

Dark matter relic density and Early Universe properties

Alexandre Arbey

**Institut de Physique Nucléaire de Lyon
Centre de Recherche Astrophysique de Lyon**

LPSC – Grenoble

October 8, 2010

Outline

1 Dark Problems

- Dark Matter
- Dark Energy
- Dark Ages

2 Relic Density

- Overview
- Sensitivity to the Cosmological Model
- Inverse problem

3 SuperIso Relic

- Motivations
- Status

4 Conclusion

Outline

1 Dark Problems

- Dark Matter
- Dark Energy
- Dark Ages

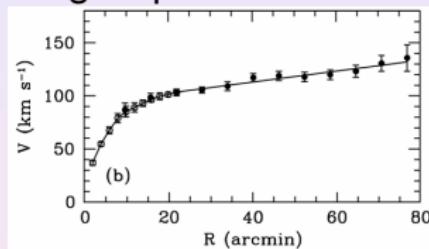
2 Relic Density

- Overview
- Sensitivity to the Cosmological Model
- Inverse problem

3 SuperIso Relic

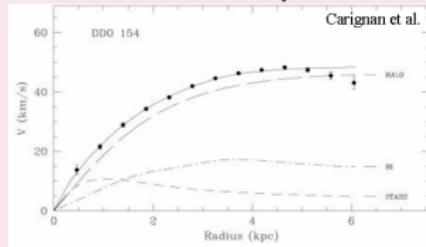
- Motivations
- Status

4 Conclusion


Dark Matter Problem

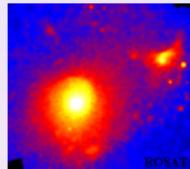
Different scales involved

- Galactic scale
 - Galaxy Rotation Curves
 - Galaxy Collisions
- Cluster Scale
 - X-Ray Observations
 - Weak Lensing
 - Bullet Cluster
- Cosmological Scale
 - Supernovæ of type Ia
 - Cosmic Microwave Background
 - ...

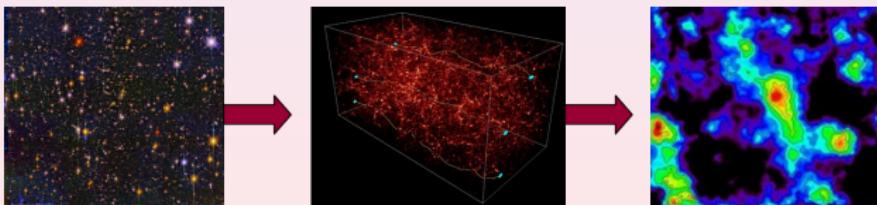

Galaxy Rotation Curves

- Large Spiral Galaxies

$$\rho_{\text{deduced}} \propto r^{-2} \quad \gg \quad \rho_{\text{stars}} \propto e^{-r/r_0}$$


- Dwarf Spiral Galaxies

Well known baryonic contribution
Dark matter dominates those objects


Dark Matter in Cluster

- X-ray Observations \rightarrow presence of hot gas (P, ρ, T)

$$M_{\text{total}} \sim -\frac{kTr}{Gm} \left[\frac{d \ln n_e}{d \ln r} + \frac{d \ln T}{d \ln r} \right] \gg M_{\text{gas+stars}}$$

- Weak lensing

Confirms the X-ray results!

Bullet Cluster

Dark Matter is independent from baryonic matter!

Cosmological Standard Model

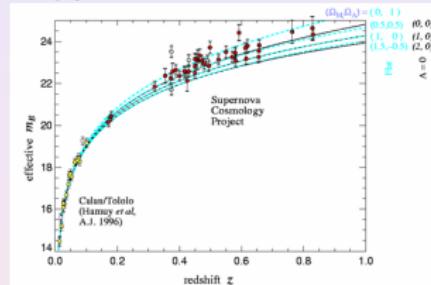
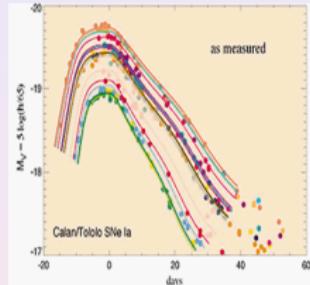
Friedmann-Lemaître Universe

- Homogeneous and Isotropic Universe

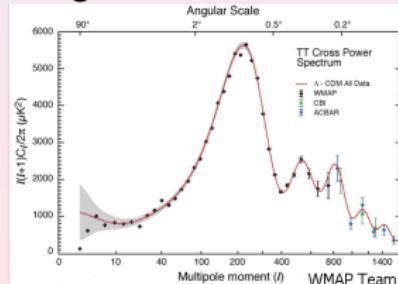
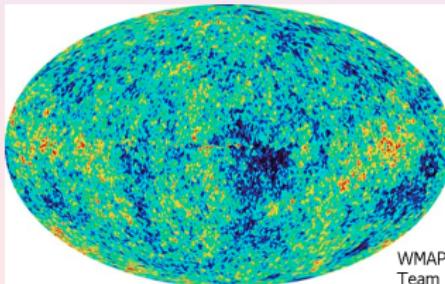
- Robertson-Walker metric:

$$d\tau^2 = dt^2 - a(t)^2 \left\{ \frac{dr^2}{1-kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2 \right\}$$

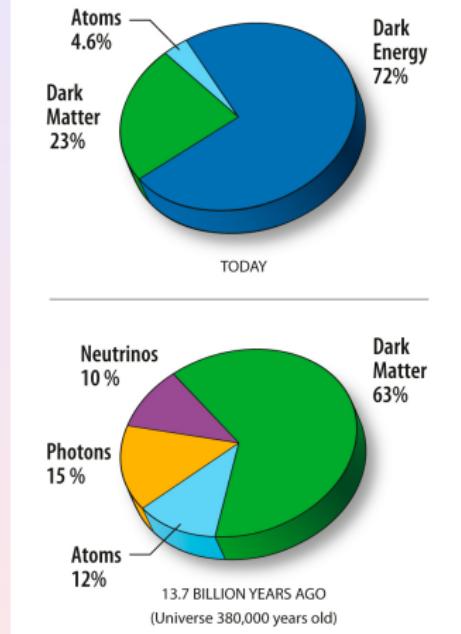
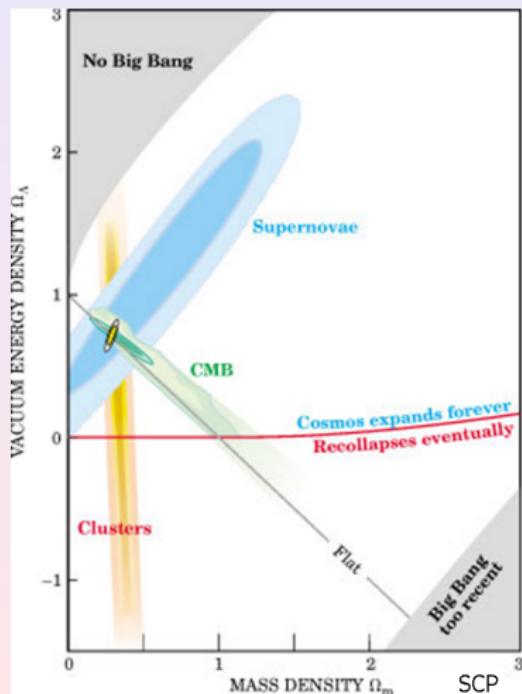
- Adiabatic cosmic fluids: matter, radiation, dark energy, ... (ρ, P)



- Einstein-Friedmann equations:
$$\begin{cases} H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} \\ \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) \end{cases}$$

Today: $H_0^2 = \frac{8\pi G}{3}\rho_0^0 - \frac{k}{a_0^2} \equiv \frac{8\pi G}{3}\rho_C^0 \leftarrow \text{critical density}$



Cosmological parameters (for each component): $\Omega_{comp} = \frac{\rho_{comp}^0}{\rho_C^0}$

Cosmological Observations



Supernovæ of Type Ia

Cosmic Microwave Background

Cosmological Parameters

+ Approximately FLAT

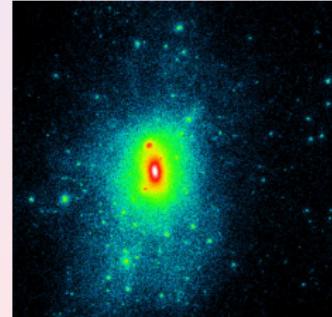
Baryonic Dark Matter

- Galaxies and clusters could be full of gases
 - The interstellar medium is full of HI
 - Dark matter densities in galaxies seem to follow the HI densities
 - H_2 is difficult to detect and underestimated
 - but Stellar radiation could heat the gas or evaporate it
- Or full of massive or compact objects
 - Black holes (center of galaxies, ...) or dark stars (dwarves, ...)
 - Objects of mass inferior to 30 solar masses are not sufficient

Anyway, still a problem with the cosmological observations!

Baryonic Dark Matter

- Galaxies and clusters could be full of gases
 - The interstellar medium is full of HI
 - Dark matter densities in galaxies seem to follow the HI densities
 - H_2 is difficult to detect and underestimated
 - but Stellar radiation could heat the gas or evaporate it
- Or full of massive or compact objects
 - Black holes (center of galaxies, ...) or dark stars (dwarves, ...)
 - Objects of mass inferior to 30 solar masses are not sufficient

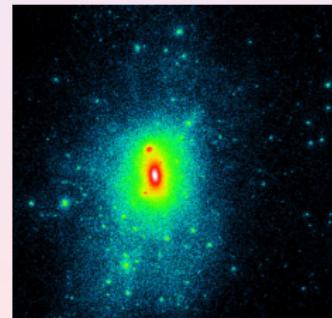

Anyway, still a problem with the cosmological observations!

Need for a non-baryonic more exotic matter!

Dark matter candidates: WIMPs

Weakly Interacting Massive Particles

- No direct detection yet
- Good cosmological behaviour and good galaxy formation
- Clumpiness problems? (clumps formation, cuspy core, ...)


Dark matter candidates: WIMPs

Weakly Interacting Massive Particles

- No direct detection yet
- Good cosmological behaviour and good galaxy formation
- Clumpiness problems? (clumps formation, cuspy core, ...)

Minimal Supersymmetric Standard Model (MSSM)

- Standard Model extension
- Large mass stable particles: cold dark matter
- Not verified yet

Dark Matter Candidates

- **Baryonic Dark Matter**
- **WIMPs**
- **Other particles/fields:** axions, Kaluza-Klein particles, ...
Exotic and non-baryonic particles
- **Modified Gravitation Laws**
MOND, TeVeS, Scalar-tensor theories, Extra-dimensions, Brane worlds, ...

Outline

1 Dark Problems

- Dark Matter
- **Dark Energy**
- Dark Ages

2 Relic Density

- Overview
- Sensitivity to the Cosmological Model
- Inverse problem

3 SuperIso Relic

- Motivations
- Status

4 Conclusion

The Dark Energy Problem

72% of the Universe energy has a negative pressure!

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R - \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Geometry Cosmology Energy

- **Cosmological Constant**

A new physics constant...

- **Vacuum Energy**

Applying Quantum Field Theory to Dark Energy?

Not very Successful yet...

- **Quintessence**

Dark energy as a real scalar field?

Quintessence (1)

Quintessence = real homogeneous scalar field

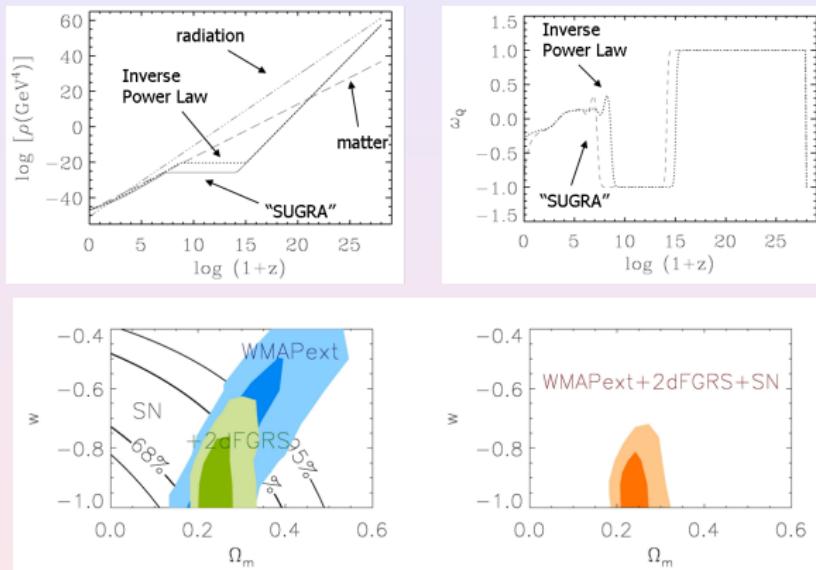
- Lagrangian density: $\mathcal{L} = g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - V(\varphi)$
- Density and pressure: $\begin{cases} \rho_\varphi = \frac{1}{2} \dot{\varphi}^2 + V(\varphi) \\ P_\varphi = \frac{1}{2} \dot{\varphi}^2 - V(\varphi) \end{cases}$
- Friedmann equations: $\begin{cases} \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \sum \rho - \frac{k}{a^2} \\ \frac{\ddot{a}}{a} = -\frac{3\pi G}{3} (\sum \rho + 3 \sum P) \end{cases}$
- Klein-Gordon equation: $\ddot{\varphi} + 3H\dot{\varphi} + \frac{\partial V}{\partial \varphi} = 0$
- Usual potentials:

$$V(\varphi) = \alpha \varphi^{-\beta}$$

$$V(\varphi) = \alpha \exp(-\beta \varphi)$$

$$V(\varphi) = \alpha [\cosh(\beta \varphi) - 1]^n$$

Quintessence (2)


Theoretical constraints

- No fine tuning in the potential
- No fine tuning in the initial conditions
- Today, $\omega_\varphi \equiv \frac{P_\varphi}{\rho_\varphi} \approx -1$

Observational constraints

- Cosmic microwave background
- Large scale structures
- Gravitational lensing
- Supernovæ of type Ia
- Abundance of the elements

Quintessence (3)

$$w \equiv \frac{P_\varphi}{\rho_\varphi} \quad w < -1 \text{ is not possible with quintessence}$$

No definitive answer yet!

Outline

1 Dark Problems

- Dark Matter
- Dark Energy
- Dark Ages

2 Relic Density

- Overview
- Sensitivity to the Cosmological Model
- Inverse problem

3 SuperIso Relic

- Motivations
- Status

4 Conclusion

The Pre-Big Bang Nucleosynthesis Era

- Quantum gravity? Branes? Other gravitation theories?
- Inflation
- Topological defects (cosmic strings, magnetic monopoles, domain walls, ...)?
- Primordial Black Holes?
- Leptogenesis
- Baryogenesis
- Particle-antiparticle asymmetry
- QCD equations of state
- Relic particle freeze-out
- Big-Bang nucleosynthesis

Extra-dimensions?

- Predicted by brane theories
- Possibility of extra-dimensions in the Early Universe
- Could they survive until Big-Bang nucleosynthesis?
- Did they play a role in Universe evolution?

New gravitation theories?

- Scalar-Tensor theories
- Tensor-Vector-Scalar theories (TeVeS)
- Loop quantum gravity
- $f(R)$ gravity
- ...

Inflation: Rapid exponential expansion of the Early Universe

- Can explain why different regions of the sky seems causally connected
- Can explain why the Universe appears flat
- Can explain why inhomogeneities have appeared
- Ends by a reheating: generation of SM particles from the inflation energy and thermalization of the primordial soup

Many questions remains...

- How long was inflation? When did it finished?
- How long did the thermalization took?
- Could relic particles have been generated non-thermally during reheating?
- Is inflation related to particle physics phenomena?

Particle-Antiparticle Asymmetry

- Where has antimatter gone?
- Are we in a special antimatter-free part of the Universe?
- Need for a Beyond SM scenario
- Sakharov conditions:
 - Baryon number B violation.
 - C-symmetry and CP-symmetry violation.
 - Interactions out of thermal equilibrium.
- Probably related to lepto- and baryogenesis
- Underlying processes and ingredients unclear
- Relation to Inflation unknown

QCD equations of state

- Quark gluon plasma dominating after EW symmetry breaking
- Quark hadron transition not completely described
- Need for precise calculation of the relativistic degrees of freedom
- Lattice calculations needed for accurate predictions
- Informations needed from Heavy Ion Collisions
- Important for accurate relic density calculations

Big Bang Nucleosynthesis (BBN)

- Oldest period for which we have (rather) direct observations
- Well described by current knowledge of nuclear physics
- Good agreement between standard BBN model and observations for hydrogen and helium
- Problem of Lithium: ^6Li overabundant, ^7Li underabundant
- Still many possibilities for deviation from standard BBN: extra radiation, dark energy effects, late entropy generation, effects of relic particles, modified expansion rate, ...

Outline

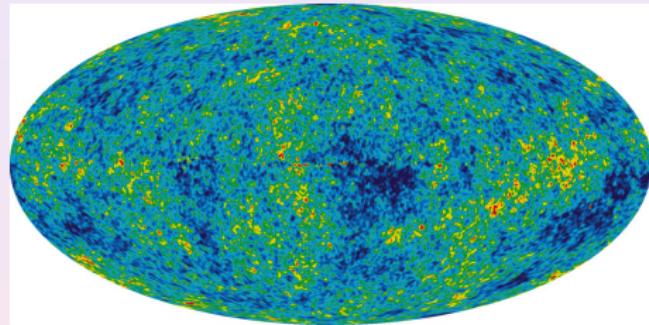
1 Dark Problems

- Dark Matter
- Dark Energy
- Dark Ages

2 Relic Density

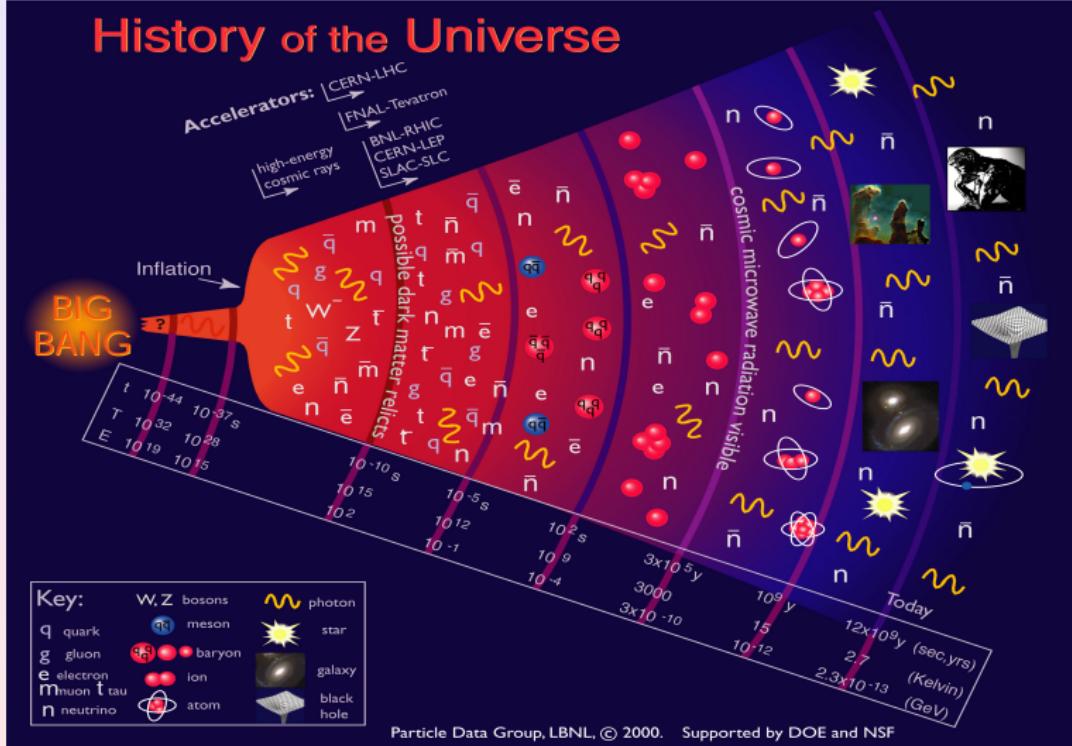
- Overview
- Sensitivity to the Cosmological Model
- Inverse problem

3 SuperIso Relic


- Motivations
- Status

4 Conclusion

Relic density


The recent observations of the WMAP satellite, combined with other cosmological data impose the dark matter density range at 95% C.L.:

$$0.088 < \Omega_{DM} h^2 < 0.123$$

Considering supersymmetry, it is possible to make prediction for the dark matter density, assuming the LSP is the only dark matter component
→ relic density, to be compared to the WMAP range

History of the Universe

Relic density: standard calculation

In the Standard Model of Cosmology:

- before and at nucleosynthesis time, the expansion is dominated by radiation

$$H^2 = 8\pi G/3 \times \rho_{\text{rad}}$$

- the evolution of the number density of supersymmetric particles follows the Boltzmann equation

$$\frac{dn}{dt} = -3Hn - \langle \sigma_{\text{eff}} v \rangle (n^2 - n_{\text{eq}}^2)$$

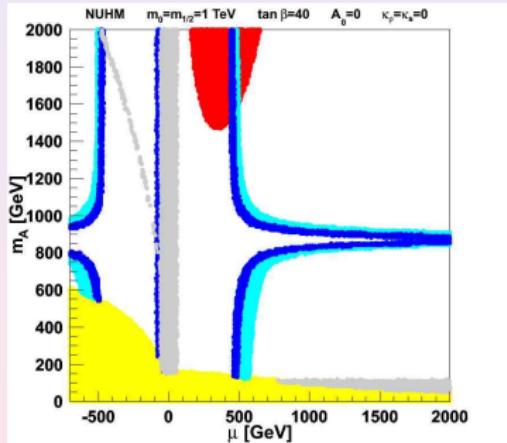
n : number density of relic particles.

Relic density: standard calculation

Effective invariant annihilation rate W_{eff} :

(ij: coannihilating SUSY particles / kl: SM outgoing particles)

$$\frac{dW_{\text{eff}}}{d \cos \theta} = \sum_{ijkl} \frac{p_{ij} p_{kl}}{32\pi p_{\text{eff}} S_{kl} \sqrt{s}} \sum_{\text{helicities}} \left| \sum_{\text{diagrams}} \mathcal{M}(ij \rightarrow kl) \right|^2$$


Thermal average of effective cross section:

$$\langle \sigma_{\text{eff}} v \rangle = \frac{\int_0^\infty dp_{\text{eff}} p_{\text{eff}}^2 W_{\text{eff}} K_1 \left(\frac{\sqrt{s}}{T} \right)}{m_1^4 T \left[\sum_i \frac{g_i}{g_1} \frac{m_i^2}{m_1^2} K_2 \left(\frac{m_i}{T} \right) \right]^2}$$

($K_{1,2}$: modified Bessel functions)

Relic density: standard calculation

By comparing the calculated relic density to the cosmological dark matter density, constraints on SUSY parameters can be derived.

Gray: area excluded by direct searches

Red: area disfavored by the isospin asymmetry of $B \rightarrow K^* \gamma$

Blue: area favored by WMAP

Outline

1 Dark Problems

- Dark Matter
- Dark Energy
- Dark Ages

2 Relic Density

- Overview
- **Sensitivity to the Cosmological Model**
- Inverse problem

3 SuperIso Relic

- Motivations
- Status

4 Conclusion

Relic density: sensitivity to the cosmological model

Caveat!

The cosmological standard model is a simple model, and many unobservable phenomena could have happened during the pre-BBN era.

Relic density: influence of a modified expansion rate

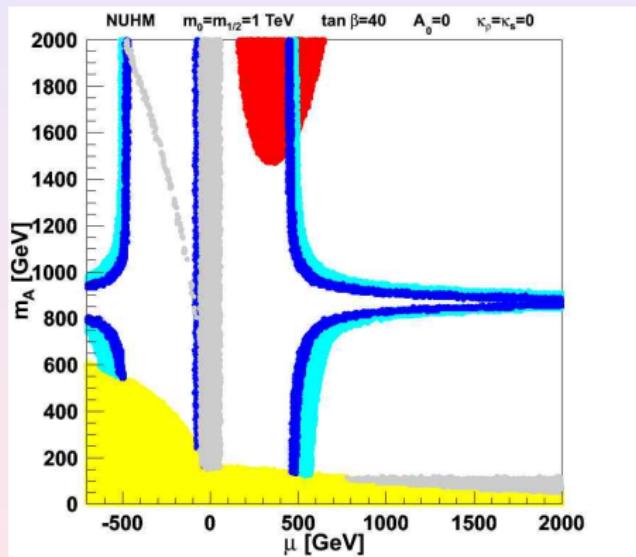
For example, the expansion rate can be modified.

We can parametrize the modification by adding a new density ρ_D :

$$H^2 = 8\pi G/3 \times (\rho_{\text{rad}} + \rho_D) \text{ with } \rho_D(T) = \rho_D(T_{\text{BBN}})(T/T_{\text{BBN}})^{n_D}$$

- $n_D = 4$: radiation-like behavior
- $n_D = 6$: behavior of a scalar field dominated by its kinetic term
- $n_D > 6$: extra-dimension effects

Let's introduce

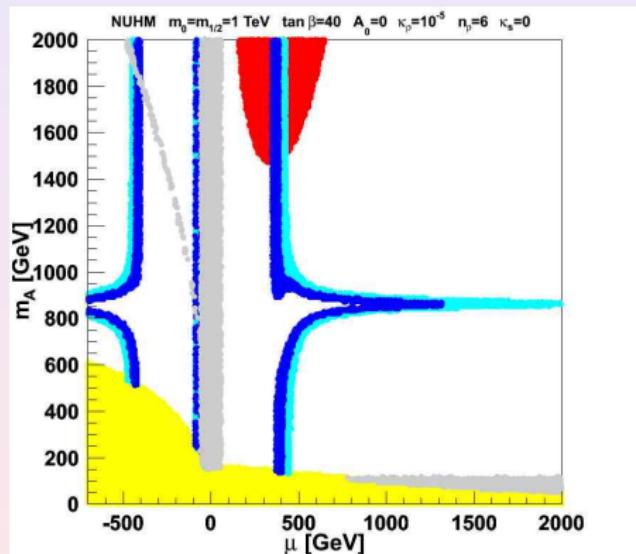

$$\kappa_D = \rho_D(T_{\text{BBN}})/\rho_{\text{rad}}(T_{\text{BBN}})$$

The modified expansion is in agreement with the observations provided $\kappa_D < 1$

Such a modification can drastically change the obtained relic density!

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM: Standard model

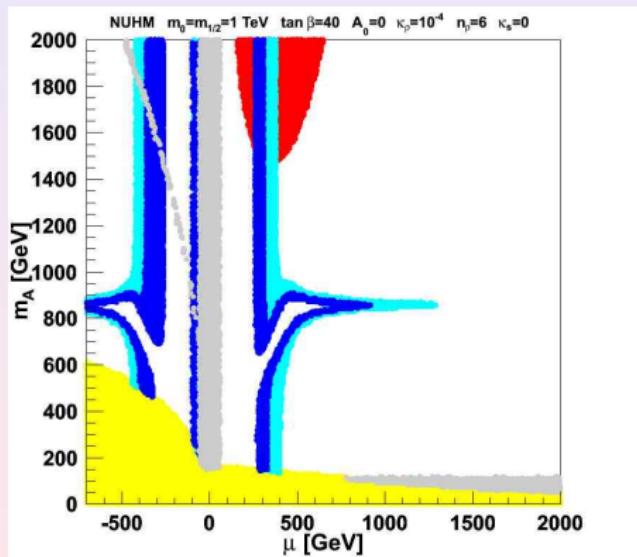


Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM

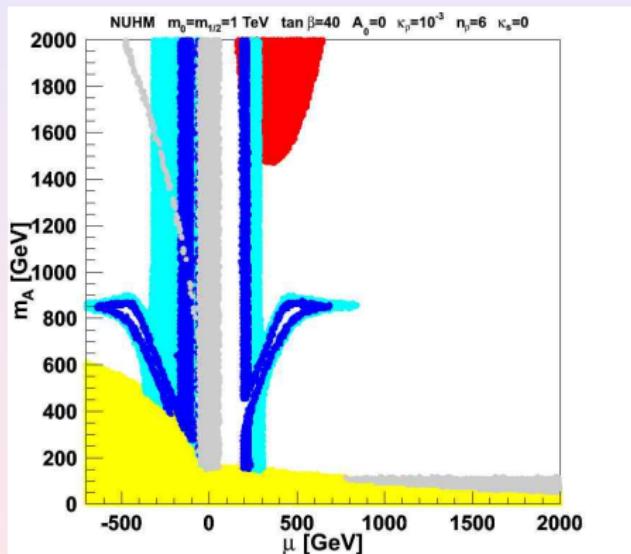


Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM

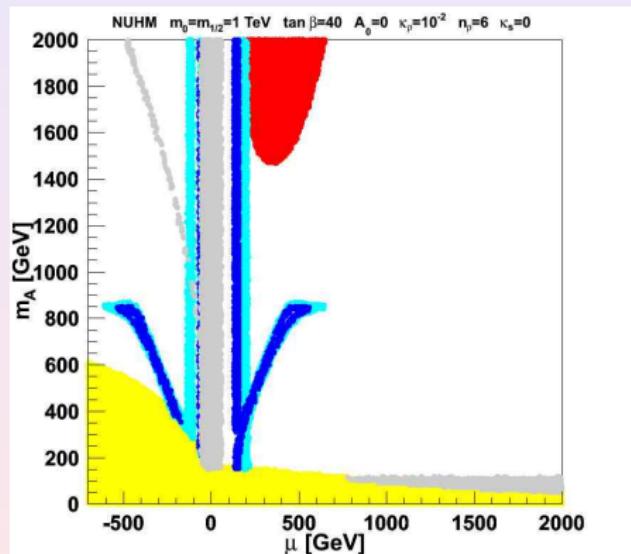


Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM

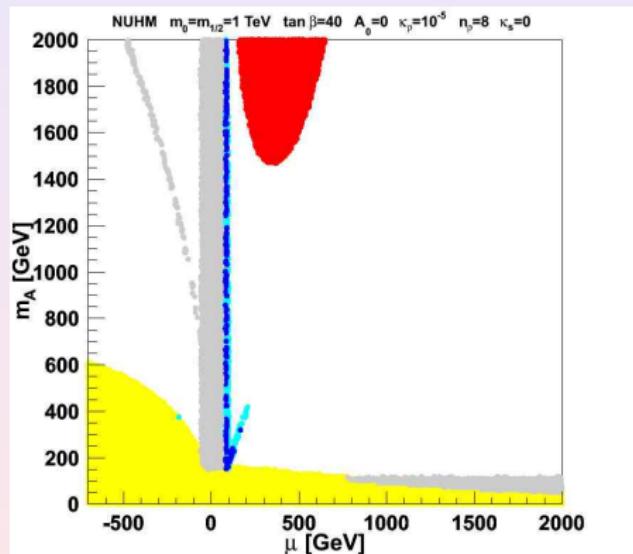


Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM



Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified expansion rate

Displacement of the WMAP limits in NUHM

Large even for a very small expansion rate modification!

Arbey & Mahmoudi, Phys. Lett. B669 (2008); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified expansion rate

The use of lowest WMAP limit in the context of the relic density
is highly questionable!!!

Relic density: influence of a modified entropy content

The entropy content of the Universe can also be altered!

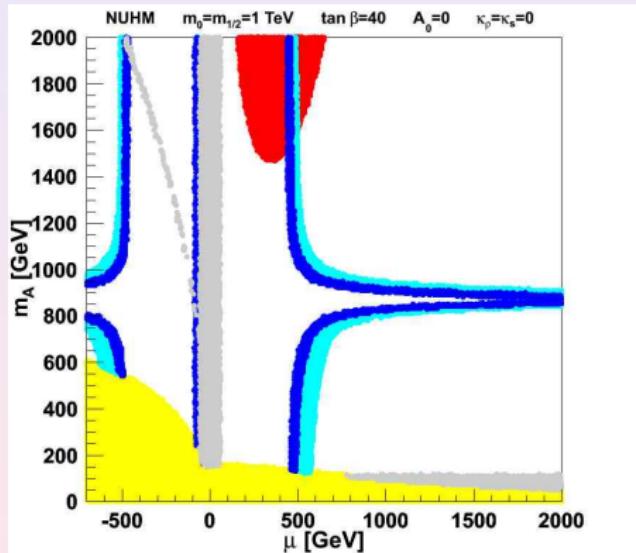
⇒ Modified relation between time, expansion rate and temperature!

Parametrization consists in adding a new entropy density s_D to the total entropy density:

$$s_D(T) = s_D(T_{BBN})(T/T_{BBN})^{n_s}$$

- $n_s = 3$: radiation-like behavior
- $n_s \sim 4$: entropy evolution of a decaying scalar field

Let's introduce

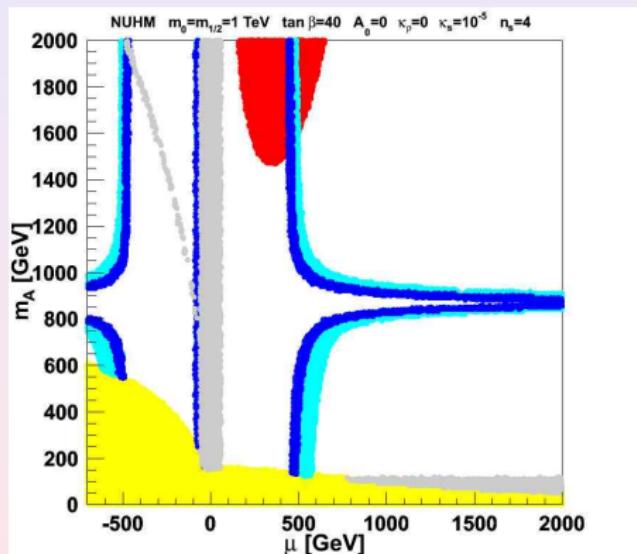

$$\kappa_s = s_D(T_{BBN})/s_{\text{rad}}(T_{BBN})$$

The modified expansion is in agreement with the observations provided $\kappa_s < 1$

This modification changes the relic density in the other direction!

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM: Standard model



The WMAP constraints can move in any direction!

Arbey & Mahmoudi, JHEP 1005 (2010); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM

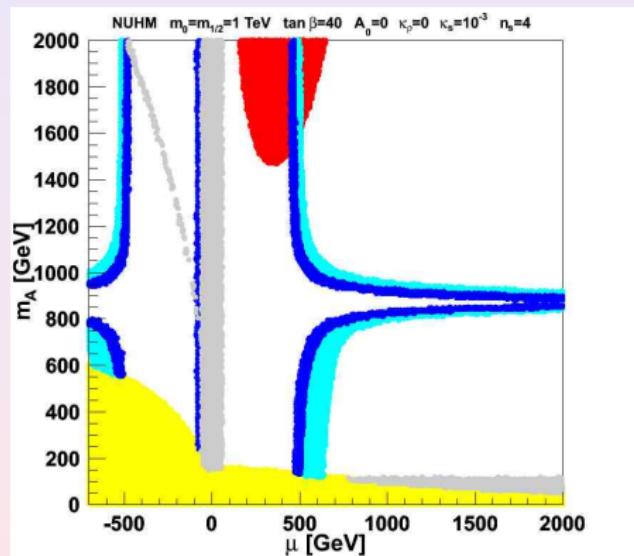


The WMAP constraints can move in any direction!

Arbey & Mahmoudi, JHEP 1005 (2010); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM

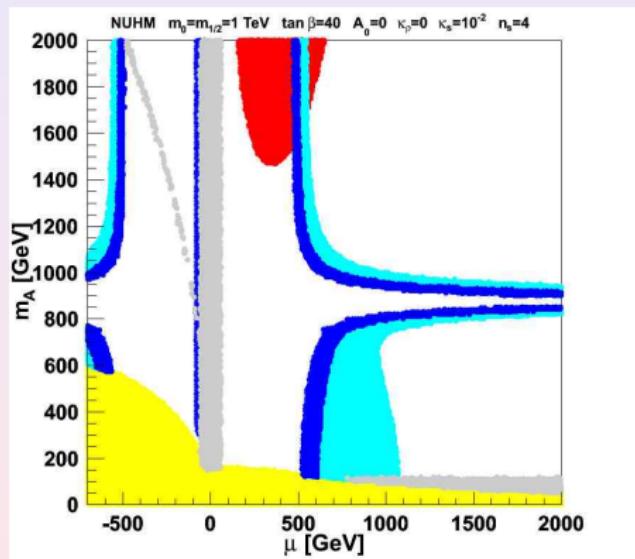


The WMAP constraints can move in any direction!

Arbey & Mahmoudi, JHEP 1005 (2010); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM

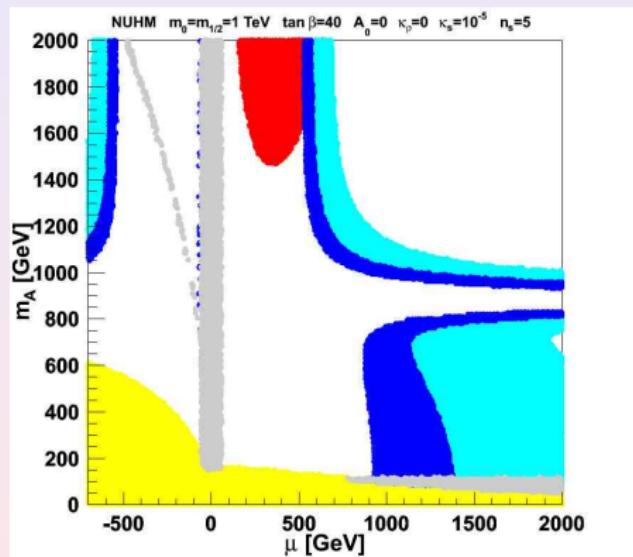


The WMAP constraints can move in any direction!

Arbey & Mahmoudi, JHEP 1005 (2010); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM

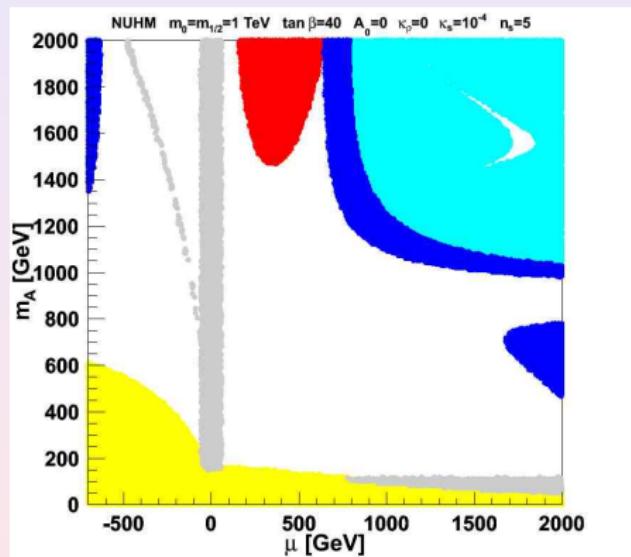


The WMAP constraints can move in any direction!

Arbey & Mahmoudi, JHEP 1005 (2010); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM

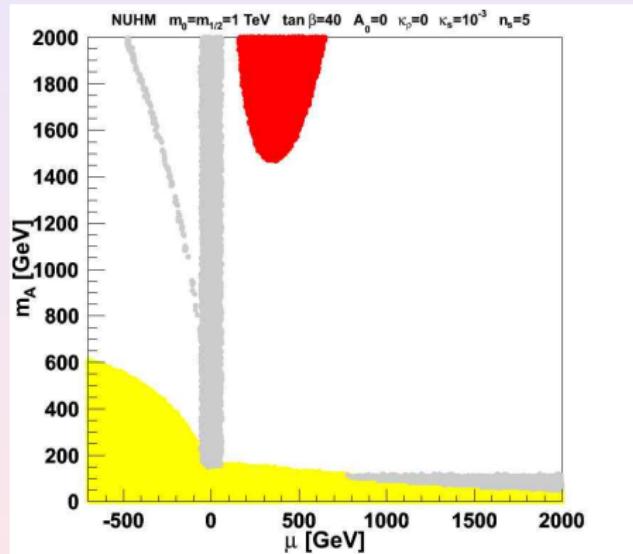


The WMAP constraints can move in any direction!

Arbey & Mahmoudi, JHEP 1005 (2010); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM



The WMAP constraints can move in any direction!

Arbey & Mahmoudi, JHEP 1005 (2010); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: influence of a modified entropy content

Displacement of the WMAP limits in NUHM

The WMAP constraints can move in any direction!

Arbey & Mahmoudi, JHEP 1005 (2010); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Relic density: sensitivity to the cosmological model

The use of WMAP limits in the context of the relic density is
highly questionable!!!

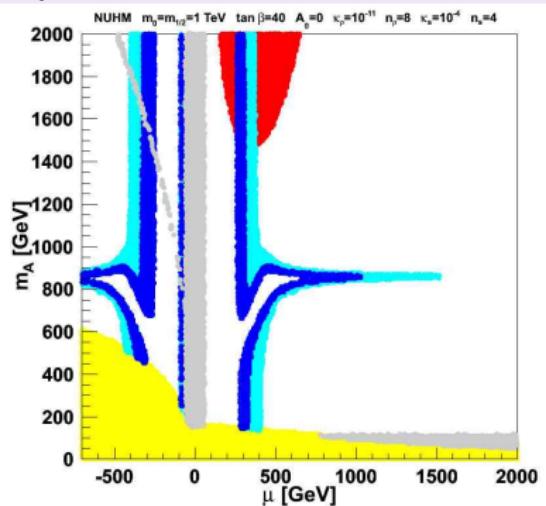
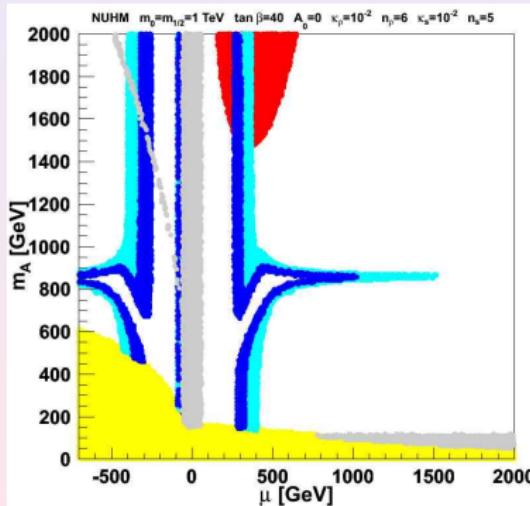
Outline

1 Dark Problems

- Dark Matter
- Dark Energy
- Dark Ages

2 Relic Density

- Overview
- Sensitivity to the Cosmological Model
- Inverse problem**

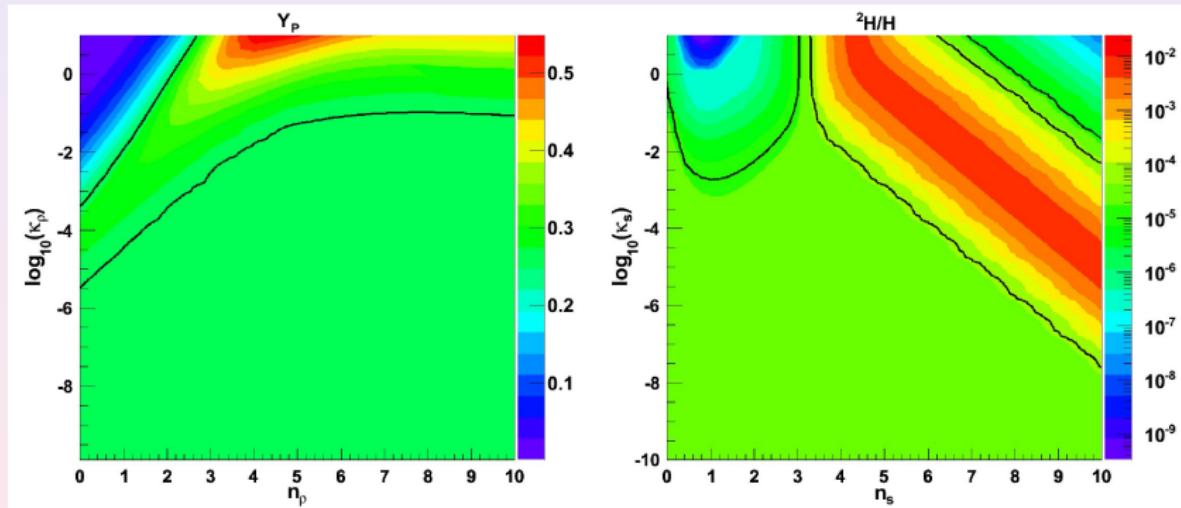


3 SuperIso Relic

- Motivations
- Status

4 Conclusion

Inverse problem...

If we know the particle physics scenario, can we deduce the Early Universe properties?



Need to find ways to remove degeneracy...

Arbey & Mahmoudi, JHEP 1005 (2010); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Inverse problem...

BBN constraints on energy and entropy densities

Need to find ways to remove degeneracy... e.g. with BBN...

Arbey & Mahmoudi, JHEP 1005 (2010); Arbey & Mahmoudi, Nuovo Cim. C33 (2010)

Outline

1 Dark Problems

- Dark Matter
- Dark Energy
- Dark Ages

2 Relic Density

- Overview
- Sensitivity to the Cosmological Model
- Inverse problem

3 SuperIso Relic

- Motivations
- Status

4 Conclusion

Relic density calculation in alternative cosmological models: SuperIso Relic

SuperIso Relic = SuperIso (flavour physics calculations)
+ relic density calculation

Mahmoudi, Comp. Phys. Comm. 180 (2009)

Arbey & Mahmoudi, Comp. Phys. Comm. 181 (2010)

Concept of the code

- Automatized computation of flavour observables and relic density in SUSY
- Flexible particle physics model implementation (mSUGRA, NUHM, AMSB, ...)
- Flexible cosmological model implementation (dark energy, dark entropy, ...)
- Publicly available on <http://superiso.in2p3.fr/relic>

SuperIso Relic

Structure of the code

- Generation of a SLHA file with Isajet, Softsusy, Spheno or Suspect
- Initialization of the variables using the SLHA file
- Generation of additional Higgs sector variables with FeynHiggs or Hdecay
- Calculation of W_{eff} with Fortran functions
- Calculation of $\langle \sigma_{\text{eff}} v \rangle$ with C functions
- Solving of the Boltzmann equation with C functions
- Computation of the other SuperIso observables

SuperIso Relic

Fortran and diagram generation

- Analytical calculation of the amplitudes with Mathematica / FeynArts / FormCalc / FORM
- FormCalc-generated Fortran code interfaced with the SuperIso C-functions
- Use of LoopTools (if needed) to compute loop amplitudes
- Possibility to use of FeynArts model file generators (FeynRules, LanHEP, SARAH, ...)

Arbey & Mahmoudi, Comp. Phys. Comm. 181 (2010)

Outline

1 Dark Problems

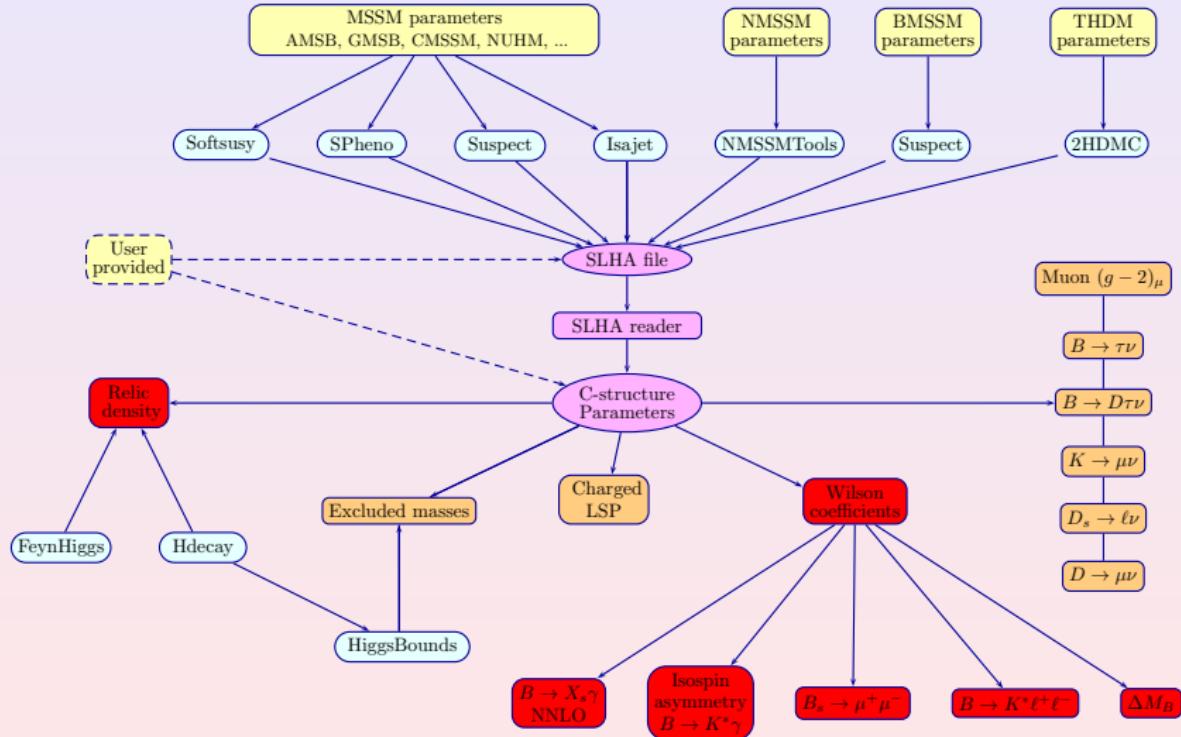
- Dark Matter
- Dark Energy
- Dark Ages

2 Relic Density

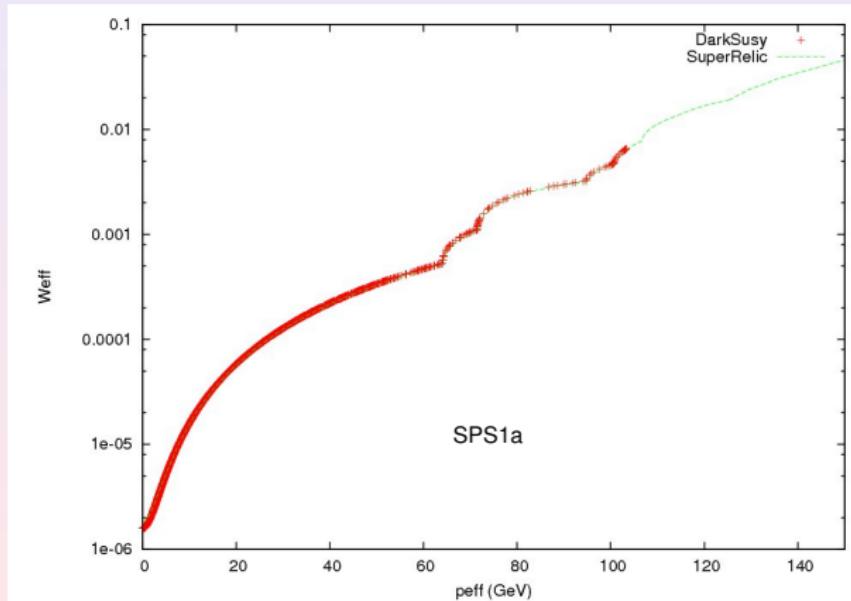
- Overview
- Sensitivity to the Cosmological Model
- Inverse problem

3 SuperIso Relic

- Motivations
- Status


4 Conclusion

SuperIso Relic


Status

- Calculation of amplitudes within MSSM with MFV at tree level fully implemented (more than 3000 processes involved)
- Good agreement with Micromegas and DarkSusy
- New version v2.8 to be released in the next few weeks
- Well tested under Linux machines with GNU and Intel compilers
- Package including Hdecay v3.53 and FeynHiggs v2.7.3

SuperIso

SuperIso Relic

Good agreement
with DarkSusy!

SuperIso Relic

Status: Alternative cosmological models

- Relic density within the cosmological standard model fully implemented
- Possible to use different QCD equation of state for radiation
- Possible to modify the expansion of the early Universe through the presence of an effective dark density

$$\rho_D(T) = \rho_D^0 T^{n_\rho}$$

- Possible to modify the thermal properties of the Universe through the presence of an effective dark entropy

$$s_D(T) = s_D^0 T^{n_s}$$

SuperIso Relic

Soon: Alternative cosmological models

- Addition of non-thermal production of relic particles
- Implementation of an alternative entropy modification
- Inclusion of a BBN code to test the cosmological modifications

Soon: Alternative particle physics models

- NMSSM scenarios
- Extra-dimension scenarios
- Gravitino dark matter

Less soon...

- Relic density calculation at loop level

Conclusion and perspectives

Inverse problem?

- dangerous to use the relic density to constrain SUSY!
- dangerous to combine collider data and relic density to determine a new particle physics model!
- necessary to know and understand the “underground” assumptions!

Inverted problem?

- possible to use the collider data and the relic density to constrain Cosmology!
- possible to combine collider data and the relic density to determine the early universe physics!