FARADAY CUP ARRAY MEASUREMENTS OF ION-BEAM PROFILE CHARACTERISTICS

FCRIS10 Grenoble

Lauri Panitzsch

Institute for Experimental and Applied Physics University of Kiel, Germany

August 24, 2010

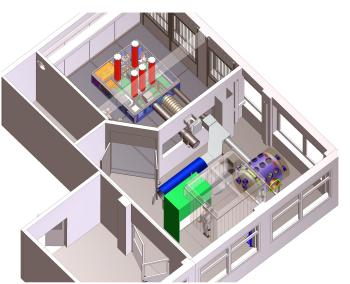
Outline

Solar Wind Calibration Laboratory

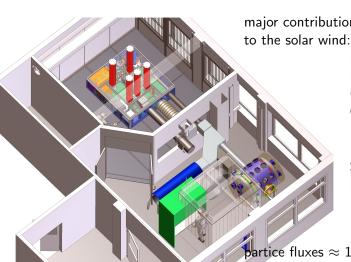
ECR Ion Source

Ion Source and Extraction

Faraday Cup Array


Setup and Characteristics (Placements along) Beam Line

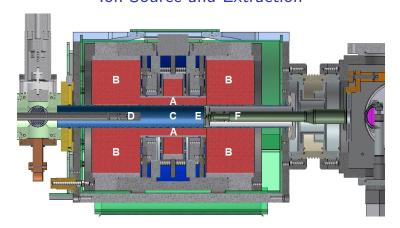
Measurements


Ion Beam Focussing Ion Beam Steering Ion Distribution of a Strongly Focussed Beam Profile

Summary

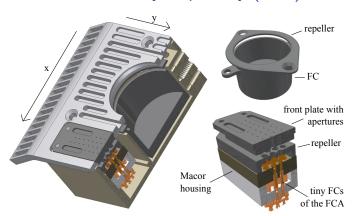
Solar Wind Calibration Laboratory

Solar Wind Calibration Laboratory



major contributions of ion species

$$H^{+}$$
 $He^{+} - He^{2+}$
 $C^{4+} - C^{6+}$
 $O^{6+} - O^{8+}$
 Ne^{8+}
 Mg^{10+}
 $Si^{8+} - Si^{9+}$
 $Fe^{6+} - Fe^{16+}$


partice fluxes $\approx 10^8 \frac{particles}{cm^2 \cdot s}$ (H⁺) for Oⁿ⁺ $\approx 10^5 \frac{particles}{cm^2 \cdot s} \rightarrow \text{restriction!}$

Ion Source and Extraction

- hexapole for radial confinement
- В magnetic rings for axial confinement plasma chamber
- D biasable microwave antenna
- Ε
- plasma electrode 3D-movable extraction

cut view of the detector with mounted front cover

detection hardware in detail

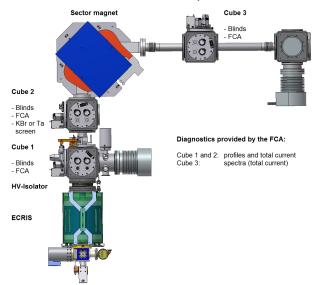
[Panitzsch et al., 2009, Rev.Sci.Instrum.] doi:10.1063/1.3246787

Faraday Cup Array (FCA)

Characteristics:

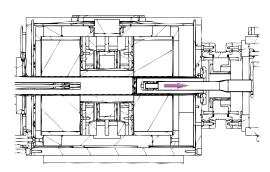
- FC & FCA in one detector
 - \rightarrow profile & total current measurable
- direct measurement with secondary electron escape suppression
- high durability: up to 40 W of beam power
- fast system: 10 s per profile scan

Detector hardware:


- spatial resolution: 58 dpi x 51 dpi
- scanned area: 45 x 30 mm²
- detection of structures on mm-scale

Detector electronics (present configuration):

- large dynamic range: $50 \, pA \rightarrow 50 \, \mu A$ → high sensivity at absoulte current values
- ranges from $200 \,\mathrm{nA/cm^2}$ to $20 \,\mathrm{mA/cm^2}$ (if $P_{beam} < 40 W$)



Placements of the FCAs (and Beam Line)

Ion Beam Focussing

Procedure

Source Settings

pressure inside plasma chamber	PECR	1.0×10^{-5} mbar
microwave power	$P_{\mu w}$	50 W
microwave frequency		11 GHz
extraction voltage	f _{μw} U _E	15 kV (test 1)
	_	from 13 to 2 kV (test 2)
extraction position perpend. to beam line	d_{Ep}	central
extraction position along beam line	d_{Fa}	from 5 to 25 mm (test 1)
		25 mm (test 2)

The extraction is moved im mm-steps starting at a distance of 5 mm to the plasma electrode ending at a distance of 25 mm.

same scale: full scale:

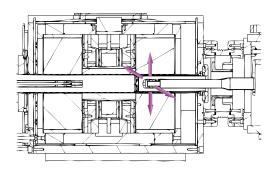
The extraction is moved im mm-steps starting at a distance of 5 mm to the plasma electrode ending at a distance of 25 mm.

same scale: full scale: Ion Beam Focussing by Lowering the Extraction Voltage cube 1, original scale:

Ion Beam Focussing by Lowering the Extraction Voltage cube 1, original scale:

Ion Beam Focussing by Lowering the Extraction Voltage

The extraction voltage is lowered in 1 kV-steps starting at a voltage of 13 kV, ending at 2 kV.


cube 1: cube 2:

Ion Beam Focussing by Lowering the Extraction Voltage

The extraction voltage is lowered in 1 kV-steps starting at a voltage of 13 kV, ending at 2 kV.

cube 1: cube 2:

Procedure

Source Settings

		·
pressure inside plasma chamber	PECR	$1.0 \times 10^{-5} \text{ mbar}$
microwave power	$P_{\mu w}$	50 W
microwave frequency	$f_{\mu w}$	11 GHz
extraction voltage	Ú _F	6 kV
extraction position perpend. to beam line	d_{F_D}	variable
extraction position along beam line	d _{Ep} d _{Ea}	25 mm

extraction moving from left to right (horizontally) 0.5 mm per step

cube 1: cube 2:

extraction moving from left to right (horizontally) 0.5 mm per step

cube 1: cube 2:

extraction moving upwards (vertically)
0.5 mm per step

cube 1: cube 2:

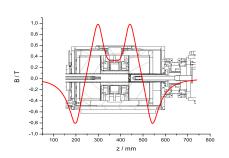
extraction moving upwards (vertically) 0.5 mm per step

cube 1: cube 2:

conclusion for the beam steering:

ightarrow $pprox rac{\pi}{2}$ rotation from extraction to cube 1!

the rotation of charged particles induced by a magnetic lens is defined as:

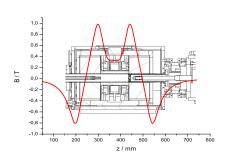

$$\Theta_{tot} = \sqrt{rac{q}{8mU_{extr}}} \cdot \int B_z dz$$
 [Glaser]

conclusion for the beam steering:

 $ightarrow \approx \frac{\pi}{2}$ rotation from extraction to cube 1!

the rotation of charged particles induced by a magnetic lens is defined as:

$$\Theta_{tot} = \sqrt{rac{q}{8mU_{extr}}} \cdot \int B_z dz$$
 [Glaser]


$$\int B_z dz \approx 0.03 \ Tm$$

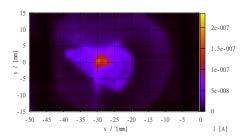
$$U_{extr} = 7 \ kV$$
 beam dominated by: $O^{2+} \ \& \ N^{2+}$

conclusion for the beam steering:

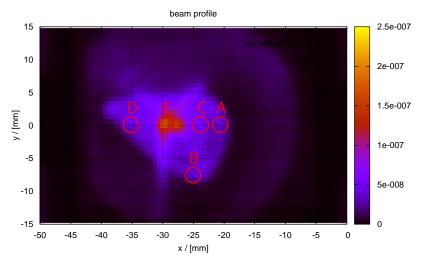
 $ightarrow \approx \frac{\pi}{2}$ rotation from extraction to cube 1!

the rotation of charged particles induced by a magnetic lens is defined as:

$$\Theta_{tot} = \sqrt{rac{q}{8mU_{extr}}} \cdot \int B_z dz$$
 [Glaser]

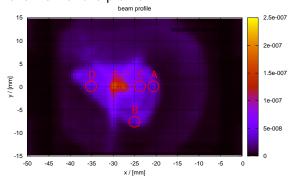

$$\int B_z dz \approx 0.03 \ Tm$$
 $U_{extr} = 7 \ kV$ beam dominated by: $O^{2+} \& N^{2+}$

ightarrow rotation amounts to $pprox rac{\pi}{2}!$

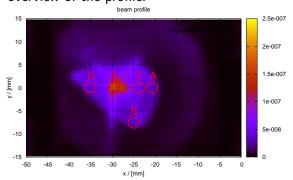

Ion Distribution of a Strongly Focussed Beam Profile Source Settings

pressure inside plasma chamber	PECR	$1.0 \times 10^{-5} \text{ mbar}$
microwave power	$P_{\mu w}$	50 W
microwave frequency	$f_{\mu w}$	11 GHz
extraction voltage	\dot{U}_F	7 kV
extraction position perpend. to beam line	d_{E_D}	central
extraction position along beam line	d_{Ea}^{-r}	25 mm

lead to the following profile in cube 1:



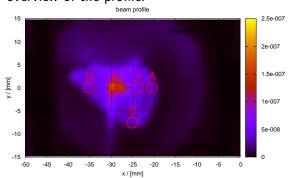
positions of the beam profile where spectra have been measured:


overview of the profile:

dominating ion species:

	Α	O^{2+}
ĺ	В	O ²⁺
ĺ	С	N ²⁺
		O ²⁺
ĺ	D	N ²⁺ O ²⁺
ĺ	Е	$O^{1+\to 4+}$
		$N^{1+\rightarrow 4+}$
		H_2O^+, OH^+, H^+

overview of the profile:



dominating ion species:

Α	O ²⁺
В	O ²⁺
С	N ²⁺
	O ²⁺
D	N ²⁺
	O ²⁺
E	$O^{1+\to 4+}$
	$N^{1+\rightarrow 4+}$
	H_2O^+, OH^+, H^+

assuming a slight misadjustment of the blinds at position C:

overview of the profile:

dominating ion species:

Α	O ²⁺
В	O ²⁺
С	N ²⁺
	O ²⁺
D	N ²⁺
	O ²⁺
E	$O^{1+\to 4+}$
	$N^{1+\rightarrow 4+}$
	H_2O^+, OH^+, H^+

assuming a slight misadjustment of the blinds at position C:

 \rightarrow each ring is dominated by a specific m/q ratio!

Beam focussing:

• both techniques work (moving the extraction and changing the extraction voltage)

Beam focussing:

• both techniques work (moving the extraction and changing the extraction voltage)

Beam steering:

- no direct mapping but rotation observed
- rotation might be induced by the magnetic lens caused by the axial magnets
- can be used to match certain, non-central parts of the beam into the sector magnet

Beam focussing:

 both techniques work (moving the extraction and changing the extraction voltage)

Beam steering:

- no direct mapping but rotation observed
- rotation might be induced by the magnetic lens caused by the axial magnets
- can be used to match certain, non-central parts of the beam into the sector magnet

Ion distribution:

• observation: 1 m/q-ratio per ring (of a strongly focussed beam)

Beam focussing:

• both techniques work (moving the extraction and changing the extraction voltage)

Beam steering:

- no direct mapping but rotation observed
- rotation might be induced by the magnetic lens caused by the axial magnets
- can be used to match certain, non-central parts of the beam into the sector magnet

Ion distribution:

• observation: 1 m/q-ratio per ring (of a strongly focussed beam)

Detector:

- high resolution (in current and location)
- works well as our primary beam diagnostic
- more sensitive version under development

