Enhanced Diphoton Signal in the NMSSM

U. Ellwanger, LPT Orsay

Recall: In the MSSM, considerable effort (large radiative corrections \leftrightarrow fine-tuning) is required in order to obtain a Higgs mass of $\sim 125~{\rm GeV}$

NMSSM:

$$W_{MSSM} = \mu H_u H_d + \dots \longrightarrow W_{NMSSM} = \lambda S H_u H_d + \frac{1}{3} \kappa S^3 + \dots$$
(scale invariant!)

 $\rightarrow \mu_{\text{eff}} = \lambda \langle S \rangle \sim M_{Susy}$ automatically \checkmark

→ 3 CP-even neutral scalars H_1 , H_2 , H_3 , mixtures of the real neutral components of H_u , H_d and SRecall, in the MSSM: $(H_u, H_d) \rightarrow (h_{SM}, H)$, H typically heavy NMSSM Mass matrix in the h_{SM} , S sector:

$$\begin{pmatrix} h_{SM} & S \\ M_{SM} \\ S \end{pmatrix} \begin{pmatrix} M_{11}^2 & M_{12}^2 \\ M_{21}^2 & M_{22}^2 \end{pmatrix}$$

where (with $s = \langle S \rangle$)

$$M_{11}^2 = M_Z^2 \left(\cos^2 2\beta + \frac{2\lambda^2}{g_1^2 + g_2^2} \sin^2 2\beta \right) + \text{rad. corrs.}$$

$$M_{12}^2 = \lambda v \left(2\mu_{\text{eff}} - \sin 2\beta \left(A_\lambda + 2\kappa s \right) \right) + \text{rad. corrs.}$$

$$M_{22}^2 \simeq \kappa s \left(A_\kappa + 4\kappa s \right) + \text{rad. corrs.}$$

- \rightarrow The NMSSM-specific contribution $\sim \lambda^2$ helps to increase the SM-like Higgs mass $M_{11}^2 \checkmark$ (if tan β is small), BUT
- \rightarrow the mixing with S induced by M^2_{12} reduces the SM-like Higgs mass if $M^2_{22}>M^2_{11}$ (unless M^2_{12} is tuned to 0)
- \rightarrow Preferably: $M^2_{22} < M^2_{11},$ mixing increases the SM-like Higgs mass further \checkmark
- \rightarrow the dominantly singlet-like CP-even Higgs boson is lighter than $h_{SM}!$

Of course, for $M_{22}^2 \lesssim 114$ GeV the mixing must not be too large such that the dominantly singlet-like Higgs boson H_1 complies with LEP constraints.

 \rightarrow It is easy to find regions in the parameter space of the general NMSSM where all these conditions are met!

(e.g. $0.5 \leq \lambda \leq 0.6$, $0.3 \leq \kappa \leq 0.4$, $1.7 \leq \tan \beta \leq 2$, and μ_{eff} , A_{λ} , $|A_{\kappa}|$, $M_A \approx 100 - 300$ GeV, not fine-tuned!)

Now: The lightest eigenstate H_1 is dominantly singlet-like, the next-tolightest eigenstate H_2 with $M_{H_2} \sim 125$ GeV is mostly SM-like; in general:

$$H_1 = S_{1,d} H_d + S_{1,u} H_u + S_{1,s} S,$$

$$H_2 = S_{2,d} H_d + S_{2,u} H_u + S_{2,s} S.$$

Note: The mixing reduces the couplings of H_2 to quarks and electroweak gauge bosons; in the above region one finds

(i) a reduction of the coupling to *b*-quarks (and τ -leptons),

(ii) a mild reduction of the coupling to *t*-quarks and electroweak gauge bosons, relevant for the loop-induced gluon-gluon fusion production cross section and the partial width into $\gamma\gamma$, respectively

Effect of the reduction of the coupling to *b*-quarks:

- \rightarrow The total width $\Gamma(H_2)_{Tot}$ is reduced by a factor ≤ 0.5 , since it is dominated by the width into $b\overline{b}$;
- \longrightarrow The branching ratio into $\gamma\gamma$,

$$BR(H_2 \to \gamma \gamma) = \frac{\Gamma(H_2 \to \gamma \gamma)}{\Gamma(H_2)_{Tot}},$$

is enhanced!

(But $BR(H_2 \rightarrow b\overline{b})$ remains dominant)

Signal strength $\sigma_2^{\gamma\gamma} = \sigma_{prod} \times BR(H_2 \to \gamma \gamma)$ relative to the SM, $R_2^{\gamma\gamma} = \sigma_2^{\gamma\gamma} / \sigma_{SM}^{\gamma\gamma}$, as function of the H_d -component $S_{2,d}$ of H_2 :

What has been observed by ATLAS and CMS in the $\gamma\gamma$ channel?

 $ightarrow \sim 1.3\sigma$ excess w.r.t. the SM at ATLAS, $\sim 1\sigma$ excess at CMS

Would the lighter eigenstate H_1 be detectable? 70 GeV $\leq M_{H_1} \leq$ 120 GeV $\rightarrow \gamma\gamma$ and $\tau\tau$ channels, the latter via VBF

The relative signal rate $R_1 = R_1^{\gamma\gamma} = \sigma_1^{\gamma\gamma} / \sigma_{SM}^{\gamma\gamma}$ (red triangles) and $R_1 = R_1^{\tau\tau} = \sigma_1^{\tau\tau} / \sigma_{SM}^{\tau\tau}$ (black crosses) as function of M_{H_1} :

 \rightarrow No enhancement, $R_1^{\tau\tau} \gtrsim 0.6$ only for $M_{H_1} \gtrsim 113$ GeV

Side note: For M_{H_1} in the 97 – 108 GeV range, LEP constraints (upper bounds) on $\xi^2 = (\text{Higgs-}Z\text{-coupling})^2 \times BR(Higgs \rightarrow b\bar{b})$ relative to the SM are particularly weak:

In the present scenario ξ^2 coincides with $R_1^{\tau\tau}$, since the scalings w.r.t. the SM of $BR(H_1 \rightarrow b\bar{b})$ and $BR(H_1 \rightarrow \tau\tau)$ are identical, and the VBF production cross section scales like the $(H_1$ -Z-coupling)²

→ LEP-bump can be explained (but not be checked at the LHC...), see earlier papers by Dermisek/Gunion

Conclusions

 \rightarrow In a natural region in the parameter space of the NMSSM, the NMSSM-specific coupling λ and mixing effects push up the mass of a SM-like CP-even Higgs boson into the 124 – 127 GeV range, without requiring excessive radiative corrections from heavy sparticles

 \rightarrow The relative signal rate in the $\gamma \gamma$ channel is always enhanced by a factor 1.1 – 1.8 with respect to a SM-like Higgs boson of the same mass

Under the following circumstances it might be possible to distinguish this scenario from the SM and/or the MSSM:

a) the enhanced signal rate in the $\gamma \gamma$ channel is confirmed, and incompatible with a SM-like Higgs boson;

b) sparticles are detected, and their masses turn out to be incompatible with the necessarily large radiative corrections to the Higgs mass in the MSSM;

c) an additional lighter Higgs H_1 is discovered (if heavier than ~ 113 GeV)