CALCULATIONS OF
 COUPLING IN MULTI-CAVITY SCRF STRUCTURES

Robert Ainsworth, Steve Molloy Royal Holloway, University of London

A single cell has the usual mode spectrum TMmn , TEmnp

Coupled cell (e.g. in a multi-cell cavity)
Modes split into passbands
Each oscillation characterised by a phase advance per cell

Multi-cavity installations (i.e. a cryomodule)
Modes below cutoff so disregarded
But this neglects evanescent coupling!

EIGENSOLVE 4 FULL CAVITIES

~880k elements
Average volume $=1.96 \times 10^{-7} \mathrm{~m}^{3}$ Min edge length $=\mathbf{2 m m}$
Max edge length $=\mathbf{2 4 m m}$ Magnetic symmetry plane

OMEGA3P SIM

Eigensolver in frequency domain

Part of the ACE3P suite developed at SLAC Highly parallelised EM codes

Franklin supercomputer at NERSC

38000 computer cores

Finding the first 100 modes of a four cavity sim uses ~ 2000 cpu hrs

Each cavity mode will be found four times

 one for each cavityA single cavity will dominate each mode however the evanescent field allows coupling

Need to extract coupling from simulations

COUPLED OSCILLATORS

Eigenmodes of coupled oscillators split according to the phase difference
'0'-mode, 'T'-mode, etc.

For $\mathbf{N}+\mathbf{I}$ coupled oscillators

$i m / N$ radians phase advance ($\mathrm{i}=0, \mathrm{I}, 2, . . \mathrm{N}$)

$0-$ mode

π-mode

Frequency also splits

Dependant of coupling strength
Each new mode may be plotted on a Brillouin curve
For $N<\infty$ the modes are equally spaced along the curve

$$
\text { Dispersion Relation } \quad \omega_{\theta}^{2}=\omega_{\frac{\pi}{2}}^{2}(1-k \cos \theta)
$$

$$
\text { Coupling } \quad k=\frac{\omega_{\pi}^{2}-\omega_{0}^{2}}{\omega_{\pi}^{2}+\omega_{0}^{2}}
$$

THREE GEOMETRIES

SIMPLIFIED MODEL

Oscillation inside cavity

Decays
exponentially inside beam pipe

FINITE POTENTIAL WELL

$$
\begin{array}{c|c}
E>V & E<V \\
\psi_{j}=A_{j} \cos \left(k_{j} z\right)+B_{j} \sin \left(k_{j} z\right) & \psi_{j}=A_{j} e^{k_{j} z}+B_{j} e^{-k_{j} z} \\
k=\frac{\sqrt{2 m_{j} E}}{\hbar^{2}} & k=\frac{\sqrt{2 m_{j}(V-E)}}{\hbar^{2}}
\end{array}
$$

FINITE POTENTIAL WELL

$\psi, \frac{d \psi}{d z}$ must be continuous at each boundary

Rewrite in terms of matrices

$$
\begin{array}{ll}
{ }^{m} M_{j}=\left(\begin{array}{cc}
e^{k_{j} z_{m}} & e^{-k_{j} z_{m}} \\
k_{j} e^{k_{j} z_{m}} & -k_{j} e^{-k_{j} z_{m}}
\end{array}\right) & E<V \\
{ }^{m} M_{j}=\left(\begin{array}{cc}
\cos \left(k_{j} z_{m}\right) & \sin \left(k_{j} z_{m}\right) \\
-k_{j} \sin \left(k_{j} z_{m}\right) & k_{j} \cos \left(k_{j} z_{m}\right)
\end{array}\right) & E>V
\end{array}
$$

Therefore at each boundary

$$
{ }^{j} M_{j}\binom{A_{j}}{B_{j}}={ }^{j} M_{j+1}\binom{A_{j+1}}{B_{j+1}}
$$

FINITE POTENTIAL WELL

At boundary I
${ }^{0} M_{0}\binom{A_{0}}{B_{0}}={ }^{0} M_{1}\binom{A_{1}}{B_{1}}$
${ }^{1} M_{1}\binom{A_{1}}{B_{1}}={ }^{1} M_{2}\binom{A_{2}}{B_{2}}$

Therefore
$\left[\left({ }^{1} M_{2}\right)^{-1} *{ }^{1} M_{1} *\left({ }^{0} M_{1}\right)^{-1} *{ }^{0} M_{0}\right]\binom{A_{0}}{B_{0}}=\binom{A_{2}}{B_{2}}$
Need to find bound state!
Therefore, set $\mathbf{A}_{\mathbf{0}}=\mathbf{I}$ and $\mathbf{B}_{\mathbf{0}}=\mathbf{0}$
No backward wave in first region

Solve to find where $\mathbf{A}_{\mathbf{2}}=\mathbf{0}$
No forward wave in last region

N COUPLED WELLS

For N coupled wells

$$
\left(\prod_{2 N-1}^{0}\left[\left({ }^{j} M_{j+1}\right)^{-1} *{ }^{j} M_{j}\right]\right)\binom{A_{0}}{B_{0}}=\binom{A_{2 N}}{B_{2 N}}
$$

Again, solve for $\mathbf{A}_{\mathbf{2 N}}=\mathbf{0}$ if $\mathbf{A}_{\mathbf{0}}=\mathbf{I}, \mathbf{B}_{\mathbf{0}}=\mathbf{0}$

DISCRETE ENERGY LEVELS

POTENTIAL WELLTO CAVITY

$$
\begin{aligned}
k & =\frac{\omega}{c} & \omega>\omega_{c} \\
k & =\sqrt{\left(\frac{p_{n m}}{a}\right)^{2}-\left(\frac{\omega}{c}\right)^{2}} & \omega<\omega_{c}
\end{aligned}
$$

Does k need to change depending on phase advance?
To create cavity, set up a well where the lowest eigenvalue is the resonant frequency using

$$
z=\frac{2 \tan ^{-1}\left(\frac{K 1}{K 0}\right)}{K 0}
$$

COMPARISON OF RESULTS

SUMMARY

Cavity to cavity coupling - is a taper necessary?

Negligible effect on monopole coupling Increases loss factor

Calculations using simplified model

Preliminary results show rough agreement for dipole Can model be improved?

Change k according the phase advance?
Are we severely limited by only I dimension?
What about modes above cut-off?

