

Recent Performance of the Argonne National Laboratory ECR Charge Breeder

CARIBU layout

CARIBU - 2008

CARIBU - 2010

ECR charge breeder

- Multiple frequency operation
 - Klystron: 10.44 GHz, 2 kW
 - TWTA: 11→13 GHz, 0.5 kW
- Open hexapole structure
 - RF is injected radially
 - Allows more iron in the injection region for improved magnetic confinement and symmetrical fields
 - Provides better pumping to the plasma chamber region
 - Source base pressure: 2x10⁻⁸ mbar
 - Operates at 8.0x10⁻⁸ to 2.0x10⁻⁷ mbar
 - Extraction pressure: 4x10⁻⁸ mbar
- HV isolation
 - Source operates in charge breeding mode at 50 kV
 - Source assembly has been tested to 65 kV without plasma

Design value	Running condition
B _{inj} 1.31 T	1.16 T
B _{min} 0.31	0.27
B _{ext} 0.85	0.83
B (radial)	0.86 T
Last closed surfa	ice 0.61 T

1+ injection

- Reshaped iron in the injection region due to Penning discharges
 - Breakdown occurred at 30 kV even without plasma present
 - Gap was too small but the iron was designed to be easily removable
- Stainless steel transfer tube
 - Linear slide with 30 mm travel

Charge breeding results

- All results are with two-frequency operation
- Oxygen support gas

Ion Species	1+ Intensity (nA)	n+ Charge State	Efficiency (%)	Global Efficiency	Breeding Time
				(%)	(msec)
Kr-86	19.0	17+	15.6	77	
Rb-85	5.0	19+	11.9	57	200
Xe-129	12.5	25+	13.4	63	~250
Cs-133	21.5	20+	2.9		

Kr-86 charge breeding

- RF discharge source operated with helium and ^{nat}Kr
 - The analysis system allowed clear identification of all masses
 - Typically injected 20 nA of ⁸⁶Kr⁺ into the charge breeder
- Operated source in two-frequency mode
 - 10.44 GHz at 105 W, 11.90 Ghz at 278 W

Rb-85 charge breeding

- Surface ionization source
 - Produced up to 500 nA of ⁸⁵Rb⁺
 - Typically injected 10 nA of ⁸⁵Rb⁺ into the charge breeder
- Operated source in two-frequency mode
 - 10.44 GHz at 105 W, 11.90 Ghz at 278 W

Xe-129 charge breeding

- RF discharge source operated with helium and Xe-129 (98%)
 - Maximum output was 100 nA of ¹²⁹Xe⁺
 - Typically injected 20 nA into the charge breeder
 - Neutral Xe-129 migrated from the RF source into the ECR charge breeder

Transfer tube position

- Efficiency of ⁸⁵Rb¹⁷⁺ as a function of the transfer tube position
 - Position indicates the distance from B_{max} to the end of the transfer tube
 - Three different data sets from 2008, 2009 and 2010

ΔV optimization

- Efficiency of ¹²⁹Xe²⁵⁺ as a function of the potential difference between the RF discharge source and the ECR charge breeder
 - Optimum ΔV was typically +10 V (ECR charge breeder higher than 1+ source) with a large acceptance window
 - For surface ionization source with Rb-85, ΔV was typically -15 V (ECR charge breeder lower than 1+ source) with an acceptance window of ~5 V

Multiple frequency operation

- Efficiency of Xe-129 as a function of power distribution
 - ¹²⁹Xe⁺ beam intensity of 65 nA
 - Kept the total amount of RF power constant (245 W, 10.44 and/or 11.90 GHz)
 - Slight tuning of source on ¹²⁹Xe²⁵⁺ between the various configurations

Injection B field profile

- Radial RF injection maintains field symmetry
- Axial RF injection means that slots have to be cut into the iron plug for the waveguides
 - Leads to field asymmetry in the injection region
 - Simulations done with CST EM Studio using source operating parameters to look at the B field profiles
 - Presently setting up particle tracing simulation to compare the two cases

Injection B field profile

B_z (x,y) symmetric

B_z (x,z) y=0 symmetric

Next activities

- Commission CARIBU project
 - First run occurred last week with Ba-143
 - Identified activity after isobar separator but not at high energy end of accelerator
 - » Next run is scheduled for October 2010
- Build an EBIS for charge breeding
 - Collaboration with Brookhaven National Laboratory