Introduction

Dark Matter in AMSB Models

Heavy Axino Cosmology

Summary

Backup

Non-thermal Production of Dark Matter: Heavy Axino Cosmology

Shibi Rajagopalan

University of Oklahoma, Oklahoma USA & Visiting LPSC, Grenoble France

April 1, 2011

Introduction

In this talk we will examine how non-thermal production (NTP) of Dark Matter (DM) can help SUSY models which predict insufficient amounts of DM. We will first examine in general how AMSB models, notorious for having a dearth of DM, can attain cosmologically safe relic densities. We then turn our attention to the details of a specific NTP mechanism: neutralinos (Z_1) produced through heavy axino decays (\tilde{a}). Finally, we conclude with a few remarks on future directions of research.

Introduction

Publications

"Neutralino Versus Axion and Axino Cold Dark Matter in Minimal, Hypercharged and Gaugino AMSB", JCAP 1007, 014 (2010)

arXiv:1004.3297 [hep-ph]

"Mixed Axion/Neutralino Cold Dark Matter in the Presence of Heavy Axino Decay"

arXiv:1103.5413 [hep-ph]

Introduction

Dark Matter in AMSB Models

Heavy Axino Cosmology

ummary

Backup

Dark Matter in AMSB Models

Models

Dark Matter in AMSB Models

Consequences of a Wino-like Neutralino

Universe expands

- → Temperature drops
- → Particles fall out of equilibrium ("freeze out")

$$\left| \widetilde{Z}_1 \ \& \ \widetilde{W}_1 \right|$$
 nearly degenerate and wino-like.

$$\sigma_{\it eff} \sim A \; \sigma^{\it annihilation} + B \; \sigma^{\it co-annihilation}$$

Co-annihilation interactions keep \tilde{Z}_1 in thermal contact.

⇒ Effective annihilations long after "freeze-out"

$$\Rightarrow \Omega_{CDM} h^2 \stackrel{<}{\sim} O(10^{-2} - 10^{-3}) \times \Omega_{CDM}^{WMAP} h^2$$

Backu

Dark Matter in AMSB Models

Consequences of a Wino-like Neutralino

* Many theories predict very heavy particles in early universe.

Can the decays of these particles affect present abundances?

⇒ Yes! In particular, DM abundance can be augmented in a way that does not interfere with BBN abundances!

Refer to this broadly as "Non-thermal Production" (NTP) of Dark Matter

Dark Matter in AMSB Models

Possible Non-thermal Sources of DM

DM Non-Thermal Production

- i. Moduli Decay $(\phi) \rightarrow \text{Neutralino DM}$
- ii. Gravitino Decay $(\psi_{3/2}) o \mathsf{Neutralino} \ \mathsf{DM}$
- iii. Neutralino Decay $(\tilde{Z}_1) o Axino DM + Axion DM$
- iv. Heavy Axino $(\tilde{a}) \rightarrow \text{Neutralino DM} + Axion DM$

Summary

Backup

Models

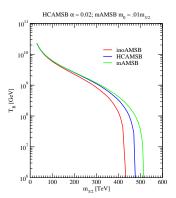
Dark Matter in AMSB Models

i. Moduli Decay $(\phi) o \mathsf{Neutralino} \ \mathsf{DM}$

Randall, Moroi, Kane, etc.

$$\Omega_{\tilde{Z}_1}^{\phi} \, h^2 \sim 0.1 \times \left(\frac{m_{\tilde{Z}_1}}{100~{\rm GeV}}\right) \left(\frac{10.75}{g_*}\right)^{1/4} \left(\frac{\sigma_0^{int}}{\langle \sigma \nu \rangle}\right) \left(\frac{100~{\rm TeV}}{m_\phi}\right)^{3/2}$$

$$m_{\phi} \sim m_{3/2}$$


Assuming:

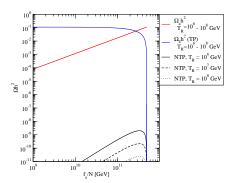
$$m_{\phi} \sim 100\, TeV$$
 and $m_{ ilde{Z}_1} \sim$ weak scale mass and $\sigma_0^{int} \sim 10^{-24}~{
m cm}^3/{
m sec}$

- ⇒ Values expected in AMSB scenarios
- ⇒ "Non-thermal Wimp Miracle" Kane

Dark Matter in AMSB Models

ii. Gravitino Decay $(\psi_{3/2}) \rightarrow \text{Neutralino DM}$

 T_R vs. $m_{3/2}$ plane for wino-like neutralino DM from TP and gravitino NTP.


For HCAMSB $\alpha = 0.02$ and for mAMSB $m_0 =$ $0.01 \ m_{3/2}$.

Dark Matter in AMSB Models

iii. Neutralino Decay $(\tilde{Z}_1) o A$ xino DM + Axion DM

Entire CDM abundance given by sum of TP and NTP parts:

$$\Omega_{a\tilde{a}}h^2 = \Omega_{\tilde{a}}^{NTP}h^2 + \Omega_{\tilde{a}}^{TP}h^2 + \Omega_ah^2 = \textbf{0.11}.$$

Heavy Axino Cosmology Summary

Dark Matter in AMSB Models

iv. Heavy Axino $(\tilde{a}) \rightarrow \text{Neutralino DM} + Axion DM$

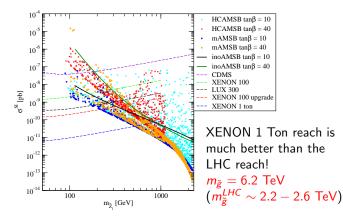
Peccei-Quinn MSSM

Pecci-Quinn Solution to Strong CP Problem

Supersymmetry for hierarchy, etc.

axion (a) saxion (s) axino (\tilde{a})

Axino (\tilde{a}) mass related to SUSY breaking and mediation mechanism, so very model dependent. Mass can range from 1 keV to larger than $m_{3/2}$.

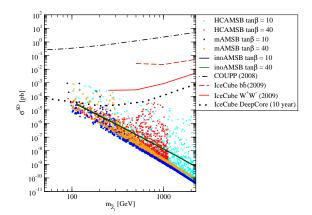

Axion (a) mass can be tiny: $\sim O(\text{keV})$.

Models

Dark Matter in AMSB Models

Wino DM Direct Detection Rates

Isajet IsaTools Package


Spin-independent $\sigma(\tilde{Z}_1 - p)$ versus $m_{\tilde{Z}_1}$ for the AMSB models. The model parameters have been scanned over. CDMS limit and projected Xenon and LUX sensitivities are shown.

Dark Matter in AMSR Models

Dark Matter in AMSB Models

Wino DM Direct Detection Rates

Isajet IsaTools Package

Spin-dependent $\sigma(\tilde{Z}_1-p)$ versus $m_{\tilde{Z}_1}$ for AMSB models. The model parameters have been scanned over. We also show the COUPP and IceCube limits on this cross section.

Introduction

Dark Matter in AMSB

Heavy Axino Cosmology

Summary

Backup

Heavy Axino Cosmology

This scenario is of interest because

- two major SM fine-tuning problems avoided: Hierarchy & Strong CP Problems (slide 45)
- ▶ the interactions are understood: tractable.
- leads to more complex scenarios with multiple decays, i.e. of saxion, gravitino, etc..

Goals of this work are:

- Present numerical calculations of the relic abundance of mixed $a-\tilde{Z}_1$ dark matter.
- Account for CDM abundance as given by the WMAP7 analysis:

$$\Omega_{DM} h^2 = 0.1123 \pm 0.0035$$
 at 68% CL.

Determine which parameter values achieve this.

▶ Understand relative proportions of axion and \tilde{Z}_1 dark matter and determine the detection prospects.

Heavy Axino Cosmology

Axino (ã) Production

Axinos can be produced in equilibrium early on. They can also be produced in thermal scattering, and how much depends on T_R , f_a/N , and $T^{\tilde{a}-dec}$.

$$Y_{\tilde{a}}^{\mathrm{TP}} = (5.8 \times 10^{-9}) \ g_s^4 \ F(g_s) \ \frac{T_R}{10^4 \ \mathrm{GeV}} \ \left(\frac{10^{11}}{f_a/N}\right)^2 \ (Strumia),$$
 for $T^{\tilde{a}-dec} > T_R$ and $F(g_s) \sim 20 g_s^2 \ln \frac{3}{g_s}$.

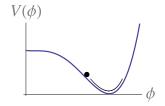
$$Y_{ ilde{a}}^{ ext{TP}} = rac{135\zeta(3)}{8\pi^4} rac{g_{ ilde{a}}}{g_*(T^{ ilde{a}- ext{dec}})} ext{ for } T_R > T^{ ilde{a}- ext{dec}}.$$

 $m_{\tilde{a}}$ can be large compared to the weak scale dependent on the SUSY breaking sector and the mediation mechanism. We take $m_{\tilde{a}}$ to be a free parameter.

Introduction

Dark Matter in AMS

Heavy Axino Cosmology


Summary

Heavy Axino Cosmology

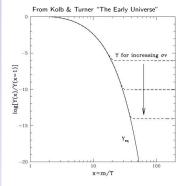
Axion (a) DM Production

Axion EoM implies $<\phi_a>$ stays constant until ~ 1 GeV.

As T \rightarrow 1 GeV, an effective (T-dependent) axion mass turns on. The axion oscillates about a minimum that conserves CP.

Expected axion relic density from vacuum mis-alignment:

$$\Omega_a h^2 \simeq 0.23 f(heta_i) heta_i^2 \left(rac{f_a/N}{10^{12}~{
m GeV}}
ight)^{7/6}$$
 ,


where $f(\theta_i) = \left[\ln\left(\frac{\mathrm{e}}{1-\theta_i^2/\pi^2}\right)\right]^{7/6}$. Will have more to say on this...

Summary

Backu

Heavy Axino Cosmology

Neutralino (\tilde{Z}_1) DM Production

Neutralinos are also produced from heavy Axino decays.

Neutralinos are produced thermally and freeze out as usual.

$$Y_{\tilde{Z}_{1}}^{fr}$$

$$+ = Y_{\tilde{Z}_{1}}(T = T_{D})$$

$$Y_{\tilde{Z}_{1}}^{decay}$$

 $(T_D = T \text{ just after } \tilde{a} \text{ decay.})$

Heavy Axino Cosmology

Neutralino (\tilde{Z}_1) DM Production

$$H < \Gamma \sim n_{ ilde{Z}_1} \cdot \langle \sigma_{ann.} v \rangle$$

If $Y_{\tilde{z}_i}(T=T_D) > Y_{\tilde{z}_i}^{th}(T=T_D)$, annihilations re-activated, i.e. for

$$Y_{\tilde{Z}_1}(T=T_D) > \left(\frac{90}{\pi^2 g_*}\right)^{1/2} \frac{1}{\langle \sigma_{ann.} v \rangle} \frac{1}{M_P T_D}.$$

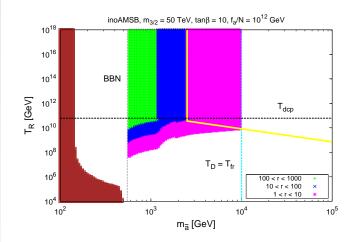
The \tilde{Z}_1 Boltzmann equation in terms of yield is:

$$\frac{dY_{\tilde{Z}_1}}{dt} = -\langle \sigma_{ann.} v \rangle Y_{\tilde{Z}_1}^2 s.$$

Its solution is

$$Y_{ ilde{Z}_1}^{-1}(T) \simeq Y_{ ilde{Z}_1}^{-1}(T_D) + rac{\langle \sigma_{ann.} v
angle s(T_D)}{H(T_D)}$$

the state of the state of


Dark Matter in AMSE

Heavy Axino Cosmology

Summary

Heavy Axino Cosmology

Neutralino (\tilde{Z}_1) DM Production

brown region: no \tilde{Z}_1 annihilation occurs.

Summary

Dacku

Heavy Axino Cosmology

Calculating Scales

Combining ingredients:

- ► Inflation
- Supersymmetry : model choice
- ► PQ Mechanism : ã super-multiplet

Scales:

 f_a/N — PQ scale

 T_R — inflation reheat

 $T^{\tilde{a}-dec}$ – \tilde{a} decouples

 $T_{\tilde{\mathbf{a}}=\mathsf{rad}} \quad - \quad \rho(\tilde{\mathbf{a}}) = \rho(\mathsf{rad})$

 T_{fr} – \tilde{Z}_1 freeze – out

T_D – ã decays

Parameters:

$$f_a/N$$
, T_R , $m_{\tilde{a}}$, θ_i , SUSY model p's

 $mSUGRA : m_0, m_{1/2}, A_0, \tan\beta, sgn(\mu)$ $inoAMSB : m_0, m_{3/2}, \tan\beta, sgn(\mu)$

Heavy Axino Cosmology

Calculating Scales

$$T^{\tilde{a}-dec} = 10^{11} \text{ GeV} \left(\frac{f_a/N}{10^{12} \text{ GeV}}\right)^2 \left(\frac{0.1}{\alpha_s(T^{\tilde{a}-dec})}\right)^3$$

$$T_{\tilde{a}=rad} = \frac{4}{3} m_{\tilde{a}} Y_{\tilde{a}}(f_a/N, T_R)$$

$$T_{fr} \sim \frac{m_{\tilde{Z}_1}(SUSY \ p's)}{20}$$

$$T_D = \sqrt{\Gamma_{\tilde{a}}(m_{axino}, f_a/N) M_P}/(\pi^2 g_*/90)^{1/4}$$

Calculating Scales

Decay Temperature (T_D) :

 T_D is the temperature just after axino decays ($t \sim \tau_{\tilde{a}}$). This depends on the strength of it's interactions, *i.e.*, its width.

$$rac{1}{ au_{ ilde{a}}} \sim \sum_i \Gamma_i$$

Exponential decay law assumed

$$N_{
m a}\sim e^{-t/ au_{
m a}}$$

Exponential implies no 'reheat', but cooling is slower.

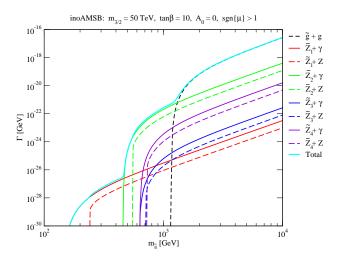
There are a few models for axino couplings and T_D can be computed. We choose the bound $T_D > 2$ MeV to avoid problems with BBN.

Calculating Scales

$$\mathcal{L}_{\tilde{a}\tilde{g}g} = i \frac{\alpha_{s}}{16\pi(f_{s}/N)} \bar{\tilde{a}} \gamma_{5} [\gamma^{\mu}, \gamma^{\nu}] \tilde{g}_{A} F_{A\mu\nu}$$

$$\mathcal{L}_{\tilde{a}\tilde{B}B} = i \frac{\alpha_{Y} C_{aYY}}{16\pi(f_{s}/N)} \bar{\tilde{a}} \gamma_{5} [\gamma^{\mu}, \gamma^{\nu}] \tilde{B} B_{\mu\nu}$$
(Strumia)

$$\begin{split} &\Gamma(\tilde{a} \to \tilde{g}g) = \frac{8\alpha_s^2}{128\pi^3(f_a/N)^2} m_{\tilde{a}}^3 \left(1 - \frac{m_{\tilde{g}}^2}{m_{\tilde{a}}^2}\right)^3 \\ &\Gamma(\tilde{a} \to \tilde{Z}_i + \gamma) = \frac{\alpha_Y^2 C_{aYY}^2 \cos^2\theta_w Z_{iB}^2}{128\pi^3(f_a/N)^2} m_{\tilde{a}}^3 \left(1 - \frac{m_{\tilde{Z}_i}^2}{m_{\tilde{a}}^2}\right)^3 \\ &\Gamma(\tilde{a} \to \tilde{Z}_i + Z) = \frac{\alpha_Y^2 C_{aYY}^2 \sin^2\theta_w Z_{iB}^2}{128\pi^3(f_a/N)^2} m_{\tilde{a}}^3 \lambda^{1/2} \left(1, \frac{m_{\tilde{Z}_i}^2}{m_{\tilde{a}}^2}, \frac{m_Z^2}{m_{\tilde{a}}^2}\right) \\ &\cdot \left\{ \left(1 - \frac{m_{\tilde{Z}_i}^2}{m_{\tilde{a}}^2}\right)^2 + 3 \frac{m_{\tilde{Z}_i}^2 m_Z^2}{m_{\tilde{a}}^3} - \frac{m_Z^2}{2m_{\tilde{a}}^2} \left(1 + \frac{m_{\tilde{Z}_i}^2}{m_{\tilde{a}}^2} + \frac{m_Z^2}{m_{\tilde{a}}^2}\right) \right\} \end{split}$$

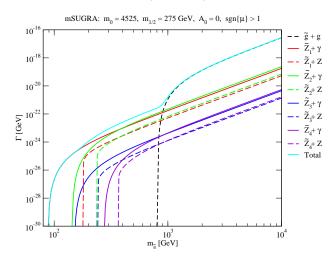

Summary

Backu

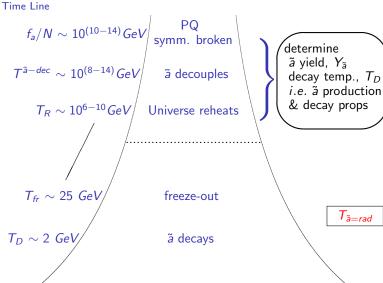
Heavy Axino Cosmology

Calculating Scales

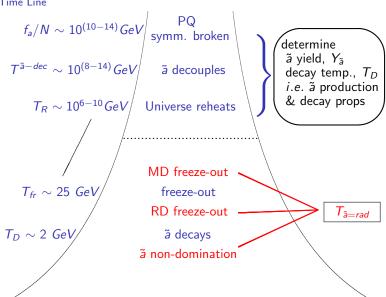
Widths for inoAMSB model


Summary

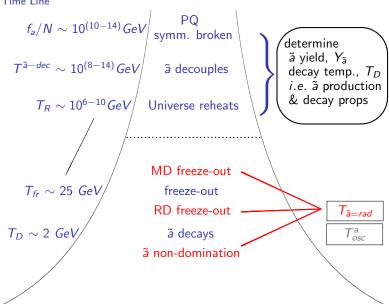
Backun


Heavy Axino Cosmology

Calculating Scales


Widths for mSUGRA model (FP region)

Introduction

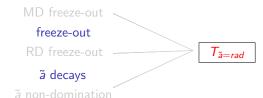

Dark Matter in AMSB Models

Heavy Axino Cosmology

Summary

Backu

Introduction


Dark Matter in AMSB Models

Heavy Axino Cosmology

Summary

Backup

Heavy Axino Cosmology

Time Line

Usual expression for \tilde{Z}_1 freeze-out changed b/c freeze occurs during MD, i.e. during ã-domination

MD freeze-out-

freeze-out

ã decays

$$\begin{split} Y_{\tilde{Z}_{1}}^{fr}(DPDC) &\equiv Y_{\tilde{Z}_{1}}^{\tilde{a}D} \\ &= \left(\frac{g_{*}(T_{D})}{g_{*S}(T_{D})}\right) \frac{(90/\pi^{2}g_{fr})^{1/2}}{4\langle\sigma_{ann}, v\rangle m_{pl}/T_{c}^{\tilde{a}D}} \cdot \frac{15}{4} \left(\frac{g_{D}}{g_{fr}}\right)^{1/2} \left(\frac{T_{D}}{T_{c}^{\tilde{a}D}}\right)^{3} \end{split}$$

$$T_{fr}^{\tilde{a}D} = m_{ ilde{Z}_1}/\log\left(rac{8\sqrt{2}\langle\sigma_{ann.}v
angle g_*^{rac{1}{2}}(T_D)T_D^2m_{ ilde{Z}_1}^{1/2}m_{pl}}{g_*(T_{fr}^{ ilde{a}D})\pi^{5/2}T_{fr}^{ ilde{a}D}}
ight)$$

 $T_{\tilde{a}=rad}$

Heavy Axino Cosmology

Time Line

Usual expression for \tilde{Z}_1 freeze-out changed b/c freeze occurs during MD, i.e. during ã-domination

freeze-out

ã decays

$$\begin{split} Y_{\tilde{Z}_{1}}^{fr}(DPDC) &\equiv Y_{\tilde{Z}_{1}}^{\tilde{a}D} \\ &= \left(\frac{g_{*}(T_{D})}{g_{*S}(T_{D})}\right) \frac{(90/\pi^{2}g_{fr})^{1/2}}{4\langle\sigma_{ann.} \, v\rangle m_{pl} T_{fr}^{\tilde{a}D}} \cdot \frac{15}{4} \left(\frac{g_{D}}{g_{fr}}\right)^{1/2} \left(\frac{T_{D}}{T_{fr}^{\tilde{a}D}}\right)^{3} \end{split}$$

$$Y_{ ilde{Z}_1} = Y_{ ilde{Z}_1}^{ ilde{a}D} + Y_{ ilde{Z}_1}^{decay}$$

 $T_{\tilde{a}=rad}$

Heavy Axino Cosmology

Time Line

Usual expression for \tilde{Z}_1 freeze-out changed b/c freeze occurs during MD, i.e. during ã-domination

MD freeze-outfreeze-out $T_{\tilde{a}=rad}$ ã decays

$$\begin{split} Y_{\tilde{Z}_{1}}^{fr}(DPDC) &\equiv Y_{\tilde{Z}_{1}}^{\tilde{a}D} \\ &= \left(\frac{g_{*}(T_{D})}{g_{*S}(T_{D})}\right) \frac{(90/\pi^{2}g_{fr})^{1/2}}{4\langle \sigma_{ann.} v \rangle m_{pl} T_{fr}^{\tilde{a}D}} \cdot \frac{15}{4} \left(\frac{g_{D}}{g_{fr}}\right)^{1/2} \left(\frac{T_{D}}{T_{fr}^{\tilde{a}D}}\right)^{3} \end{split}$$

- further annihilations?
- entropic dilution?

Introduction

Dark Matter in AMSE

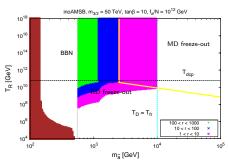
Heavy Axino Cosmology

Summary

Backu

Heavy Axino Cosmology

Time Line


Usual expression for \tilde{Z}_1 freeze-out changed b/c freeze occurs during MD, *i.e.* during \tilde{a} -domination

RD freeze-out

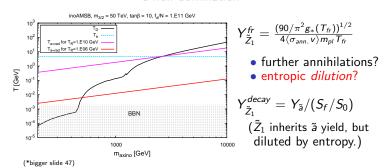
ã decays

ã non-domination

 $T_{\tilde{a}=rad}$

Introduction

Dark Matter in AMSE


Heavy Axino Cosmology

Summary

Backul

Heavy Axino Cosmology

Summary

Ducka

Heavy Axino Cosmology

Time Line

Again use usual expression for RD-freeze again.

ã non-domination

$$egin{aligned} Y_{ ilde{\mathcal{Z}}_1}^{ extit{decay}} &= Y_{ ilde{\mathcal{Z}}} ext{ (no dilution)} \ Y_{ ilde{\mathcal{Z}}_1} &= Y_{ ilde{\mathcal{Z}}_1}^{ ext{th}} + Y_{ ilde{\mathcal{Z}}_2}^{ ext{decay}} \end{aligned}$$

- further annihilations?
- entropic dilution?

Entropy

Crucial: entropy evolution (Boltzmann) equation:

$$\frac{ds}{dt} = -3Hs + \frac{\Gamma_{\tilde{a}}\rho_{\tilde{a}}}{T}$$

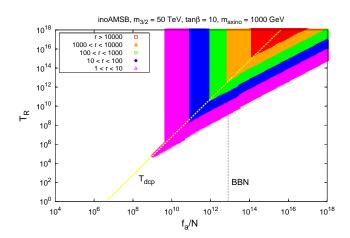
source term represents entropy non-conservation and changes the R (scale factor) $\leftrightarrow T$ relationship.

$$\Rightarrow$$
 final yields $(Y_i \equiv \frac{n_i}{s})$ are also altered.

To quantify this effect use the quantities

$$T_{ ilde{a}=rad} \; = \; rac{4}{3} m_{ ilde{a}} Y_{ ilde{a}} \qquad ext{and}$$
 $T_D \; = \; \sqrt{\Gamma_{ ilde{a}} m_{pl}}/(\pi^2 g_*/90)^{1/4}.$

When $T_{\tilde{a}=rad} > T_D$ \tilde{a} can dominate the Universe. The ratio of the entropy before and after \tilde{a} decay, r, is calculated:


$$r \equiv \frac{S_f}{S_0} \simeq T_{\tilde{a}=rad}/T_D = \frac{4m_{\tilde{a}}Y_{\tilde{a}}}{3T_D}$$

Backu

Heavy Axino Cosmology

Entropy

$$r \equiv \frac{S_f}{S_0} \simeq T_{\tilde{a}=rad}/T_D = \frac{4m_{\tilde{a}}Y_{\tilde{a}}}{3T_D}$$

$$r \equiv \frac{S_f}{S_0} \simeq T_{\tilde{a}=rad}/T_D = \frac{4m_{\tilde{a}}Y_{\tilde{a}}}{3T_D}$$

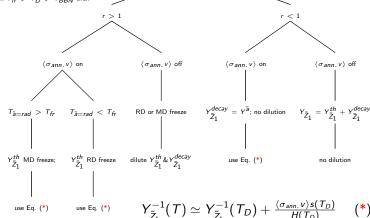
*Yield of any out of equilibrium particle will be "diluted" by entropy injection by a factor $\frac{1}{r}$ in the cases where r > 1. Otherwise if r < 1 (non-domination), \tilde{Z}_1 and a yields will not be diluted by entropy.

Then dilution possibly applies to

$$Y_{\tilde{Z}_1}^{fr}$$
 (\tilde{Z}_1 yield from freeze-out), and Y_2 (the axion yield)

depending on the particular case. There are several cases...

Dark Matter in AMSB Models


Heavy Axino Cosmology

Backup

Heavy Axino Cosmology

Algorithm for Calculating \tilde{Z}_1 DM Yield

- \bullet If $T_D < T_{BBN} \sim$ 2 MeV excluded.
- If $T_D > T_{fr}$ use standard $\Omega \tilde{Z}_1 h^2$ calculation: IsaRed output.
- \bullet If $T_{fr}\,>\,T_{D}\,>\,T_{BBN}$ then

Adding Axion (a) DM Yield

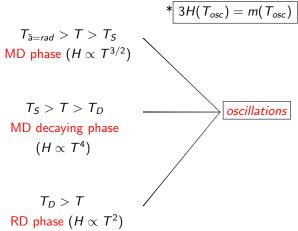
Following procedure similar to Visinelli & Gondolo PRD 81, 063508 to add in axion abundance.

PQ-symmetry breaks
$$\Rightarrow a(x)$$
 (backup 45)

Oscillations begin when

$$3H(T_{osc}) = m(T_{osc})$$
.

Moreover the mass is T-dependent:

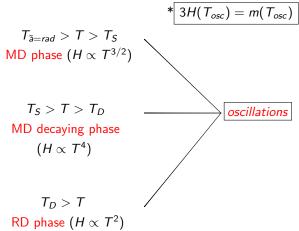

$$m(T) = \left\{ egin{array}{ll} m_a & T \stackrel{<}{\sim} \Lambda_{QCD} \ b m_a (\Lambda/T)^4 & T \stackrel{<}{\sim} \Lambda_{QCD}. \end{array}
ight.$$

Oscillations can occur in different phases depending on value of T_{osc} , and the relic axion abundance can vary by orders of magnitude (implicitly depending on f_a/N).

Summary

Heavy Axino Cosmology

Adding Axion (a) DM Yield

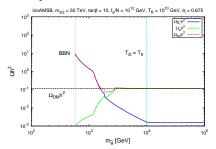


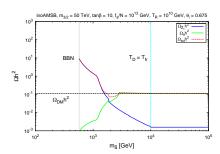
This leads to many more T-dependent cases. These formulae are not very illuminating.

Summary

Heavy Axino Cosmology

Adding Axion (a) DM Yield

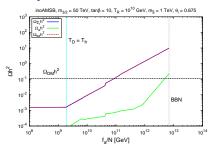


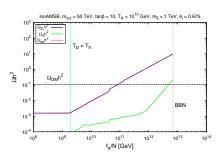

In the end we consider again axion entropy dilution as in \tilde{Z}_1 case.

And finally
$$\Omega h^2 = \Omega_{\tilde{Z}_1} h^2 + \Omega_a h^2$$
.

Heavy Axino Cosmology

Total $a\tilde{Z}_1$ DM Abundance

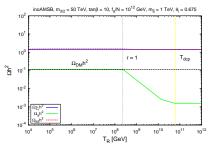

When $m_{\tilde{a}}$ is low, T_D smallish as well.

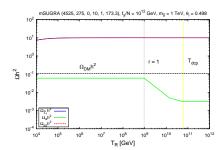

Re-annihilation effect gives $\Omega_{\tilde{z}_i} \propto T_D^{-1}$

- $\Omega_{\tilde{Z}_1} \uparrow \text{ for } m_{\tilde{a}} \downarrow$.
- Ω_a experiences dilution where r > 1and $T_D < T_{\rm osc}^a$.

Heavy Axino Cosmology

Total $a\tilde{Z}_1$ DM Abundance


When f_a/N is low, $\Gamma_{\tilde{a}}$ is large $\Rightarrow T_D > T_{fr}$ $\Rightarrow \Omega_{\tilde{\textbf{z}}}^{\text{std}} \sim 10^{-2} - 10^{-3}$


$$\Omega_{ ilde{Z}_1} \propto \mathit{T}_{\mathit{D}}^{-1}$$
 for $\mathit{T}_{\mathit{D}} < \mathit{T}_{\mathit{fr}}$

- $\Omega_{\tilde{z}_a} \uparrow \text{ as } f_a/N \uparrow$.
- $\Omega_a \uparrow$ as $f_a/N \uparrow$ except where r > 1and $T_D < T_{osc}^a$, i.e. dilution turns on.

Heavy Axino Cosmology

Total $a\tilde{Z}_1$ DM Abundance

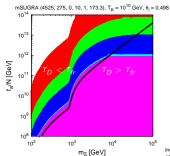
 $\Omega_{\tilde{z}_1}$ depends little on T_R and much more on $T_D \sim m_{\rm a}^{3/2}/(f_{\rm a}/N)$ which is fixed here.

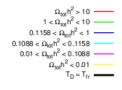
- $\Omega_{\tilde{z}_{A}}$ mainly fixed in T_{R} .
- Ω_a not connected to reheat process, but dilution occurs for r > 1.

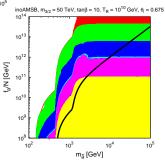
Best to look in $f_a/N - m_{\tilde{a}}$ plane.

Introduction

Dark Matter in AMSB


Heavy Axino Cosmology


Summary


Backu

Heavy Axino Cosmology

Total $a\tilde{Z}_1$ DM Abundance

Heavy Axino Cosmology

Forward Direction

Include the saxion (s):

- spin-0, R-parity even, real scalar
- \triangleright as with \tilde{a} , s produced in thermal scatterings or in equilibrium, or additionally through coherent oscillations.
- $ightharpoonup s
 ightharpoonup gg, \tilde{g}\tilde{g}, \tilde{Z}_i\tilde{Z}_i, \gamma\gamma$
- s may co-dominate with ã.
- more complicated analysis: need precise Boltzmann solutions and will likely need to include gravitino decays as well (high T_R).

......

Dark Matter in AMSE Models

Heavy Axino Cosmolog
Summary

Backun

Summary

We have seen that models that predict *under-abundances* of DM should be aided by extra *non-thermal* sources. As a result, such models can account for WMAP in addition to having good prospects for detection.

I've given a flavor for the types of calculations encountered. When considering the full spectrum of NTP sources the Boltzmann equations become ever-increasingly complex.

Thank you

Introduction

Dark Matter in AMSB Models

Heavy Axino Cosmology

ummary

Backup

Backup Slides

Backup

CP Problem and the Axion

Owing to non-trivial gauge configurations of the QCD vacuum and electroweak effects involving quark masses, an unwanted CP-violating non-perturbative term appears in the QCD Lagrangian:

$$\mathcal{L}_{QCD}
i ar{\Theta} rac{g^2}{32\pi^2} G^{a\mu
u} ilde{G}_{a\mu
u}$$
 ,

where $\bar{\Theta} = \Theta + Arg \ det \mathcal{M}$.

Vacuum structure supported by solution to $U(1)_A$ problem.

However the electric dipole moment of the neutron constrains $\bar{\Theta}\stackrel{<}{\sim} 10^{-10}.$ but there is no reason for $\bar{\Theta}$ to be so small since Θ and \mathcal{M} come from completely different sources.

axion intro, slide 17

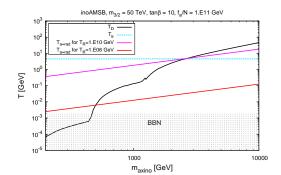
axion yield, slide 36

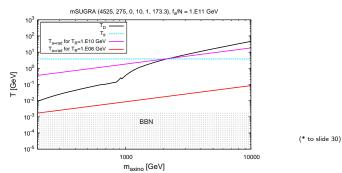
Backup

Peccei and Quinn (1977) introduced anomolous $U(1)_{PQ}$. The symmetry is broken at the scale f_a and a Nambu-Goldstone boson, the axion (a), is produces another term in the QCD Lagrangian

$$\mathcal{L}_{QCD}\ni\bar{\Theta}\tfrac{g^2}{32\pi^2}G^{a\mu\nu}\,\tilde{G}_{a\mu\nu}+\tfrac{C_aa}{f_a}\tfrac{g^2}{32\pi^2}G^{a\mu\nu}\,\tilde{G}_{a\mu\nu}.$$

The two terms amount to a potential for the axion which is minimized for


$$\langle a
angle = -rac{ar{\Theta}f_a}{C_a}$$
 ,


and the $G\tilde{G}$ term vanishes at the minimum.

axion intro. slide 17

axion yield, slide 36

