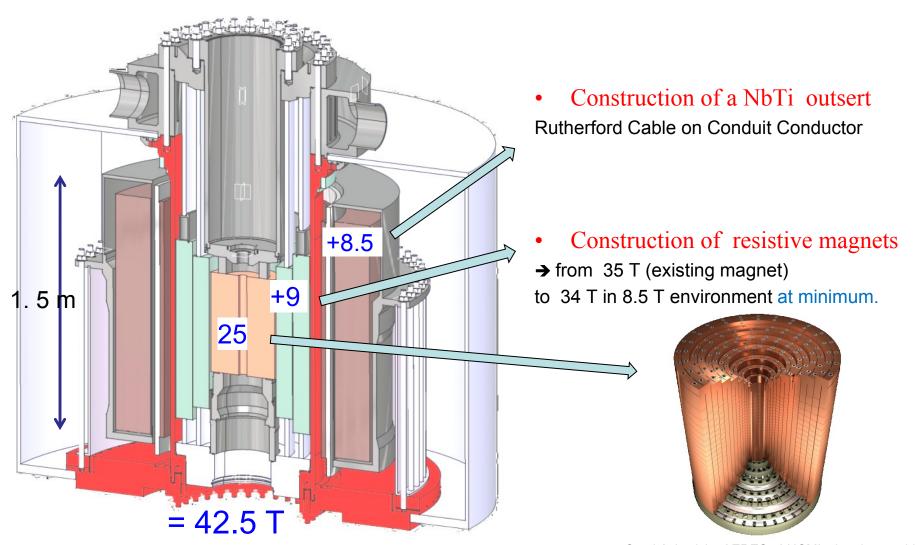

→ creation of the French National High Magnetic Field Facility (LNCMI)

ECRIS'2010 Grenoble

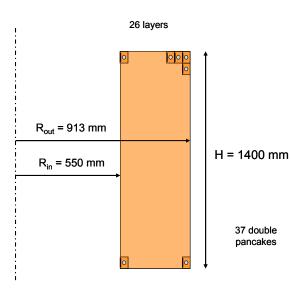



Shematic of a DC High Field Facility (Nijmegen, Tallahassen, Grenoble, Tsukuba..)

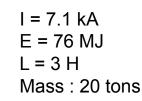
I = 16000 A (20 ppm) U = 400 V

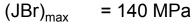


Hybrid Project at the LNCMI (CEA- CNRS collaboration) Objective: from 35 T to 42.5 T

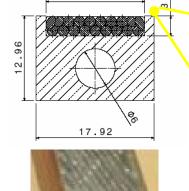

Nb-Ti outsert: 8.5 T @ 1.8 K within a CEA- CNRS collaboration

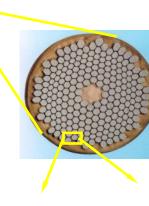
CABLE: Rutherford Cable On Conduit Conductor


- Flat Rutherford cable of 19 strands diam = 1.62 mm
- 6264 filaments, diam = 14 µm per strand
- Extruded Cu-Ag_{0.05%} stabiliser (RRR ≈ 50)



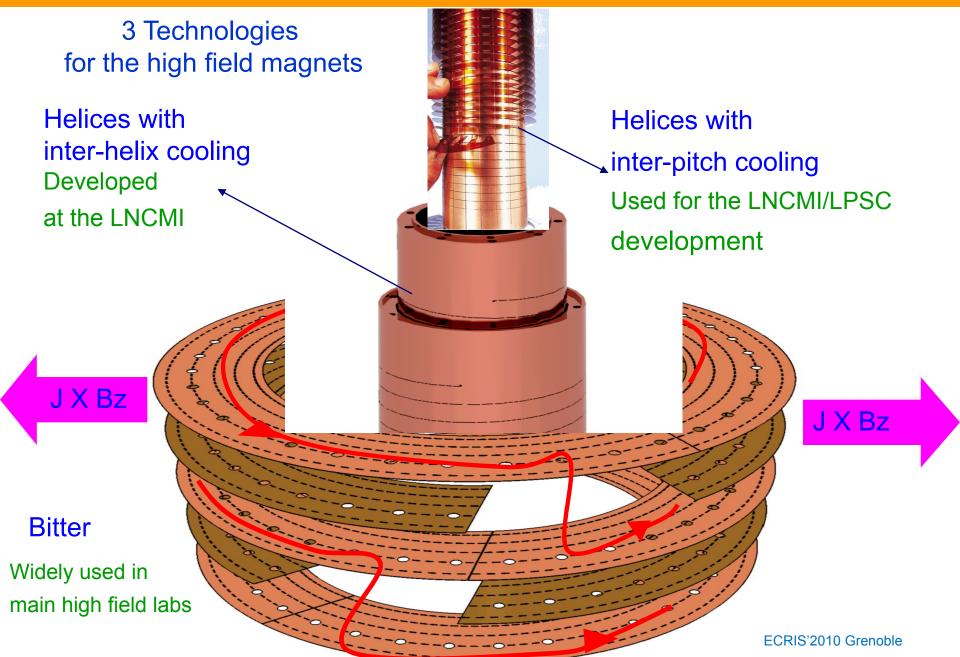
COIL: 37 double-pancakes (260 m long) in series


2009



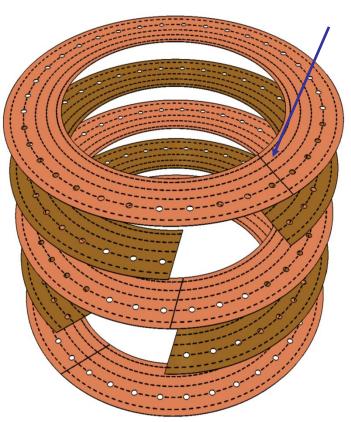
 $\sigma_{\text{max,total}}$ = 170 MPa

Energy extraction 70 m Ω , 60 K 500 V



Cable Insertion Coil Winding Integration and tests

2010 2011 2012 2013



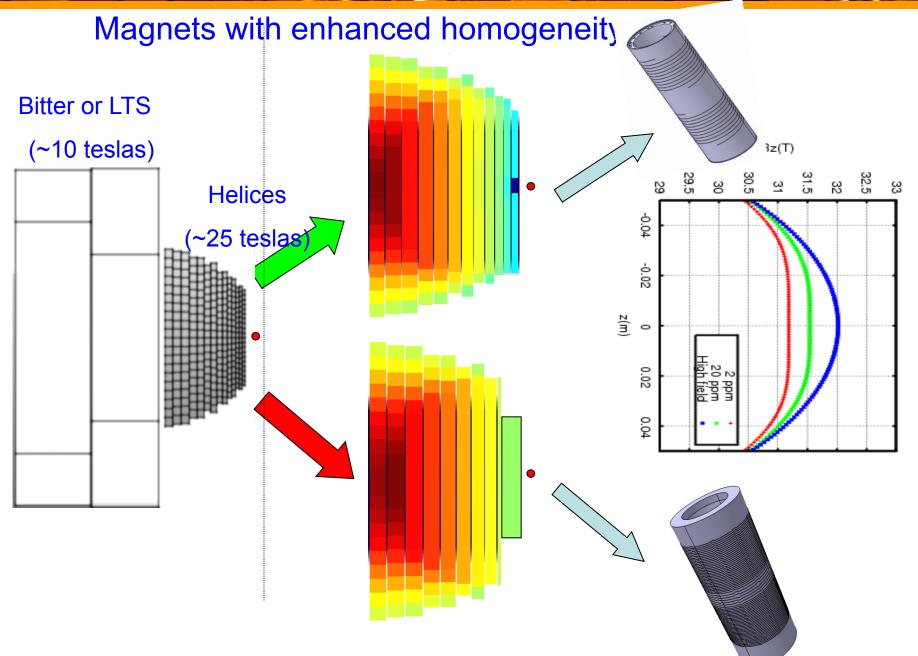
Field Optimization: advantage of the helix technique

Bitter Technique

Discrete change

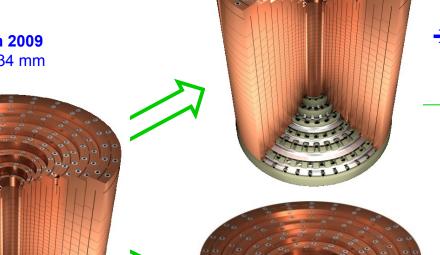
of current density

Helix Technique


Continuous change of the current density

→ allows a fine optimization of the current distribution

- → Helix technique well adapted for design of
 - homogeneous magnets
 - Split magnets, high gradient magnets, ECR magnets



Magnet development

2011/12: **37 T** in 34 mm

→will be the first insert for the 42.5 T hybrid

Aim 2013:

38 T in 34 mm (suitable for THz generation)

35 T with high homogenity < 50ppm

in mixing Longitudinaly & radially cooled techniques

35 T (34 mm)

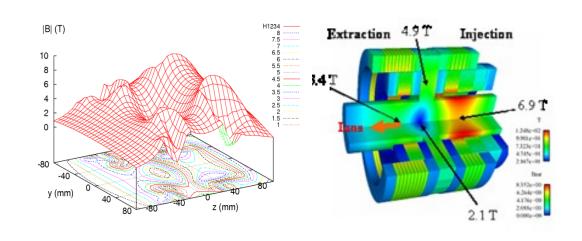
31 T (50 mm) 36 T (34 mm)

37 T (34 mm)

42 .5 T hybrid test

2009 2013 2010 2011 2012

New geometries for high field magnets

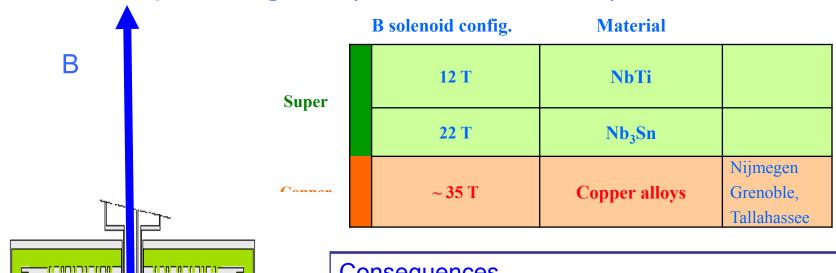

ILL and ESRF

High fields for Neutrons and X Ray: From 15 T (existing) to 30 T in split geometry

LPSC

Electron Cyclotron Resonance Ion Source (ECRIS): from 28 GHz → 60 GHz

Design founded by «ESRF Up» FP7 programm (2008/2009)

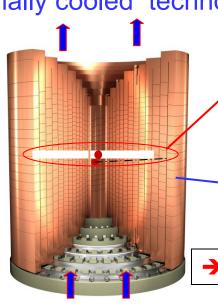

Design & construction founded by Eurisol & Euro nu FP7 programm (2007/2012)

→ Common feature : highly constrained geometries

Split magnet (State of the Art)

Consequences

- B goes down with the gap size
- Attractives forces: (J0XBr) ~ 20 MPA
- Limited acces to the centre:
- ~ 30 % B losses as compared to solenoids
- → State of the Art for split magnet 15 T



Choice of the radially cooled technology for Split and ECR magnets

Longitudinal cooling

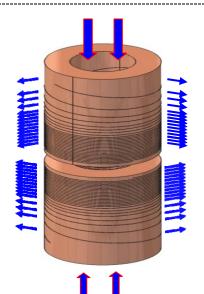
Hydraulic channels are ⊥ to the split plane

Heat conduction length = helix thickness

→ Possible thermal limitation

Possible thermal limitation →
near the mid plane

High flow rates and electric currents have to pass through the mid plane



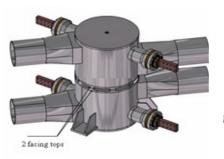
→ High constrains for the mid plane conception

Radial cooling

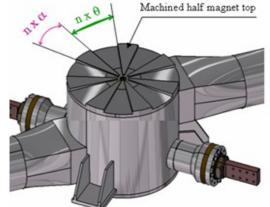
Hydraulic channels are // to the split plane

Cooling is performed between each turn of the winding.

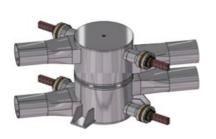
Heat conduction length = pitch of the helix


Less hydraulics and electric constrains near the mid plane

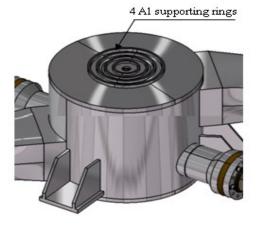
→ High versability to fit the users needs.


Design study results (2008/2009) for Esrf Up FP7

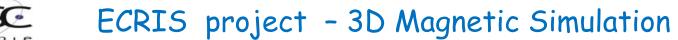
13th October 2009 : special ESRF tuesday event



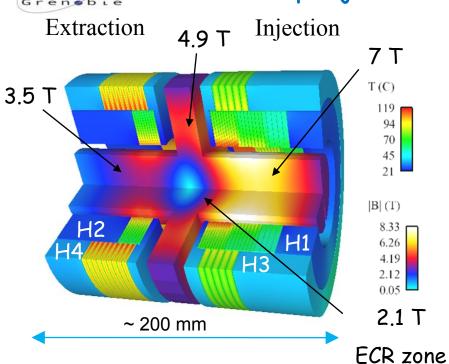
 $F \approx 2*10 \text{ MN}$

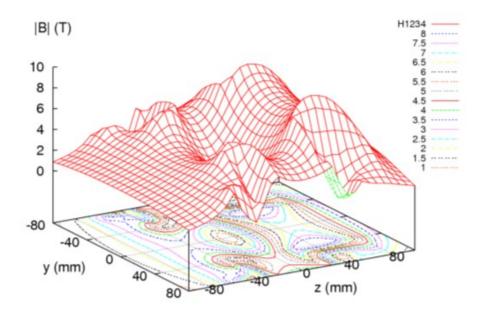


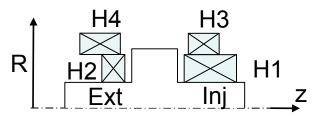
B	28.8 T
Air gap	10 mm
Take off	2x3°
n	7
θ	36°
α	15°
WB	34 mm


В	30 T
Air gap	10 mm
Take off	2x3°
Al thickness	35 mm
WB	34mm

→ Next step: hybrid studies in the frame of the HMFL FP7 (2011/2013)







- Solution with 2 sets of 2 radially cooled concentric helices
- •7 T injection (spec. 6T)
- 3.5 T ion extraction (spec. 3T)
- 4.9 T radial mirror (spec. 4T)

Magnetic simulation Construction Integration & tests

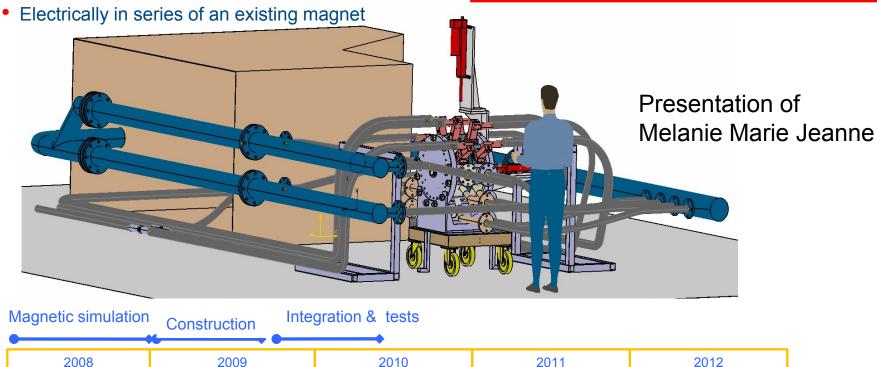
2008 2009 2010 2011 2012

ECRIS: On-site installation and measurements

2009/2010

Magnet time from July 2009, for experiments on a 10 MW magnet Purpose: B map at 28 GHz

1st step : ECRIS connected to the high field facility:


Hydraulically in parallel

B tests

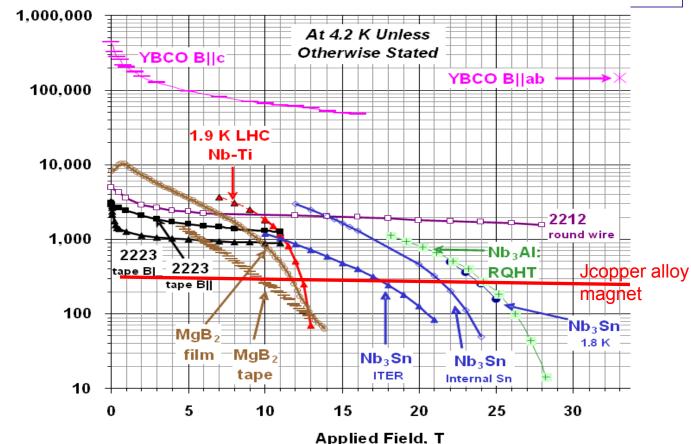
- 15 kA on each side : P = 0.75 MW
- B measurements up to 18 GHz (July 2010)

Magnetdesign for 60 Ghz ECR operation

→ Measurement to be continued

DC Magnetic Fields

DC Magnetic Fields							
	B (T)	Material		Projects			
S U P	12 T	NbTi	 20000 IRM (+ 2000 each year) 1232 dipoles for LHC (8.4 Teslas / 1.8 K) High field MRI : Iseult : 1m diam /360 MJ/11,75 T (é2013) 				
E R	23 T	Nb3Sn	 NMR magnets Record Magnet in operation 23.48 T (1 GHz proton res.) ITER development 				
Copper	35 T	Cu alloy	In 3 places: Nijmegen (20 MW), Grenoble (24 MW), Tallahassee (48 MW)				
H Y B R	35 to 45 T	NbTi, Nb3Sn & Cu Alloys	Operationals: → Tsukuba, Japan → Tallahassee, US ~ Planned for 2013/2015: → Grenoble, France → Nijmegen, The Netherlands → Hefei, China ➤ Tallahassee, US	35 T = 14 T (Nb3Sn) + 21/23 T (~14 MW) 45 T = 11 T (Nb3Sn) + 34 T (~30 MW) 42 T = 8 T (NbTi) + 34 T (24 MW) 42 T = 12 T (Nb3Sn) + 30 T (20 MW) 42 T = 11 T (Nb3Sn) + 29 T (20 MW) 36 T = 14 T (Nb3Sn) + 22 T (12 MW)			
D	Next generation 40 to 50 T with less power	Supra HTS YBaCuO BISCO MgB2 Copper Alloy	2005/20015 : R&D and prototypes : → SMES : NEXANS/CNRS : 1MJ / 5,5 T → Inserts in 20 T environment : (NEXANS/CNRS/CEA FZK, Tallahassee) → R&D for futur accelerators (EUCARD) → Development of compact magnets : for futur hybrid magnets for others "communities" : neutron/XPay/ ions sources)				



R&D on HTS tapes and wires in High Field Facilities

- Platform for Superconductor Characterization (access to high B and variable Temp.)
- HTS conductors development (with labs, institutes and industrial partners)
- Magnetic systems (SMES, insert coils)

HTS conductors show the highest critical current density (*Jc*) at B > 15 T

Critical Current Density (non-Cu), A/mm²

•Cu oxides (1986) :YBCO, DI-ZZ IZ Q ZZZO,

Borides (2001): MgB₂

→ Now mature for industrial applications

Superconducting AC Cables State-of-the-Art

Columbus

13.2 kV, 3 kA, 200 m Triaxial™ Design BSCCO 2223 Energized 2006 High reliability 1

Nexans 138 kV, 2.4 kA, 600 m Single coaxial design BSCCO 2223

Energized 2008

Figure:

Nexans

LIPA

Gochang

22.9 kV, 50 MVA, 100 m BSCCO 2223 Energized 2007 500 m field test with YBCO in 2011

M. Noe, KIT, ASC 2010, Superconductivity for Power Applications is getting more and more attractive

Figure:

Ultera

14

M.Noe, KIT ASC 2010

Superconducting Transformers State-of-the-Art of Current Limiting Transformers

Karlsruhe Institute of Technology

60 kVA Demonstrator 1kV/0.6 kV Primary copper Secondary YBCO tapes Successful test in 2010 Recovery under nominal load 2 MVA Demonstrator

Nagoya University

2 MVA Demonstrator 22kV/6.6 kV Primary Bi 2223 tapes Secondary YBCO tapes Successful test in 2009 Larger prototype planned 28 MVA Prototype 69 kV Primary and secondary with

Waukesha/SuperPower

YBCO tapes Test planned in 2012

M. Noe, KIT, ASC 2010, Superconductivity for Power Applications is getting more and more attractive

32

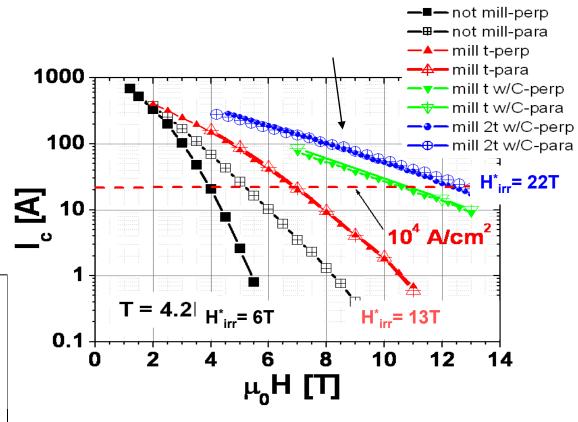
Superconducting AC Cables State-of-the-Art of HTS AC Cables

Manufacturer	Place/Country/Year 1)	Type	Data	HTS
Innopower	Yunnan, CN, 2004	WD	35 kV, 2 kA, 33 m, 3-ph.	Bi 2223
Sumitomo	Albany, US, 2006	CD	34.5 kV, 800 A, 350 m, 3-ph.	Bi 2223
Ultera	Columbus, US, 2006	Triax	13.2 kV, 3 kA, 200 m, 3-ph.	Bi 2223
Sumitomo	Gochang, KR, 2006	CD	22.9 kV, 1.25 kA, 100 m, 3-ph.	Bi 2223
LS Cable	Gochang, KR, 2007	CD	22.9 kV, 1.26 kA, 100 m, 3-ph.	Bi 2223
Sumitomo	Albany, US, 2007	CD	34.5 kV, 800 A, 30 m, 3-ph.	YBCO
Nexans	Hannover, D. 2007	CD	138 kV, 1.8 kA, 30 m, 1-ph.	YBCO
Nexans	Long Island, US, 2008	CD	138 kV, 1.8 kA, 600 m, 3-ph.	Bi 2223
Nexans	Spain, 2008	CD	10 kV, 1 kA, 30 m, 1-ph	YBCO
Ultera	New York, US, 2010	Triax	13.8 kV, 4 kA, 240 m, 3-ph.	YBCO
Ultera	Amsterdam, NL, -	Triax	50 kV, 2.9 kA, 6000 m, 3-ph.	YBCO
Nexans	Long Island, US, 2011	CD	138 kV, 2.4 kA, 600 m, 1-ph.	YBCO
LS Cable	Gochang, KR, 2011	CD	154 kV, 1 GVA, 100 m, 3-ph.	YBCO
LS Cable	Seoul, KR, 2011	CD	22.9 kV, 50 MVA, 500 m, 3-ph.	YBCO
Sumitomo	Yokohama, JP, 2012	CD	66 kV, 200 MVA, 200 m, 3-ph.	Bi 2223
Sumitomo	TEPCO, JP	CD	66 kV, 5 kA	to be defined
Furukawa	TEPCO, JP	CD	275 kV, 3 kA	Bi 2223
Sumitomo	Chubu U., JP, 2010	CD	10 kV, 3 kA DC, 20 m, 200 m	Bi 2223
VNIIKP	Moscow, RU, 2010	CD	20 kV, 200 m	Bi 2223
Nexans	Spain	CD	10 kV, 3.2 kA, 30 m, 1 ph.	Bi 2223

Superconducting Transformers State-of-the-Art

Country	Inst.	Application	Data	Phase	Year	HTS
Switzerland	ABB	Distribution	630 kVA/18,42 kV/420 V	3 Dyn11	1996	Bi 2223
Japan	Fuji Electric Kyushu Uni	Demonstrator	500 kVA/6,6 kV/3,3 kV	1	1998	Bi 2223
Germany	Siemens	Demonstrator	100 kVA/5,5 kV/1,1 kV	1	1999	Bi 2223
USA	Waukesha	Demonstrator	1 MVA/13,8 kV/6,9 kV	1		Bi 2223
USA	Waukesha	Demonstrator	5 MVA/24,9 kV/4,2 kV	3 Dy		Bi 2223
Japan	Fuji Electric U Kyushu	Demonstrator	1 MVA/22 kV/6,9 kV	1	< 2001	Bi 2223
Germany	Siemens	Railway	1 MVA/25 kV/1,4 kV	1	2001	Bi 2223
EU	CNRS	Demonstrator	41 kVA/2050 V/410 V	1	2003	P-YBCO S- Bi 2223
Korea	U Seoul	Demonstrator	1 MVA/22,9 kV/6,6 kV	1	2004	Bi 2223
Japan	U Nagoya	Demonstrator	2 MVA/22 kV/6,6 kV	1	2009	P-Bi 2223 S-YBCO
Germany	KIT	Demonstrator	60 kVA	1	2010	P-Cu/S-YBCO
USA	Waukesha	Prototyp	28 MVA/69 kV	3	2010	YBCO

M.Noe, KIT ASC 2010

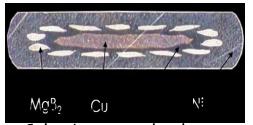


Properties of MgB₂ tapes and wires (Columbus Superconductors, Genova, Italy)

Measurement campaigns with the LNCMI since 2003

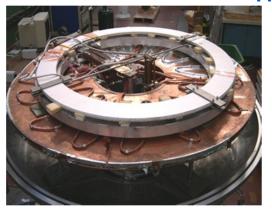
- Conductors with a large number of filaments, high filling factor (>25%) and wire shaped are preferable
- Improvment of $J_c(B,T)$ behaviour by ball-milling : best sample I_c (4.2 K, 13 T) = 20 A \rightarrow $J_c = 10^4$ A/cm², $H^*_{irr} = 22$ T

Effect of grain refinement on enhancing critical current density and upper critical field in undoped MgB_2 ex situ tapes, A. Malagoli et al., Journal of Applied Physics, **104** (10): Art. No. 103908 (2008)



MgB2 magnet for MRI (Columbus Superconductors)

Columbus standard tape


1st MRI machine using MgB₂:
2 parts
each part = 6 double pancakes
1 double pancake = 1,6 km
MgB₂ tape

Main Magnet Parameters				
Nominal Field	0.5 T			
Peak Field on the Conductor	1.3 T			
Nominal Current	90 A			
Number of Pancakes	12			
Conductor Length (total)	18 Km			
Inductance	60 H			
Overall Dimensions	2x2x2.4 m			
Patient Available Gap	0.6 m			
Weight	25000 Kg			

First commercial system installed in hospital

Development of magnetic systems using HTS

Objectives: to study the most suitable HTS for high B magnets and to develop the technology

« SUPER-SMES » Project → energy storage

œ

- Objectives: Energy density enhancement for SMES with HTS
- Partners: CNRS-CEA/IRFU-Nexans
- Conceptual study of 20 kJ/kg SMES @ 1 MJ / 50 MW Mexans

800 kJ Bi-2212 SMES DGA / CNRS /Nexans project (P. Tixador InP-G CNRS)

FP7 – European Project EUCARD → magnets for accelerators

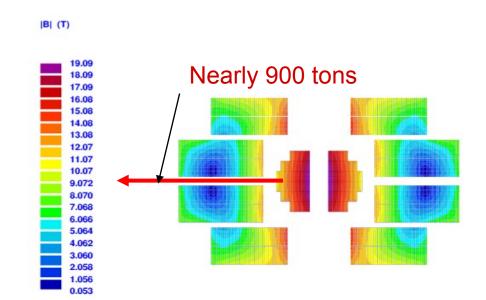
- 4 years (2009-2013), 37 european partners
- WP7: Superconducting High Field Magnets for higher luminosities and energies
- → Task 4: construction of a Very High Field HTS Dipole Insert (6 T) within a Nb3Sn dipole magnet (13 T)
- Objectives: to upgrade the large European research accelerators
- Partners: CNRS-CEA/IRFU-FZK-LASA/INFN-TUT-UNIGE-PWR

The EuCARD project is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, under Grant Agreement no 227579.

EUCARD

Dipole design

Inner bore diameter: 20 mm

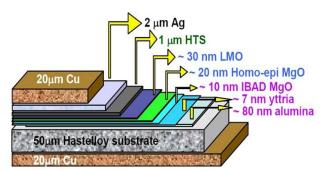

Outer bore diameter: 98 mm

→Peak field 6.1T with 254 A/mm² needed

Blo c Bloc 2
Bloc 3

3 double pancakes (2 flat one)
1 with bent end, each pancake
(symetrical / mid plane)

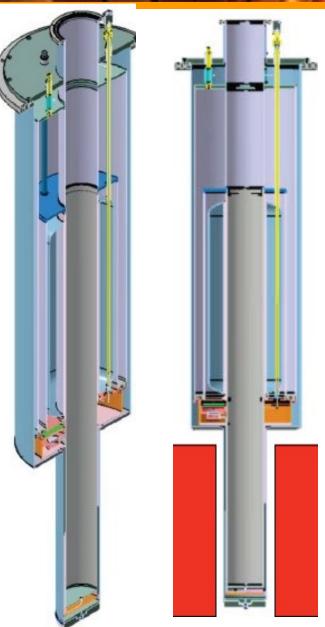
(JM Rey CEA)



Bi-2212 & YBCO

	Bi-2212	YBCO
+	Round wire (0.8 mm) High current cable	High Jc Mechanical stability
-	Mechanical performances Heat treatment	High current cable Length (hundreds of m)

Bi-2212 Nexans wire ϕ = 0.8 mm



Bi-2212 Nexans OST

YBCO SuperPower AMSC

Undergoing Experiments: Tests of HTS coils in high B: 2010/2012

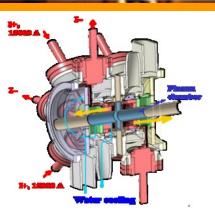
Variable temperature cryostat for small coil

- →Operation planned for June 2010 at 20 T in 160 mm magnet
- → Upgrade to 27 T when hybrid is completed (2013)

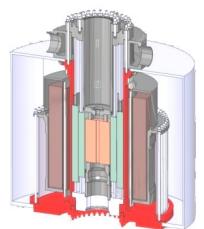
Small coils in high field environment

- → Bi-2223 with a NIMS collaboration
- →YBCO and Bi-2212 (under fabrication)

Small YBCO coil


To summarize

- Resistive technologies permit to developp and test complex magnetic configurations within relatively short time scale & with moderate investment (LPSC collaboration)
- High TS materials (BISCO, YBACUO, MgB2)
 - are now ready for industrial applications
 - → are becoming attractice for high field magnetic structures.


(R& D projects, choice between Nb3Sn& HTS)

Visit on Thursday Many thanks to colleagues Th. Lamy, M. Marie Jeanne, T. Thuillier (LPSC), L. Latrasse (Sairem) JM. Rey (CEA), Pascal Tixador (INP-G), Jean-Paul Leggeri, Xavier Chaud, Frederic Hatanian, Christophe Trophime (CNRS)

...non exhaustiv list!

ECRIS'2010 Grenoble