Electronic properties of organic semiconductors: bands or no bands?

Simone Fratini

Institut Néel - CNRS, Grenoble

Collaborations

Theory
S. Ciuchi
D. Mayou, X. Blase,
C. Faber

DEPARTMENT OF PHYSICS AND ASTRONOMY
FACULTY OF SCIENCE
AARHUS UNIVERSITY
$\underset{\text { UNIVERSITY OF WISCONSIN-MADISON }}{\text { MVIS }}$

Energy \& thermoelectricity? organic solar cells

[Bredas et al,ACR 2009]

5 steps in the generation of current

- absorption of light -> exciton formation (e-h pair)
- exciton diffusion to the donor-acceptor interface
- exciton dissociation at the interface into separate electron and hole carriers
- electron and hole diffusion towards the electrodes
- charge collection at electrodes

Energy \& thermoelectricity? organic solar cells

5 steps in the generation of current

- absorption of light -> exciton formation (e-h pair)
- exciton diffusion to the donor-acceptor interface
- exciton dissociation at the interface into separate electron and hole carriers
- electron and hole diffusion towards the electrodes
- charge collection at electrodes

Outline

- Introduction: something's wrong with the "common wisdom"

ARPES:
the role of intramolecular vibrations and disorder

Transport properties:
the role of intermolecular vibrations and the concept of transient localization

Kubo formula revisited: carrier diffusivity from optical experiments

- Concluding remarks

Outline

- Introduction: something's wrong with the "common wisdom"
- ARPES:
the role of intramolecular vibrations and disorder
- Transport properties:
the role of intermolecular vibrations and the concept of transient localization
- Kubo formula revisited: carrier diffusivity from optical experiments
- Concluding remarks

Organics

Polyacetylene

Graphene

rubrene

Fullerene

DNA

Graphene

Small molecule organic solids
rubrene

Fullerene

Organic semiconductors: somewhere "in-between"

Si, graphene

Highly ordered thin films
Amorphous
films

Molecular crystals
hopping dynamics
(incoherent)

Bloch-Boltzmann transport (wave-like)

Organic semiconductors:

Do electrons behave as predicted by band theory?

- narrow electronic bands
- large electron-phonon coupling (molecular vibrations)
- intrinsically large disorder (plastic is soft)

Everything seems to favor electron localization

Organic solids:

is energy-band theory enough? 6

Chemist's view... real space
Electrons hop from molecule to molecule

The molecular property

As we mentioned earlier, a pre-eminent feature of the organic solid state is the persistence of molecular identity.

Physicist's view... momentum space Electrons form weakly scattered Bloch states
for solid-state physicists. But perhaps their most interesting aspect, however, is the persistent challenge that organic crystals afford to conventional theories of transport in solids. After over two decades of intensive investigation, the temperature and field dependence of the mobilities of charge carriers in van der Waals crystals remain unexplained by extant models of either band or hopping transport. Thus, organic materials con-
served behavior. Hence, Bloch-tyme states do appear to occur in some molecuar crystals in certain temperature ranges. Above 100 K in naphthalene, however, another mechanism appears to limit the mobility. The usual alternative to transport via Bloch-type states is the hopping of localized carriers. It would
[Duke \& Schein, Physics Today 1980]

Carrier mobility: TOF vs FET

- carrier mobility in Time of Flight experiments shows ubiquitous "band-like" power-law dependence on temperature
- moderate values of mobility, ~ $10 \mathrm{~cm}^{\wedge} 2 / \mathrm{Vs}$
- In FETs, clear "band-like" behavior is only seen in 4 compounds (rubrene is one of them)

Carrier mobility: TOF vs FET

PDIF-CN2 FET
[Minder Adv Mat (20I2)]

- carrier mobility in Time of Flight experiments shows ubiquitous "band-like" power-law dependence on temperature
- moderate values of mobility, ~ 10 cm ^2/Vs
- In FETs, clear "band-like" behavior is only seen in 4 compounds (rubrene is one of them)

Problem: breakdown of semiclassical assumption

Boltzmann approach: particles moving freely between (rare) scattering events

- (Quantum) quasiparticle picture must be valid, q.p. well defined on a lattice the semiclassical assumption breaks when mean free path \approx lattice spacing

Problem: breakdown of semiclassical assumption

- Boltzmann approach: particles moving freely between (rare) scattering events
- (Quantum) quasiparticle picture must be valid, q.p. well defined on a lattice the semiclassical assumption breaks when mean free path \approx lattice spacing

Problem: breakdown of semiclassical assumption

- Boltzmann approach: particles moving freely between (rare) scattering events
- (Quantum) quasiparticle picture must be valid, q.p. well defined on a lattice the semiclassical assumption breaks when mean free path \approx lattice spacing
- in OSC breakdown of semiclassical assumption occurs around room temperature

Extractred from fitting the hole mobility in naphthalene via tight binding band-structure calculations
[Cheng et al. J. Chem. Phys. 118, 3764 (2003)]

Problem: breakdown of semiclassical assumption

- Boltzmann approach: particles moving freely between (rare) scattering events
- (Quantum) quasiparticle picture must be valid, q.p. well defined on a lattice the semiclassical assumption breaks when mean free path \approx lattice spacing
- in OSC breakdown of semiclassical assumption occurs around room temperature

Optical properties

Light Quasiparticles Dominate Electronic Transport

 in Molecular Crystal Field-Effect TransistorsZ. Q. Li, ${ }^{1, *}$ V. Podzorov, ${ }^{2}$ N. Sai, ${ }^{1,3}$ M. C. Martin, ${ }^{4}$ M. E. Gershenson, ${ }^{2}$ M. Di Ventra, ${ }^{1}$ and D. N. Basov ${ }^{1}$

PRL 99, 016403 (2007) PHYSICAL REV

- Rubrene optical conductivity
- light quasiparticles ($m^{*} \approx 1-2$) from sum rules
- BUT: unexplained peak at $500 \mathrm{~cm}^{-1}=61 \mathrm{meV}$
-> indicative of localization

FIG. 3 (color online). The optical conductivity of the twodimensional system of field-induced charges at the rubreneparylene interface $\Delta \sigma_{\text {rub }}(\omega)$ at different gate voltages V_{GS} at 300 K . (a) $E \| a$-axis data. (b) $E \| b$-axis data. Black squares on the left axes: dc conductivity at -280 V . Insets: the evolution of the spectral weight $n_{2 \mathrm{D}} / m^{\star}$ with V_{GS}.

Optical properties

Light Quasiparticles Dominate Electronic Transport

 in Molecular Crystal Field-Effect TransistorsZ. Q. Li, ${ }^{1, *}$ V. Podzorov, ${ }^{2}$ N. Sai, ${ }^{1,3}$ M. C. Martin, ${ }^{4}$ M. E. Gershenson, ${ }^{2}$ M. Di Ventra, ${ }^{1}$ and D. N. Basov ${ }^{1}$

PRL 99, 016403 (2007)
PHYSICAL RET

- Rubrene optical conductivity
- light quasiparticles ($m * \approx 1-2$) from sum rules
- BUT: unexplained peak at $500 \mathrm{~cm}^{-1}=61 \mathrm{meV}$
-> indicative of localization

Drude model (free carriers)

FIG. 3 (color online). The optical conductivity of the twodimensional system of field-induced charges at the rubreneparylene interface $\Delta \sigma_{\mathrm{rub}}(\omega)$ at different gate voltages V_{GS} at 300 K . (a) $E \| a$-axis data. (b) $E \| b$-axis data. Black squares on the left axes: dc conductivity at -280 V . Insets: the evolution of the spectral weight $n_{2 \mathrm{D}} / m^{\star}$ with V_{GS}.

Outline

- Introduction: something's wrong with the "common wisdom"

ARPES:

the role of intramolecular vibrations and disorder

- Transport properties:
the role of intermolecular vibrations and the concept of transient localization
- Kubo formula revisited: carrier diffusivity from optical experiments
- Concluding remarks

The molecular crystal: band structure

pentacene

The molecular crystal: band structure

pentacene

The molecular crystal: band structure

- Van der Waals bonding
\rightarrow Narrow bands, W~350 meV, "persistence of molecular identity"
- Two inequivalent Pn sites result in two HOMO bands $\mathrm{H} 1, \mathrm{H} 2$

ARPES Pentacene: Expt. vs ab initio

[S. Ciuchi, R. C. Hatch, H. Höchst, C. Faber, X. Blase, S. Fratini, PRL (2012) to appear]

ARPES Pentacene: Expt. vs ab initio

[S. Ciuchi, R. C. Hatch, H. Höchst, C. Faber, X. Blase, S. Fratini, PRL (2012) to appear]

- ab initio calculations never fully agree with experiment (even GW)
- Unpredicted large H1/H2 separation systematically observed in all recent ARPES measurements in clean organic semiconductors (Pn and rubrene)
- Experimental bandwidth is $\mathrm{W}=\mathbf{4 5 0} \pm 15 \mathrm{meV} \gg$ calculated $\mathrm{W}=350 \pm 5 \mathrm{meV}$ (DFT,GW)
peaks are extremely broad --> interactions!

Interactions with molecular vibrations

Peierls

by courtesy of A. Girlando

INDO Calculations by [A. Girlando, et al., J. Chem. Phys. 135, 084701 (2011)]

Interactions with molecular vibrations

by courtesy of A. Girlando

INDO Calculations by [A. Girlando, et al., J. Chem. Phys. 135, 084701 (2011)]

- separation of energy scales between low energy intermolecular modes and high energy intramolecular modes
- Intramolecular (Holstein) FAST: $\omega 0 \approx 120-200 \mathrm{meV} \approx$ bandwidth W
- Intermolecular (Periels) SLOW: $\omega 0 \approx 3-20 \mathrm{meV} \ll$ bandwidth W

Interactions with molecular vibrations

Holstein

by courtesy of A. Girlando

INDO Calculations by [A. Girlando, et al., J. Chem. Phys. 135, 084701 (2011)]

- separation of energy scales between low energy intermolecular modes and high energy intramolecular modes
- Intramolecular (Holstein) FAST: $\omega 0 \approx 120-200 \mathrm{meV} \approx$ bandwidth W
- Intermぬecular (Periels) SLOW: $\omega 0 \approx 3-20 \mathrm{meV} \ll$ bandwidth W
-> below experimental resolution, neglect

DFT+GW+DMFT

[S. Ciuchi, R. C. Hatch, H. Höchst, C. Faber, X. Blase, S. Fratini PRL to appear (2012)]

Holstein model + disorder (Anderson)

$a b$ initio band structure

$$
H=\sum_{<i j>}\left(t_{i j} c_{i}^{+} c_{j}+h . c .\right)
$$

DFT+GW+DMFT

[S. Ciuchi, R. C. Hatch, H. Höchst, C. Faber, X. Blase, S. Fratini PRL to appear (2012)]

Holstein model + disorder (Anderson)

$a b$ initio band structure

$$
\begin{aligned}
H & =\sum_{<i j>}\left(t_{i j} c_{i}^{+} c_{j}+h . c .\right)+ \\
& +\sum_{i}(\ldots) \sqrt{\lambda} c_{i}^{+} c_{i}\left(a_{i}^{+}+a_{i}\right)
\end{aligned}
$$

local electron-vibration coupling
dispersionless molecular vibrations

gaussian disorder in molecular energy
[S. Ciuchi, R. C. Hatch, H. Höchst, C. Faber, X. Blase, S. Fratini PRL to appear (2012)]

Holstein model + disorder (Anderson)

$a b$ initio band structure

$$
\begin{aligned}
H & =\sum_{<i j>}\left(t_{i j} c_{i}^{+} c_{j}+\text { h.c. }\right)+ \\
& +\sum_{i}(\ldots) \sqrt{\lambda} c_{i}^{+} c_{i}\left(a_{i}^{+}+a_{i}\right)
\end{aligned}
$$

local electron-vibration coupling
dispersionless molecular vibrations

gaussian disorder in molecular energy

- relevant parameters:
- noninteracting bandwidth W from DFT/GW
- Intramolecular Holstein EMV coupling $\lambda=2 \mathrm{E}_{\mathrm{P}} / \mathrm{W}=0.4$ from GW
- Einstein model phonon frequency $\Omega / \mathrm{W}=0.5$
- Anderson local gaussian disorder variance $\Delta / W=0 \div 0.5$
- Non perturbative approach in both disorder and EMV interaction
[S. Ciuchi, R. C. Hatch, H. Höchst, C. Faber, X. Blase, S. Fratini PRL to appear (2012)]

- relevant parameters:
- noninteracting bandwidth W from DFT/GW
- Intramolecular Holstein EMV coupling $\lambda=2 \mathrm{E}_{\mathrm{P}} / \mathrm{W}=0.4$ from GW
- Einstein model phonon frequency $\Omega / \mathrm{W}=0.5$
- Anderson local gaussian disorder variance $\Delta / W=0 \div 0.5$
- Non perturbative approach in both disorder and EMV interaction

Density of states: between molecules and bands

Density of states: between molecules and bands

Density of states: between molecules and bands

Density of states:

 between molecules and bands

Density of states:

 between molecules and bands

근
튼

+ structural and thermal disorder (because of VdW bonding, these materials are soft and easily deformable)

Density of states:

 between molecules and bands

+ structural and thermal disorder (because of VdW bonding, these materials are soft and easily deformable)

Evolution of bands with EMV coupling

$\lambda=0.4$

Evolution of bands with EMV coupling

$\lambda=0.4$

on increasing the coupling strength
--> tends to spectrum oi the inaiviauaı molecule!
redistribution of spectral weight: EMV interaction shifts the top of band upwards (molecular relaxation energy Ep) and increases the range of electronic excitations

Evolution of bands with EMV coupling

$\lambda=0.4$

band is split into multiphonon resonances upon increasing the coupling strength $-->$ tends to spectrum of the individual molecule!
redistribution of spectral weight: EMV interaction shifts the top of band upwards (molecular relaxation energy Ep) and increases the range of electronic excitations

Evolution of bands with EMV coupling

$\lambda=0.4$

band is split into multiphonon resonances upon increasing the coupling strength $-->$ tends to spectrum of the individual molecule!
redistribution of spectral weight: EMV interaction shifts the top of band upwards (molecular relaxation energy Ep) and increases the range of electronic excitations
disorder: wipes out multiphonon peaks, and further increases the bandwidth

- only two dominant bands are visible, as in the experiment

Evolution of bands with EMV coupling

$\lambda=0.4$

band is split into multiphonon resonances upon increasing the coupling strength $-->$ tends to spectrum of the individual molecule!
redistribution of spectral weight: EMV interaction shifts the top of band upwards (molecular relaxation energy Ep) and increases the range of electronic excitations
disorder: wipes out multiphonon peaks, and further increases the bandwidth

- only two dominant bands are visible, as in the experiment
- from the GW calculated value $\lambda=0.4$, estimate disorder $\Delta=75 \pm 15 \mathrm{meV}$

ARPES: experiment vs theory (EMV interaction and disorder)

- interplay of EMV interaction and disorder explains the observed band dispersion (H1 band is shifted upwards by the molecular relaxation energy Ep)
- multiphonon fine structure could be seen in future experiments

ARPES Pentacene: hallmarks of EMV ${ }^{V E z E}$

ARPES Pentacene: hallmarks of EMV

- Large spectral weight inside the $\mathrm{H} 1 / \mathrm{H} 2$ gap:

H 1 overtone is there, but broadened by disorder

- "deconvolution": overtone position agrees with calculation without disorder
- large broadening of lines is due to multi-phonon shakeoff processes + disorder

ARPES Pentacene: hallmarks of EMV

- Large spectral weight inside the $\mathrm{H} 1 / \mathrm{H} 2$ gap:

H 1 overtone is there, but broadened by disorder

"deconvolution": overtone position agrees with calculation without disorder

- large broadening of lines is due to multi-phonon shakeoff processes + disorder

Outline

- Introduction: something's wrong with the "common wisdom"
- ARPES:
the role of intramolecular vibrations and disorder

Transport properties:
the role of intermolecular vibrations and the concept of transient localization

- Kubo formula revisited: carrier diffusivity from optical experiments
- Concluding remarks

Interactions with molecular vibrations

by courtesy of A. Girlando

INDO Calculations by [A. Girlando, et al., J. Chem. Phys. 135, 084701 (2011)]

- separation of energy scales between low energy intermolecular modes and high energy intramolecular modes
- Intramolecular (Holstein) FAST: $\omega 0 \approx 120-200 \mathrm{meV} \approx$ bandwidth W
- Intermolecular (Periels) SLOW: $\omega 0 \approx 3-20 \mathrm{meV} \ll$ bandwidth W

Interactions with molecular vibrations

INDO Calculations by [A. Girlando, et al., J. Chem. Phys. 135, 084701 (2011)]

- separation of energy scales between low energy intermolecular modes and high energy intramolecular modes
- Intramめecular (Holstein) FAST: $\omega 0 \approx 120-200 \mathrm{meV} \approx$ bandwidth W
these modes are too fast to really affect electron transport, and no T dependence
- Intermolecular (Periels) SLOW: $\omega 0 \approx 3-20 \mathrm{meV} \ll$ bandwidth W

The model

modulation of the transfer integral t due to relative intermolecular vibrations

DPT

[DaSilva AdvMat05,Cornil AdvMat06]

The model

- modulation of the transfer integral t due to relative intermolecular vibrations

DFT

[DaSilva AdvMat05,Cornil AdvMat06]
molecular dynamics

[Troisi AdvMat07]

The model

- modulation of the transfer integral t due to relative intermolecular vibrations
ot fluctuates by $\sim 100 \%$, beyond the usual electron-phonon coupling scenario
better seen as a large dynamical disorder (off-diagonal)

DFT

[DaSilva AdvMat05,Cornil AdvMat06]
molecular dynamics

[Troisi AdvMat07]

The model

- modulation of the transfer integral t due to relative intermolecular vibrations
ot fluctuates by $\sim 100 \%$, beyond the usual electron-phonon coupling scenario
- better seen as a large dynamical disorder (off-diagonal)

DFT

[DaSilva AdvMat05,Cornil AdvMat06]
molecular dynamics
the material is soft (cf.A. Chin tall b_{6}

[Troisi AdvMat07]

The model

UNVERSTTE
JOSEP FORTMR

- modulation of the transfer integral t due to relative intermolecular vibrations
t fluctuates by $\sim 100 \%$, beyond the usual electron-phonon coupling scenario
- better seen as a large dynamical disorder (off-diagonal)
- linear coupling --> Su Schrieffer Heeger

$$
H=-J \sum_{i}\left[1-\alpha\left(X_{i}-X_{i+1}\right)\right]\left(c_{i}^{+} c_{i+1}+c_{i+1}^{+} c_{i}\right)+H_{p h}(X)
$$

The model

- modulation of the transfer integral t due to relative intermolecular vibrations
ot fluctuates by $\sim 100 \%$, beyond the usual electron-phonon coupling scenario
- better seen as a large dynamical disorder (off-diagonal)
- linear coupling --> Su Schrieffer Heeger
a single Einstein mode

$$
H=-J \sum_{i}\left[1-\alpha\left(X_{i}-X_{i+1}\right)\right]\left(c_{i}^{+} c_{i+1}+c_{i+1}^{+} c_{i}\right)+H_{p h}(X)
$$

Semiclassical approach, resistivity saturation (bad conductors):
S. F. and S. Ciuchi. Phys. Rev. Lett. 103, 266601 (2009)

Beyond, account for localization phenomena:
S. Ciuchi. S. F. and D. Mayou Phys. Rev. B 83, R081202 (2011)

Quantum-Classical dynamics

[A. Troisi, G. Orlandi Phys. Rev. Lett 96, 086601 (2006)]

$$
H=H_{e l}(X)+\sum_{i} \frac{P_{i}^{2}}{2 M}+\frac{M \omega_{0}^{2}}{2} X_{i}^{2} \quad \begin{aligned}
& \text { [L. Wang et al, J. Chem. Phys. 134, 244116 (2011)] } \\
& \text { [S. Ciuchi. S. F. and D. Mayou Phys. Rev. B 83, R081202 (2011)] }
\end{aligned}
$$

$i \partial_{t}\left|\psi>=H_{e l}(X)\right| \psi>\quad$ Quantum degrees of freedom: carriers

$$
M \ddot{X}_{i}=-\langle\psi| \frac{\partial H}{\partial X_{i}}|\psi\rangle \quad \text { Classical degrees of freedom: molecular displacements }
$$

- Classical approximation for vibrations: ($\mathrm{K}_{\mathrm{B}} \mathrm{T} / \hbar \omega_{0} \geq 1$)
- Ehrenfest dynamics: classical forces evaluated as quantum averages 4th order RK integration (nord=4), Velocity Verlet, one dimensional chain ($\mathrm{N}=2048$), averaging over 10^{4} initial conditions taken from a static equilibrium ensemble
- calculate time dependent electron spread $\left.\Delta x^{2}(t)=\langle | x(t)-\left.x(0)\right|^{2}\right\rangle$
carrier mobility obtained from the long time behavior of the diffusivity

$$
D=\lim _{t \rightarrow \infty} \frac{1}{2} \frac{\Delta x^{2}(t)}{d t} \quad \mu=\frac{e D}{k_{B} T}
$$

Transient localization

electron wavefunction

Frozen molecular displacements
Dynamical molecular displacements

Transient localization

electron wavefunction

Transient localization

electron wavefunction

Transient localization

Frozen molecular displacements:
--> Anderson localization
finite localization length, diffusivity vanishes at long times

$$
\left.\Delta x^{2}(t)=\langle | x(t)-\left.x(0)\right|^{2}\right\rangle
$$

Transient localization

- Frozen molecular displacements:
--> Anderson localization finite localization length, diffusivity vanishes at long times

Dynamical molecular displacements:

--> transient localization: initially the diffusivity decreases and the particle localizes as if the disorder were static - At later times, lattice dynamics destroy the quantum interferences at the origin of localization --> diffusion sets back in

- mobility depends on transient localization length and timescale $1 / \omega_{0}$ of lattice dynamics: the longer it localizes, the lower the mobility
- The transport mechanism is far from semiclassical

$$
\left.\Delta x^{2}(t)=\langle | x(t)-\left.x(0)\right|^{2}\right\rangle
$$

Transient localization

- Frozen molecular displacements:
--> Anderson localization finite localization length, diffusivity vanishes at long times

Dynamical molecular displacements:

--> transient localization: initially the diffusivity decreases and the particle localizes as if the disorder were static - At later times, lattice dynamics destroy the quantum interferences at the origin of localization --> diffusion sets back in

- mobility depends on transient localization length and timescale $1 / \omega_{0}$ of lattice dynamics: the longer it localizes, the lower the mobility
- The transport mechanism is far from semiclassical

$$
\left.\Delta x^{2}(t)=\langle | x(t)-\left.x(0)\right|^{2}\right\rangle
$$

Transient localization

Frozen molecular displacements:
--> Anderson localization finite localization length, diffusivity vanishes at long times

Dynamical molecular displacements:

--> transient localization: initially the diffusivity decreases and the particle localizes as if the disorder were static - At later times, lattice dynamics destroy the quantum interferences at the origin of localization --> diffusion sets back in

- mobility depends on transient localization length and timescale $1 / \omega_{0}$ of lattice dynamics: the longer it localizes, the lower the mobility
The transport mechanism is far from semiclassical

$$
\left.\Delta x^{2}(t)=\langle | x(t)-\left.x(0)\right|^{2}\right\rangle
$$

phenomenological description: Relaxation time approximation (RTA)

take the frozen (localized) system as a reference system: the correlations in the velocity-velocity correlation function that give rise to localization are destroyed after a time $\tau_{\text {in }} \sim 1 / \omega_{0}$

$$
C_{+}^{R T A}(t)=C_{0}(t) e^{-t / \tau_{i n}} \quad C_{0}(t) \text { taken from frozen molecular evolution }
$$

phenomenological description: Relaxation time approximation (RTA)

- take the frozen (localized) system as a reference system: the correlations in the velocity-velocity correlation function that give rise to localization are destroyed after a time $\tau_{\text {in }} \sim 1 / \omega_{0}$

$$
C_{+}^{R T A}(t)=C_{0}(t) e^{-t / \tau_{i n}}
$$

$C_{0}(t)$ taken from frozen molecular evolution

phenomenological description: Relaxation time approximation (RTA)

- take the frozen (localized) system as a reference system: the correlations in the velocity-velocity correlation function that give rise to localization are destroyed after a time $\tau_{\text {in }} \sim 1 / \omega_{0}$

$$
C_{+}^{R T A}(t)=C_{0}(t) e^{-t / \tau_{i n}} \quad C_{0}(t) \text { taken from frozen molecular evolution }
$$

- qualitative agreement with Ehrenfest dynamics, numerically much faster (and heals superdiffusive behavior at long t) restores a non-zero mobility

$$
\mu(T) \simeq \frac{e}{k_{B} T} \frac{L_{0}^{2}\left(\tau_{\mathrm{in}}\right)}{2 \tau_{\mathrm{in}}}
$$

phenomenological description: Relaxation time approximation (RTA)

- take the frozen (localized) system as a reference system: the correlations in the velocity-velocity correlation function that give rise to localization are destroyed after a time $\tau_{\text {in }} \sim 1 / \omega_{0}$

$$
C_{+}^{R T A}(t)=C_{0}(t) e^{-t / \tau_{i n}} \quad C_{0}(t) \text { taken from frozen molecular evolution }
$$

qualitative agreement with
Ehrenfest dynamics, numerically much faster (and heals superdiffusive behavior at long t)

- restores a non-zero mobility

$$
\mu(T) \simeq \frac{e}{k_{B} T} \frac{L_{0}^{2}\left(\tau_{\mathrm{in}}\right)}{2 \tau_{\mathrm{in}}}
$$

equivalent to diffusive jumps of length Lo with trial rate ${ }^{1 /} \tau_{\text {in }}$ (Thouless diffusivity)

Outline

- Introduction: something's wrong with the "common wisdom"
- ARPES:
the role of intramolecular vibrations and disorder
- Transport properties:
the role of intermolecular vibrations and the concept of transient localization

Kubo formula revisited: carrier diffusivity from optical experiments

- Concluding remarks

Quantum diffusion from the Kubo formula

optical conductivity
$\sigma(\omega)=\frac{1}{\nu \hbar \omega} R e \int_{0}^{\infty} d t e^{i \omega t} C_{-}(t)$

$$
C_{-}(t)=<\left[\hat{J}_{x}(t), \hat{J}_{x}(0)\right]>
$$

quantum diffusivity
$\Delta X^{2}(t)=\left\langle[\hat{X}(t)-\hat{X}(0)]^{2}\right\rangle, \quad \frac{d \Delta X^{2}(t)}{d t}=\frac{1}{e^{2}} \int_{0}^{t} C_{+}\left(t^{\prime}\right) d t^{\prime}$.

$$
C_{+}(t)=<\left\{\hat{J}_{x}(t), \hat{J}_{x}(0)\right\}>
$$

Quantum diffusion from the Kubo formula

- optical conductivity
$\sigma(\omega)=\frac{1}{\nu \hbar \omega} R e \int_{0}^{\infty} d t e^{i \omega t} C_{-}(t)$

$$
C_{-}(t)=<\left[\hat{J}_{x}(t), \hat{J}_{x}(0)\right]>
$$

- quantum diffusivity
$\Delta X^{2}(t)=\left\langle[\hat{X}(t)-\hat{X}(0)]^{2}\right\rangle, \quad \frac{d \Delta X^{2}(t)}{d t}=\frac{1}{e^{2}} \int_{0}^{t} C_{+}\left(t^{\prime}\right) d t^{\prime}$. $+$

$$
C_{+}(t)=<\left\{\hat{J}_{x}(t), \hat{J}_{x}(0)\right\}>
$$

detailed balance $C_{-}(\omega)=\tanh \left(\frac{\beta \hbar \omega}{2}\right) C_{+}(\omega)$.

$$
\sigma(\omega)=-\frac{e^{2}}{\hbar \nu} \omega \tanh \left(\frac{\beta \hbar \omega}{2}\right) R e \int_{0}^{\infty} d t e^{i(\omega+i \delta) t} \Delta X^{2}(t)
$$

[see also N. H. Lindner and A. Auerbach, PRB 2010]
oinversion: quantum diffusion from experiment

$$
\Delta x^{2}(t)=\frac{2 \hbar}{\pi e^{2}} \operatorname{Re} \int_{0}^{\infty}\left(1-e^{-i \omega t}\right) \frac{\sigma(\omega) / n}{\omega \tanh (\beta \hbar \omega / 2)} d \omega
$$

Real time dynamics from experiment

$$
\Delta x^{2}(t)=\frac{2 \hbar}{\pi e^{2}} \operatorname{Re} \int_{0}^{\infty}\left(1-e^{-i \omega t}\right) \frac{\sigma(\omega) / n}{\omega \tanh (\beta \hbar \omega / 2)} d \omega
$$

Rubrene: measured optical conductivity

Real time dynamics from experiment

$$
\Delta x^{2}(t)=\frac{2 \hbar}{\pi e^{2}} \operatorname{Re} \int_{0}^{\infty}\left(1-e^{-i \omega t}\right) \frac{\sigma(\omega) / n}{\omega \tanh (\beta \hbar \omega / 2)} d \omega
$$

diffusivity from
Fourier transform
diffusivity decreases at intermediate times: experimental proof of transient localization

Rubrene: measured optical conductivity
[Z. Q. Li, et al., PRL 99, 016403 (2007)]

Peak in optical conductivity <=> Transient localization phenomenon

Real time dynamics from experiment

$$
\Delta x^{2}(t)=\frac{2 \hbar}{\pi e^{2}} \operatorname{Re} \int_{0}^{\infty}\left(1-e^{-i \omega t}\right) \frac{\sigma(\omega) / n}{\omega \tanh (\beta \hbar \omega / 2)} d \omega
$$

diffusivity from
Fourier transform
diffusivity decreases at intermediate times: experimental proof of transient localization

Rubrene: measured optical conductivity
[Z. Q. Li, et al., PRL 99, 016403 (2007)]

Peak in optical conductivity <=> Transient localization phenomenon

Real time dynamics from experiment

$$
\Delta x^{2}(t)=\frac{2 \hbar}{\pi e^{2}} \operatorname{Re} \int_{0}^{\infty}\left(1-e^{-i \omega t}\right) \frac{\sigma(\omega) / n}{\omega \tanh (\beta \hbar \omega / 2)} d \omega
$$

diffusivity from
Fourier transform
diffusivity decreases at intermediate times: experimental proof of transient localization

Rubrene: measured optical conductivity
[Z. Q. Li, et al., PRL 99, 016403 (2007)]

Peak in optical conductivity <=> Transient localization phenomenon

Real time dynamics from experiment

By analyzing the quantum diffusion data with the RTA we can extract:

- the inelastic time -> $\quad \hbar / \tau_{i n}=104 \mathrm{~cm}^{-1} \quad$ (typical inter-molecular vibrations)
- the transient localization length $L_{0}\left(1 / \tau_{i n}\right)=2 a$ (localization is important)
diffusivity from
Fourier transform
diffusivity decreases at intermediate times: experimental proof of transient localization

Peak in optical conductivity <=> Transient localization phenomenon

Outline

- Introduction: something's wrong with the "common wisdom"
- ARPES:
the role of intramolecular vibrations and disorder
- Transport properties:
the role of intermolecular vibrations and the concept of transient localization
- Kubo formula revisited: carrier diffusivity from optical experiments
- Concluding remarks

Conclusions

* electronic band theory is not enough to describe the electronic properties of organic semiconductors (but bands are there, so molecular approaches also fail)
* ARPES: including the interaction with high frequency intramolecular vibrations and disorder provides an accurate description of the experimental photoemission spectra.
* Transport: interaction with low frequency intermolecular vibrations seems to be the crucial ingredient to understand charge transport: the dynamical disorder arising from lattice motion causes transient localization phenomena (and a breakdown of Boltzmann theory).
* The instantaneous diffusivity of the carriers can be extracted from optical absorption experiments via an appropriate Kubo formula.

References

```
[S. Ciuchi, R. C. Hatch, H. Höchst, C. Faber, X. Blase, S. Fratini PRL (2012) to appear ]
[S. Ciuchi and S. Fratini Phys. Rev. Lett. 106, 166403 (2011)]
[S.Ciuchi, S. Fratini D. Mayou. Phys. Rev. B.83, 081202(R) (2011)]
[S. Fratini and S.Ciuchi Phys. Rev. Lett. 103, 266601 (2009)]
```

