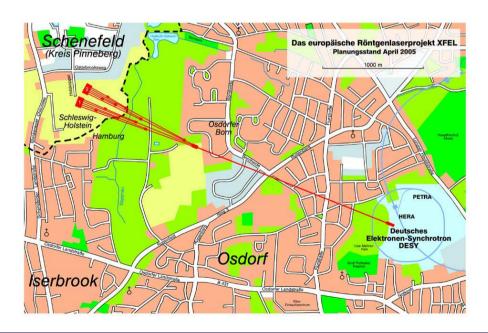
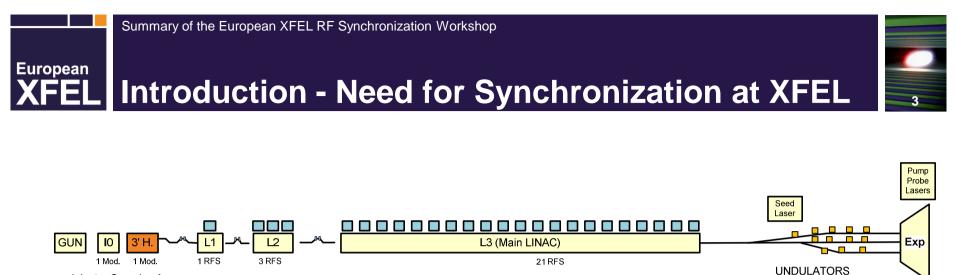


Summary of the European XFEL RF Synchronization Workshop

RF Tech 2nd Workshop

Krzysztof Czuba ISE/WUT


HELMHOLTZ ASSOCIATION



XFEL Introduction – European XFEL

- X-Ray Free Electron Laser (XFEL)
- Under construction at DESY in Hamburg
- 3.3 km long machine based on superconducting cavities
- Include numerous RF subsystems

 Injector Complex Area
 ONDOLLTONS
 N

 0m<20m<30m<40m<92m</td>
 306m
 467m
 1682m
 2100m
 3333m

 XTIN
 L1-XTL
 L2-XTL
 L3-XTL

- Subsystems of the machine must run synchronously
- Very high precision of synchronization is required (down to fs for most critical subsystems)
- There will be several thousands of electronic, RF and optical devices in the machine that require synchronization
- The system length of over 3 km make the design of the synchronization system very challenging and difficult task

XFEL Types of Synchronization Signals

- There are various types of signals, frequently confused by users:
- Analog (RF phase reference, VM, LO)
- Clocks (digital subsystems, ADC, DAC, CPU)
- Trigger signals (digital subsystems, CPU)
- Optical pulse trains (lasers, diagnostics, experiments)

European

XFEL Synchronization System Design

- Works going on since 2008
- Many general issues addressed and solved until now
- A Conceptual Design Report (CDR) is planned for spring 2011
- Gathering and freezing of user requirements is necessary before releasing the CDR
- Workshop with users of the synchronization system signals was necessary for accomplishing of the CDR preparation

XFEL Workshop Objectives

Initiated as preparation for "Conceptional Design Review" (CDR) for the RF Synchronization System (submit spring/summer 2011)

- List of stakeholders
- List of requirements
- Interface definition to other sub-systems
- Functionality of the system
- Principle design and layout
- Capabilities & Limitation
- Interplay to closely related system (optical synch/timing system)

1) Completeness of stakeholders & requirements gather so far!

XFEL Workshop Objectives (2)

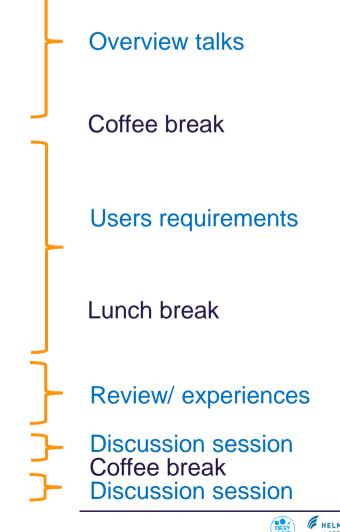
Initiated as preparation for "Conceptional Design Review" (CDR) for the RF Synchronization System (submit spring/summer 2011)

- Spread information on the synchronization system(s)
- Provide better understanding of RF/timing/clock/optical synchronization and opportunity for redesign/reconsider layout of subsystem to make optimal use of planned infrastructure
- Migrate functionality from sub-system <-> synchronization system
- Trigger discussion on
 - Optical synchronization system (stakeholder/requirements/layout)
 - Timing/clock system (stakeholder/requirements/layout)
- 1) Completeness of stakeholders & requirements gather so far!
- 2) Kick-off for preparing the CRD on optical synch. (own workshop)
- 3) Come to an optimized overall design w.r.t. synchronization infrastructure

European

XFEL Location and Other Data

- Workshop was held at DESY, Hamburg
- 25 November 2010
- 36 participants
- 12 talks with extended time for discussion
- 2 dedicated discussion sessions
- Workshop indico page: http://indico.desy.de/conferenceDisplay.py?confld=3735


Summary of the European XFEL RF Synchronization Workshop

European XĖEL

Workshop Timetable

Thursday 25 November 2010

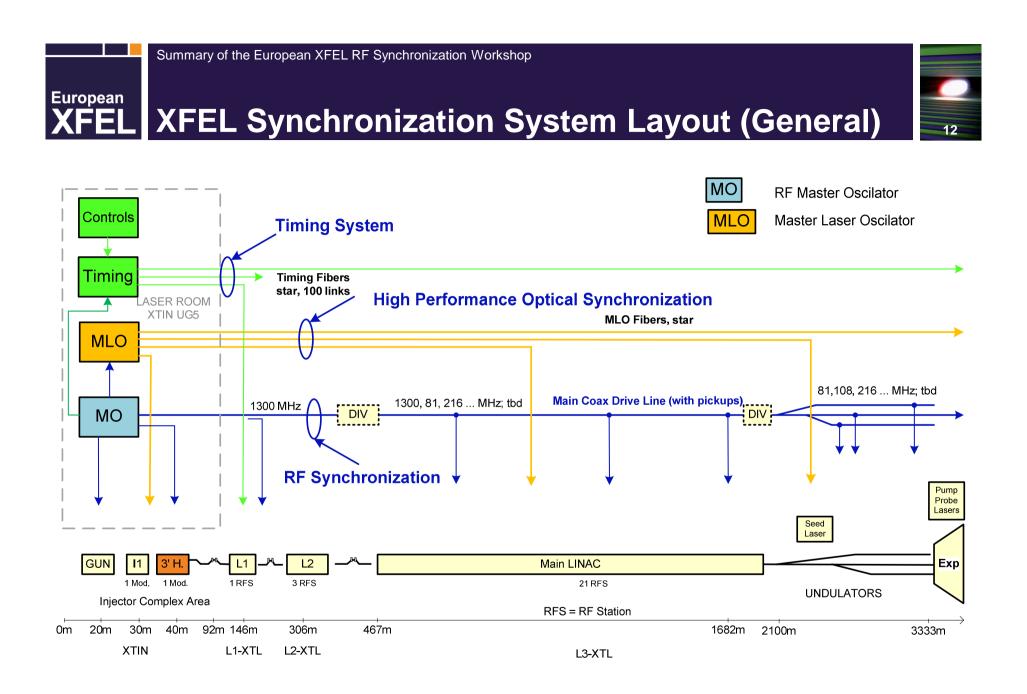
Inursuay 25	November 2010
09:00 - 09:10	Welcome Address and General Information 10 ^e Speakers: Holger Schlarb (DESY)
09:10 - 09:55	Introduction and Synchronization System Overview 45' Speakers: Krzysztof Czuba (ISE, Warsaw University of Technology)
09:55 - 10:10	Possible Operation Modes of the European XFEL 15' Speakers: Winfried Decking (DESY) Material: Slides
10:10 - 10:35	Optical Synchronization Overview 25' Speakers: Holger Schlarb (DESY)
10:35 - 11:00	Introduction to XFEL Timing System 25' Speakers: Kay Rehlich (DESY)
11:00 - 11:20	Coffee Break
11:20 - 11:40	Synchronization System Installation - requirements, constrains, remarks 20' Speakers: Wojciech Wierba (Institute of Nuclear Physics PAN, Cracow, Poland)
11:40 - 12:00	RF Sychronization Requirement from Xray Photon Diagnostics Group – WP74 Speakers: Bin Li
12:00 - 12:20	Timing Requirements for Optical Lasers at XFEL 20* Speakers: Maximilian Lederer Material: Slides
12:20 - 12:40	Undulator and 40mm Cavity BPM System Synchronization Requirement 20' Speakers: Markus Stadler (PSI) Material: Slides 🔂 🚇
12:40 - 13:00	Reentrant BPMs 20' Speakers: Claire Simon (CEA)
13:00 - 13:30	Lunch Break (Lunch provided to BAH1)
13:30 - 13:50	Synchronization Requirements WP18 "Special Diagnostics" 20' Speakers: Matthias Hoffmann (DESY) Material: Slides 🔂
13:50 - 14:00	Experience with User Experiments at FLASH 10' Speakers: Harald Redlin (DESY/Hasylab)
14:00 - 14:20	Temperature Variations and Profile at XFEL Tunnel System 20' Speakers: Hans-Joerg Eckoldt (DESY)
14:20 - 14:50	Collection of missing items & specifications 30 ^o Speakers: All
14:50 - 15:10	Coffee Break
15:10 - 15: 4 5	Future Demands and Potential Upgrades 35' Speakers: All
15.45 - 16.00	Conclusions and Plans 15' Speakers: Krzysztof Czuba (ISE, Warsaw University of Technology)

- WP74 20"

02.12.2010, PSI Krzysztof Czuba,

HELMHOLTZ ASSOCIATION

- Introduction and Synchronization System Overview, Krzysztof Czuba (ISE/WUT)
- Possible Operation Modes of the European XFEL, Winfried Decking (DESY)
- **Optical Synchronization Overview**, Holger Schlarb (DESY)
- Introduction to XFEL Timing System, Kay Rehlich (DESY)
- Synchronization System Installation Requirements, Constrains, Wojciech Wierba (IFJ)



European

XFEL Overview Talks - Summary

- Introduced synchronization basics
- Planned synchronization system layout was presented
- Synchronization system subcomponents were characterized and design plans were presented
- System limitations and estimated performance was shown
- Presented list of requirements that should be provided by users

XFEL XFEL Synchronization System Characteristics

- The high performance optical links will provide optical pulses with <10fs stability</p>
 - There is possibility to generate RF signals
- The RF system will deliver RF signals with stability <100 fs</p>
- The digital, coded timing signals will carry event trigger codes and lower performance clocks (few ps stability)
- All systems will work complementary depending on required performance, cost and reliability

14

XFEL User Requirements Expected

- Electrical requirements (frequency value, signal type, level)
- Stability requirements (jitter and drifts, absolute or relative to MO or other subsystem)
- Connectors
- Number of devices in the machine
- Locations (in meters from the beginning of the tunnel)
- Time schedule
- Diagnostic information
- Requests for test sources before installation

European

XFEL User Requirement Talks

- **RF Sychronization Requirement from Xray Photon Diagnostics** Group – WP74, Bin Li (XFEL)
- Timing Requirements for Optical Lasers at XFEL, Maximilian Lederer (XFEL)
- Undulator and 40mm Cavity BPM System Synchronization Requirement, Markus Stadler (PSI)
- **Reentrant BPMs**, Claire Simon (CEA Saclay)
- Synchronization Requirements WP18 "Special Diagnostics,,, Matthias Hoffmann (DESY)

XFEL User Requirement Talks - Summary

- There are two "big" users of RF synchronization signals: LLRF and BPM's (about 100 and 130 tap points, respectively)
- The undulator cavity BPM'm requirements, jitter <100 fs will be difficult to fulfill on such scale.
- Several systems require synchronization accuracies of 10fs. They will be served by the high performance optical system
- Users were sometimes confusing types of synchronization signals and provided requirements with large safety margin... Discussions helped with identification of those issues

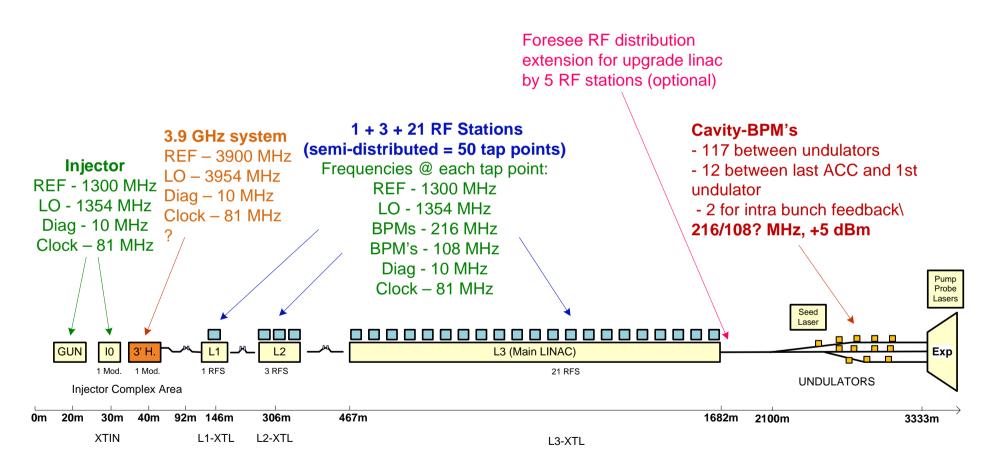
Field Stability Requirements for Accelerating Sections

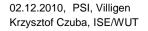
Accelerator Section	RF Station	Amplitude Stability [%]	Phase Stability [deg]
I1 (GUN)	1300 MHz	0.01	0.01
I2 (Injector)	1300 MHz	0.003	0.005
I3 (3rd-Harmonic)	3900 MHz	0.005	0.03
L1 (Injector Linac)	1300 MHz	0.03	0.03
L2 (Booster)	3 x 1300 MHz	0.03	0.03
L3 (Main Linac)	20 x 1300 MHz	0.1	0.1

Numbers in the last column indicate the required synchronization accuracy

-Not straightforward! (contribution of control system components and feedback loops) but can give a good approximation

0.01 deg @ 1.3 GHz corresponds to roughly 20 fs of jitter


European



XFEL Overview of Required RF Signals

More complete picture should be created after this workshop

XFEL Review / Expert Talks

- Experience with User Experiments at FLASH, Harald Redlin (DESY/Hasylab)
- Reference Distribution System Plans for SwissFEL, Stephan Hunziker (PSI)

- The user experiments require jitter smaller than the pulse duration. At XFEL it can be less than 10 fs. Very tough - > largest distance from the Master Oscillator
- Very interesting talk about Swiss FEL synchr. Confirmed many assumptions and ideas for the XFEL synchr. system design.

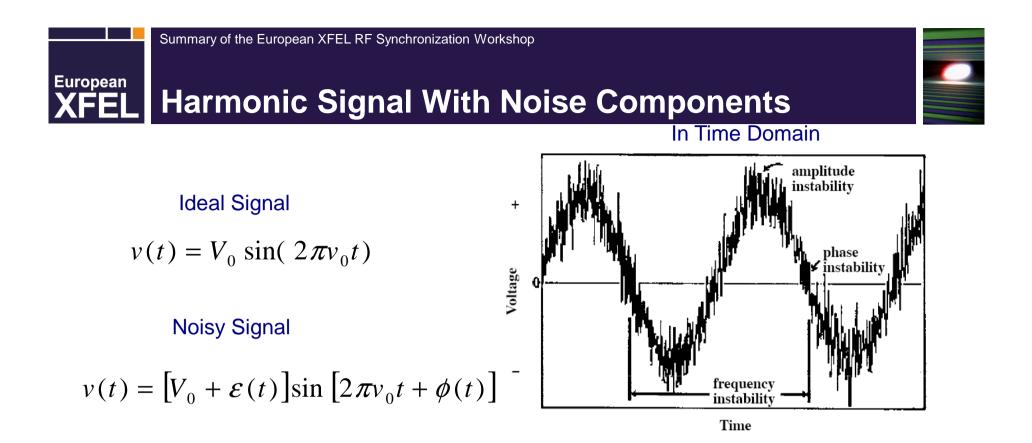
European

XFEL Summary and Conclusions

- Very successful workshop
- Many positive opinions from participants
- Allowed people from various groups learn about their fields of activities (informative function)
- Increased effectiveness of coordination and preparation of the synchronization system
- There will be follow up meetings about more technical delays and selected substems

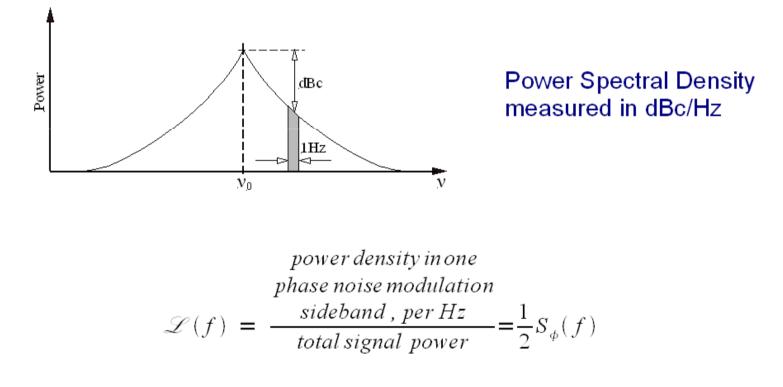
Summary of the European XFEL RF Synchronization Workshop

Thank you for attention!

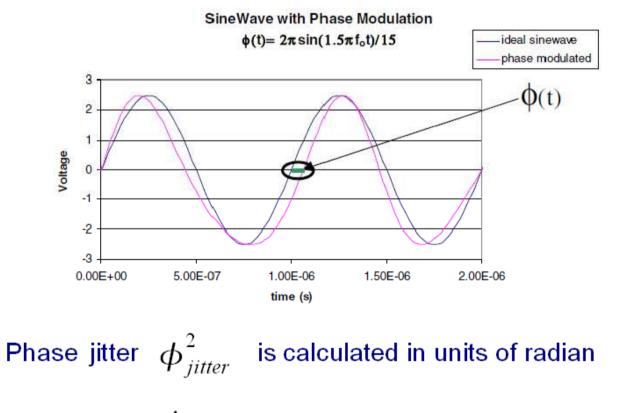


Summary of the European XFEL RF Synchronization Workshop

Backup Slides


- V_0 the nominal peak voltage amplitude
- v_0 nominal frequency, called also instantaneous
- $\mathcal{E}(t)$ deviation of amplitude from nominal value
- $\phi(t)$ deviation of phase from nominal value **noise component**

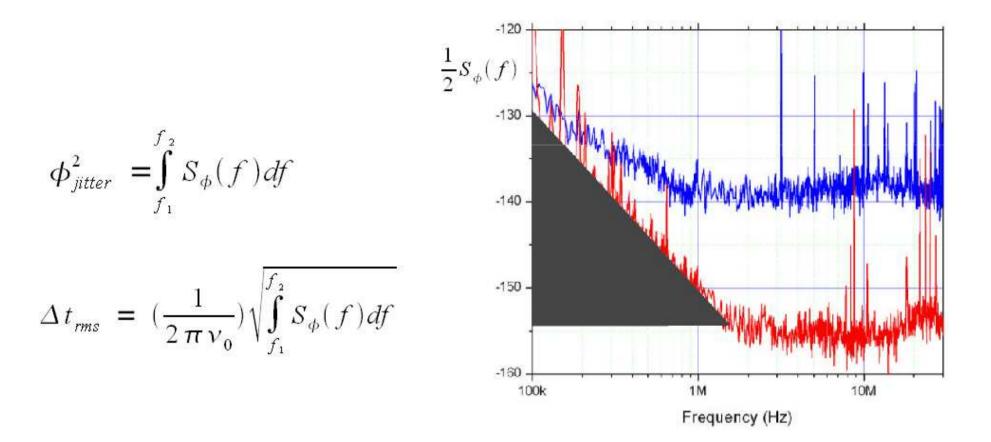
A frequency domain measure of signal phase instabilities

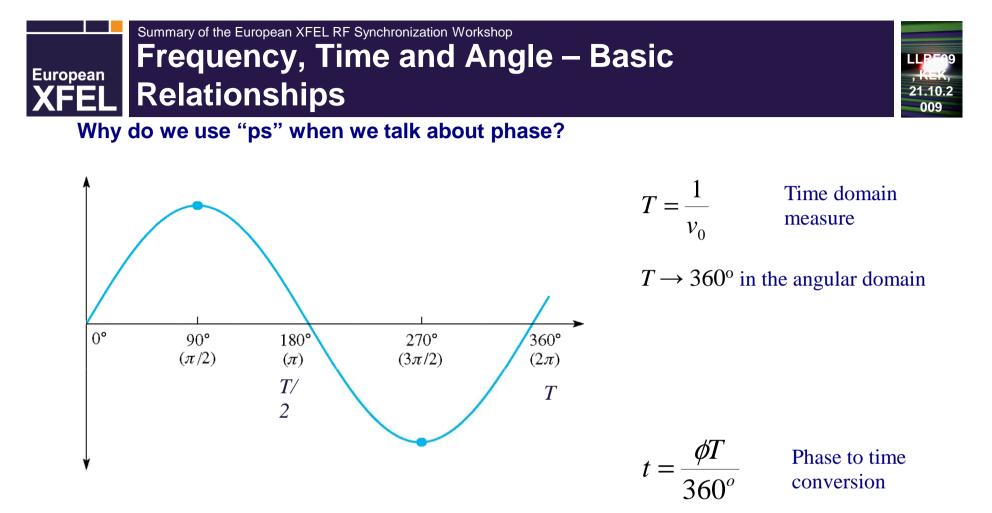

 $f = v - v_0$ offset from the carrier frequency

XFEL Phase and Timing Jitter

It is a time domain measure of signal phase instabilities $\phi(t)$

Timing jitter Δt_{RMS} is calculated in units of seconds RMS. Used frequently with digital signals


Figure source: Corning Frequency Control


XFEL Phase Noise and Jitter Relationship

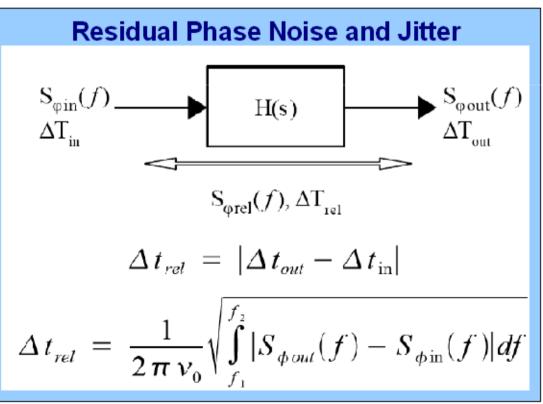
Jitter is the integral of $S_{\phi}(f)$ over the Fourier frequencies of application

Example: $v_0 = 1.3$ GHz $\rightarrow T = \sim 769$ ps, 1° $\rightarrow 2,13$ ps

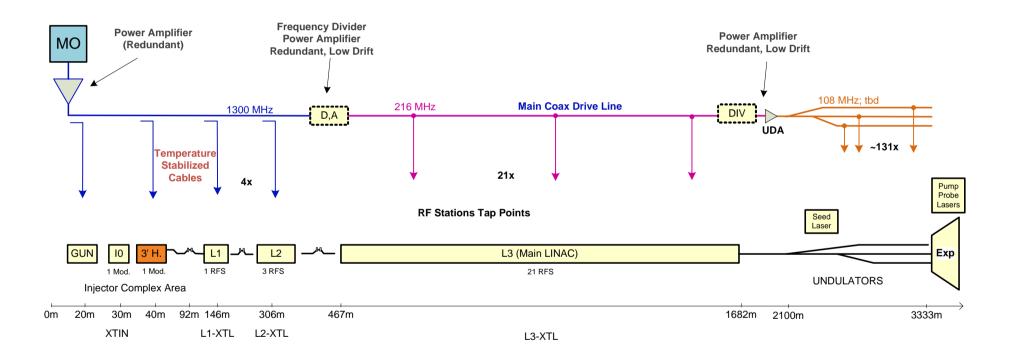
Time domain measure is convenient for phase changes in distribution media (by means of propagation delay change) because it does not depend on the signal frequency.

XFEL Short and Long Term Instabilities

- The short-term instability refers to all phase/frequency changes about the nominal of less than a few second duration.
- derives from a "fast" phase noise components (f > 1 Hz)
- expressed in units of spectral densities or timing jitter
- The long-term instability (Drift) refers to the phase/frequency variations that occur over time periods longer than a few seconds
- derives from slow processes like long term frequency drifts, aging and susceptibility to environmental parameters like temperature
- expressed in units of degree, second or ppm per time period (minute, hour, day ...)



XFEL Absolute and Residual Instabilities


- <u>The absolute instability</u> refers to the total phase noise present at the output of the signal source or a system.
- The relative instability refers to a measure between different points of a system. It is mostly caused by residual noise and phase drifts of a distribution media.

Relative stability type is of high importance for the synchronization systems

XFEL Main Frequency Distribution Proposal

30

Frequency Distribution Media – Coaxial Cable vs. Optical Fiber

Coaxial cable

European

(33)

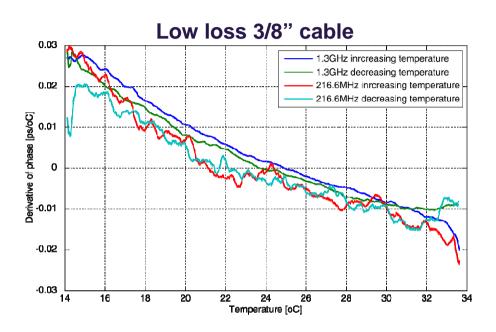
- Robust and radiation immune
- Passive distribution
- Very low noise degradation
- High RF loss
 - Short distribution distances
- Distribution with tap points
- Cost effective

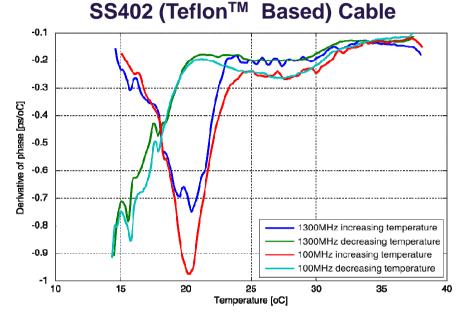
Optical Fiber (CW link)

- Possible problems with radiation
- Active components (laser, ...)
- High noise figures
- Low loss
 - Long distribution distances
- Point-to-point distribution
- Fiber is cheap, rest expensive

- Both types of distribution require phase stabilization
- Both undergo significant development, particularly optical links
- The XFEL frequency distribution will use tradeoff between cost, performance and reliability and both media will be used complementary

XFEL Phase Drift Problem




Drifts caused mainly by temperature changes RF signal source Target Device Electrical / optical length change 1.3 GHz signal phase change in 5km offiber. 10 °C temperature change Reason of drifts: 1600 - In fiber: n_{eff} change 1400 1200 - In cable: physical dimension and Phave change [deg] 1000 dielectric properties change 800 1400º @ 1.3 GHz 600 corresponds to ~2800 ps!! 400 Temperature coefficient: 56 [fs/K/m] 200 Feedback on phase required!! 0 0 10 20 30 40 50 60 70 80 90 100 Time [min]

XFEL Phase Drifts in Coax Cables

- Max. +/- 10fs/m/K drift in temperature range 20 – 30 °C
- 0 ppm/m/K possible @ 24 °C !

- Up to 1000fs/m/K drift in temperature range 20 – 30 °C
- Local signal distribution is very critical
- Users must carefully select cables used internally in their subsystems!

