CALCULATIONS OF COUPLING IN MULTI-CAVITY SCRF STRUCTURES

Robert Ainsworth, Steve Molloy Royal Holloway, University of London

MULTI-CAVITY COUPLING

A single cell has the usual mode spectrum TM_{mnp}, TE_{mnp}

Coupled cell (e.g. in a multi-cell cavity) Modes split into passbands Each oscillation characterised by a phase advance per cell

Multi-cavity installations (i.e. a cryomodule)

Modes below cutoff so disregarded But this neglects evanescent coupling!

EIGENSOLVE 4 FULL CAVITIES

~6m long

~880k elements Average volume = 1.96 x 10⁻⁷ m³ Min edge length = 2mm Max edge length = 24mm Magnetic symmetry plane

OMEGA3P SIM

Eigensolver in frequency domain

Part of the ACE3P suite developed at SLAC Highly parallelised EM codes

Franklin supercomputer at NERSC

38000 computer cores

INTRA-CAVITY COUPLING

Finding the first 100 modes of a four cavity sim uses ~2000 cpu hrs

Each cavity mode will be found four times

one for each cavity

A single cavity will dominate each mode however the evanescent field allows coupling

Need to extract coupling from simulations

COUPLED OSCILLATORS

Eigenmodes of coupled oscillators split according to the phase difference

'0'-mode, ' π '-mode, etc.

For N+I coupled oscillators

iπ/N radians phase advance (i=0,1,2,..N)

Frequency also splits

Dependant of coupling strength

Each new mode may be plotted on a Brillouin curve

For $N < \infty$ the modes are equally spaced along the curve

$$k = \frac{\omega_\pi^2 - \omega_0^2}{\omega_\pi^2 + \omega_0^2}$$

THREE GEOMETRIES

SIMPLIFIED MODEL

FINITE POTENTIAL WELL

E > V

$$\psi_j = A_j \cos(k_j z) + B_j \sin(k_j z)$$

E < V

$$\psi_j = A_j e^{k_j z} + B_j e^{-k_j z}$$

$$k = \frac{\sqrt{2m_j E}}{\hbar^2}$$

$$c = \frac{\sqrt{2m_j(V-E)}}{\hbar^2}$$

FINITE POTENTIAL WELL

 $\psi, \frac{d\psi}{dz}$ must be continuous at each boundary

Rewrite in terms of matrices

$$^{m}M_{j} = \begin{pmatrix} e^{k_{j}z_{m}} & e^{-k_{j}z_{m}} \\ k_{j}e^{k_{j}z_{m}} & -k_{j}e^{-k_{j}z_{m}} \end{pmatrix}$$

E < V

E > V

 ${}^{m}M_{j} = \begin{pmatrix} \cos(k_{j}z_{m}) & \sin(k_{j}z_{m}) \\ -k_{j}\sin(k_{j}z_{m}) & k_{j}\cos(k_{j}z_{m}) \end{pmatrix}$

Therefore at each boundary

$${}^{j}M_{j}\left(\begin{smallmatrix}A_{j}\\B_{j}\end{smallmatrix}\right) = {}^{j}M_{j+1}\left(\begin{smallmatrix}A_{j+1}\\B_{j+1}\end{smallmatrix}\right)$$

FINITE POTENTIAL WELLAt boundary |At boundary || $^{0}M_{0} \begin{pmatrix} A_{0} \\ B_{0} \end{pmatrix} = {}^{0}M_{1} \begin{pmatrix} A_{1} \\ B_{1} \end{pmatrix}$ $^{1}M_{1} \begin{pmatrix} A_{1} \\ B_{1} \end{pmatrix} = {}^{1}M_{2} \begin{pmatrix} A_{2} \\ B_{2} \end{pmatrix}$ Therefore $[({}^{1}M_{2})^{-1} * {}^{1}M_{1} * ({}^{0}M_{1})^{-1} * {}^{0}M_{0}] \begin{pmatrix} A_{0} \\ B_{0} \end{pmatrix} = \begin{pmatrix} A_{2} \\ B_{2} \end{pmatrix}$

Need to find bound state! Therefore, set A₀ = I and B₀ = O No backward wave in first region

Solve to find where $A_2 = 0$ No forward wave in last region

$$A_{0}e^{k_{0}z} \qquad A_{1}\cos(k_{1}z) \qquad A_{2}=0 \\ + \\ B_{0}=0 \qquad B_{1}\sin(k_{1}z) \qquad B_{2}e^{-k_{2}z}$$

N COUPLED WELLS

For N coupled wells

$$\left(\prod_{2N-1}^{0} \left[({}^{j}M_{j+1})^{-1} * {}^{j}M_{j} \right] \right) \left({}^{A_{0}}_{B_{0}} \right) = \left({}^{A_{2N}}_{B_{2N}} \right)$$

Again, solve for $A_{2N}=0$ if $A_0=I$, $B_0=0$

DISCRETE ENERGY LEVELS

POTENTIAL WELL TO CAVITY

$$k = \frac{\omega}{c} \qquad \qquad \omega > \omega_c$$

$$k = \sqrt{\left(\frac{p_{nm}}{a}\right)^2 - \left(\frac{\omega}{c}\right)^2} \qquad \qquad \omega$$

Does k need to change depending on phase advance?

 $<\omega_c$

To create cavity, set up a well where the lowest eigenvalue is the resonant frequency using

$$z = \frac{2\tan^{-1}(\frac{K1}{K0})}{K0}$$

COMPARISON OF RESULTS

SUMMARY

Cavity to cavity coupling - is a taper necessary?

Negligible effect on monopole coupling Increases loss factor

Calculations using simplified model

Preliminary results show rough agreement for dipole Can model be improved?

Change k according the phase advance? Are we severely limited by only 1 dimension? What about modes above cut-off?