

Tomasz Jezynski Frank Ludwig for the LLRF - Team

Requirements

(...)

Standard for new accelerator for ALL subsystems Support moder algorithms (distributed computation power) High data throughput (DAQ) Low latency links (control system) Flexible configuration Available for many years

Standard (hardware and software)

- * Flexible configuration
- * In-build crate/board management
- * Modern protocols

xTCA for Physics

Since xTCA has all attributes as standard, the Physics Community has initiated a Working Group to look at the specific requirements – PICMG **xTCA for Physics** Coordinating Committee

 <u>Goal</u>: to develop specification for physics community (instrumentation) and become a customer for industry (large number of orders according to existing specification)

LLRF system for XFEL based on xTCA for Physics **xTCA crate for Physics**

Upgrade of FLASHs LLRF System 2010

Previous LLRF rack layout

European

XFEL

Current LLRF rack layout

Energy stability improved by factor of 3 to dE/E=0.5E-4.

Christopher Gerth, et. al.

LLRF system for XFEL based on xTCA for Physics FLASH & XFEL - differences

Actual FLASHs LLRF limitations

- Rack size is strongly limited (J0-16U, L1-26U) compared to (ACC1-42U)
- LLRF system is outside the tunnel
- Central FPGA concept (limited comp. power)
- Process only 8x3 cavity signals (P,F,R)
- SimconDSP 14-bit ADC limitation
- Baseband field detection
- No redundancy
- Pluggable connectors are not drift compensated
- No channel parallelization for more performance

Roadmap for the XFEL LLRF

- VME -> uTCA (uAMC, uRTM) concept
- LLRF system is in the tunnel
- Distributed FPGA, DSP concept
- Process 2 times more signals
- Lowest spectral density (16-bit ADCs)
- Non IQ sampling scheme (no PM->AM)
- Redundant systems in the injector
- Rack will be fully drift compensated
- Scaleable system

LLRF for XFEL

2 semi-distributed uTCA stations supply 4 cavity modules

Driving Argument

Short pickup cables for low drifts (10fs/m/K) and prevent crosstalk from high power cables

LLRF rack occupation

Injector (GUN, J0, 39) LLRF systems are completely redundant . . .

LLRF system for XFEL based on xTCA for Physics LLRF rack occupation

L1 is also redundant , . . .

LLRF system for XFEL based on xTCA for Physics LLRF rack occupation

... but L2, L3 are not redundant.

LLRF system for XFEL based on xTCA for Physics Experience form ATCA system

Lessons learned from the ATCA ACC456 tests

- Moreless portable firmware between ATCA and uTCA
- Common Low Latency distributed FPGA concept
- Common IPMI handling
- Decoupling of PM to AM using the non-iq modulation scheme
- Fully modularity caused too complex system
- No sharing of 2 sized AMC modules with ATCA

... the xTCA crate is important, but only one part of the whole LLRF system ...

LLRF system for XFEL based on xTCA for Physics **uTCA Progress Status**

Sharing resources within DESY and industry (status 10/2010)

Application	АМС Туре	RTM type	
Timing	Timing receiver		DESY partners :
Klystron	SIS8300	8 Rf receivers, 2 diff in	MCS,
3.9GHz monitoring	SIS8300	9 RF receivers @ 3.9GHz	MSK,
1.3GHz monitoring	SIS8300	9 RF receivers @ 1.3GHz	FLC,
Coupler Interlocks	DAMC2	ADCs, tests, sources	FLA,
BPM	DAMC2		MDI, MIN.
Toroid	DAMC2	ADC	MHF-SL,
Beam Loss Monitor	DAMC2	ADCs	EXP-DAQ,
Wire Scanner	DAMC2	2 different signal conditioning	TDS, RAEGAE, AMTF
Beam Arrival Monitor	SIS8300	Optical in	Industry partner
EBPM	SIS8300	Optical in	struck innovative
Fs LASER sync	SIS8300	Optical in	systeme
Fs motors	DAMC2	Stepper card	FLMA ^{JU1980-2010} Your Solution Partner
Spectrometer	DAMC2	32 ch ADC	TEWS 🤛
Machine Protection System	DAMC2	Signal conditioning	TECHNOLOGIES
Kicker	DAMC1		Cryoelectro

MCS, MSK, FEB, FLC. FLA, MDI, MIN, MHF-SL, EXP-DAQ. SLAC, TDS, RAEGAE, AMTF

ndustry partners:

European

| ש ש

3 slot IP carrier

Available from Tews

European XFEL

LLRF system for XFEL based on xTCA for Physics Slow I/O (2)

A,D I/O

European XFEI

- 8 ch ADC 200kHz
- 2ch DAC
- 24 I/O
- 4 RS485
- 1 lane PCIe
 Available from ESD

LLRF system for XFEL based on xTCA for Physics **Fast I/O: AMC Design**

TECHNOLOGIES

DESY AMC 1

- Virtex5, 256MB
- 2ch ADC, 125 MSPS, 2ch DAC
- Tested: BPM and Toroid readout with 81 Mhz
- TAMC900 (Tews)
- 8ch ADC, 125MSPS
- Tested: LLRF ATCA

LLRF system for XFEL based on xTCA for Physics **Fast I/O: AMC Design**

Digitizer, Partial Vector Sum (SIS8300) (delivered, test state)

) struck innovative systeme

- 10 channel ADCs (125Msps, 16-Bits)
- FPGA partial cavity vector sum
- Low latency links via uTCA-backplane

2x DAC Outputs

SFP front I/O's Fiber or cable

LLRF system for XFEL based on xTCA for Physics
Down-converter for XFEL

How to package all this ?

Distortions

Mechanical vibrations

Environment Temperatur, Humidity

Microwave Crosstalk

Packaging

- Short ¹/₂" type pickup cables
- N-Type connectors -> PCBs
- Multi-Layer Rogers RF Boards
- Component Distribution ?
- IF separation recommended
- Active calibration methods

2006 DESY / Passive 8-channel:

- (+) Performance 0.003% (1MHz)
- (+) 16-bit ADC
- (--) ADC near to Receiver Complicated design

2007 FermiLab / Passive 8-channel:

(+) Performance(+) IF separation(14-bit ADC limited – not this board)

2007 DESY / Active 8-channel:

- (+) Noisebalanced
- (+) IF separation
- (--) VME based
- (--) SimconDSP 14-bit limited

2009 PSI / DESY / Passive 6-Channel:

- (+) Performance
- (+) IF separation
- (+) 19" mech. package
- (+) 16-bit ADC

2010 DESY / PSI / Active (Passive) 8-channel:

- (+) Noisebalanced, ACC39
- (+) IF separation
- (+) 19" mech. package
- (--) SimconDSP 14-bit limited

LLRF system for XFEL based on xTCA for Physics crate & rack

How will a LLRF System look like inside . . . 19" modules . . .

... and the crate

AMC front occupation

RTM rear occupation

Slot #01: CPU
Slot #02: Interlock
Slot #03: Timing
Slot #04: LLRF Controller
Slot #05: ADC, Klystron Chain
Slot #06: ADC, VS Reflected
Slot #07: ADC, VS Reflected
Slot #08: ADC, VS Forward
Slot #09: ADC, VS Forward
Slot #10: ADC, VS Probe
Slot #11: ADC, VS Probe
Slot #12: free

industry)	
MCS)	
MCS)	
uTLC / DMCS, MSK)	
SIS8300 / Struck, MCS, MSK)	
SIS8300 / Struck, MCS, MSK)	
SIS8300 / Struck, MCS, MSK)	
SIS8300 / Struck, MCS, MSK)	
SIS8300 / Struck, MCS, MSK)	
SIS8300 / Struck, MCS, MSK)	
SIS8300 / Struck, MCS, MSK)	

Slot #01: -	
Slot #02: -	
Slot #03: -	
Slot #04: Klystron Driver	(u ⁻
Slot #05: DWC, Klystron Chain	(D'
Slot #06: DWC, Reflected	(D
Slot #07: DWC, Reflected	(D
Slot #08: DWC, Forward	(D
Slot #09: DWC, Forward	(D
Slot #10: DWC, Probe	(D
Slot #11: DWC, Probe	(D
Slot #12: free	
Slot #15: I O-Generation	- (ul

UTLC VM / DMCS, ISE) DWC8300 / ISE, MSK) DWC8300 / ISE, MSK)

(uLOG / ISE, MSK)

Courtesy: ELMA

LLRF system for XFEL based on xTCA for Physics Backplanes ...

uRTM, uAMC and LLRF backplanes

LLRF system for XFEL based on xTCA for Physics Low Latency Links

European

XFEI

Injector Stations – RF separation

- Performance has to be characterized
- Channel parallelization upgrade possible

Main Stations – IF separation

- Very robust machine operation
- Low cost version

LLRF system for XFEL based on xTCA for Physics LLRF System - prototype

- 2 channel vector modulator (108MHz, 216MHz, 1.3GHz...3.9GHz)
- 16-bit DAC - LLRF Controller, 6 Fiber Ports, 2 GB-Links- FPGA, DSP

Courtesy: D. Makowski / DMCS

European

XEE

Summary of LLRF module and uTCA progress status:

- ADCM (Advanced Drift Calibration Module):
- REFM (Reference Module):
- LOGM (LO-Generartion Module):
- uTCA Rack (LLRF boards):
 - DWC8300 (Down-Converter):
 - → SIS8300 (ADC Digitizer):
 - → uTLC (LLRF Controller):
 - → uTLC VM (LLRf Controller):
 - → uRFB (RTM backplane):
- PIEZOM (Piezo driver):
- Power Supply

Design state Design state Delivered, test state Delivered, test state Delivered, test state Routing state (95%) Schematic state Schematic state Assembly state

Design state

Specification / Ordering state

Summary of the XFEL LLRF Roadmap

Installation and infrastructure decisions

- 2 uTCA stations, 1 klystron supply 4 cavity modules for the whole XFEL
- Injector systems are doubled for redundancy and crosschecks

LLRF rack decisions

- VME -> uTCA common shared crate standart
 - Support 12 slot standart double sized uAMC and uRTM boards
 - Low latency LLRF AMC backplane, distributed FPGA & DSP support
 - 10 channel, 16-bit ADC 130Msps support (SIS8300)
 - Customer backplane for 10fs RF-signals and 100fs low jitter clocks
 - Separate redundant power supplies for analog & digital boards
 - Ready for channel parallelization for future demands
 - Separation of algorithmic and hardware firmware for easy software support
- Multi-channel field detection
 - Non IQ sampling method for easy servicing
 - 1.3GHz, 3.0GHz and 3.9GHz operation for all customers
 - 16x3 channels for Probe, Forward, Reflected signals
 - Multi-pluggable coax cables for RF-signals or IFs for easy maintenance
- Reference injection for a long-term stable machine operation
 - Fixed N-type 1/2" Heliax cables for Probe signals
 - Fixed N-type 3/8" Heliax cables for Forward, Refleced signals

Timeline

European

Courtesy: H. Schlarb / DESY

Thank you for your attention

