Carrier multiplication in quantum dots for more efficient solar cells

C. Delerue, G. Allan IEMN – Dept. ISEN – Lille - France

Outline

Introduction

Semiconductor nanocrystal quantum dots (QDs) Efficiency of solar cells, energy losses Carrier multiplication (CM)

Review of experimental results

PbSe & PbS QDs Controversy Latest results

Our theoretical works

Theory of impact ionization & CM Efficiency of CM in PbS nanocrystals Possible strategy to improve CM Case of α -Sn QDs

On-going works

Lille

Relaxation of carriers by emission of phonons

Semiconductor nanocrystals

CdSe Nanocrystal

Increasing diameter

Université Lille1

Quantum dot (QD) for electrons and holes

Size-dependent optical properties Attractive materials for new generation of PV

Quantum confinement in PbSe

Bulk bandgap: 0.28 eV at 300K

PV efficiency

Schockley-Queisser limit Max theoretical efficiency of a single c-Si solar cell ~30%.

Actual c-Si solar cell efficiency : ~ 20 %

New strategies to improve PV efficiency

 \Rightarrow Carrier multiplication : fundamental physical process that could potentially improve PV efficiency

Main sources of energy loss in c-Si PV cells ?

Excess energy \rightarrow heat

Multi-phonon relaxation

Carrier cooling by sequential phonon emission

Relaxation pathways: 1) Multi-phonon \rightarrow heat

Relaxation pathways:

Impact ionization \rightarrow carrier multiplication

CM: generation of 2 or more e-h pairs after absorption of single photon

Relaxation pathways: 1) Multi-phonon \rightarrow heat 2) CM \rightarrow multiple e⁻h⁺ per photon

Université Lille1

CM in bulk Si

Bulk Si: CM efficient only above the threshold at ~3.8 eV [~3.5 \times E_q (Si)]

Principality and a second seco

Number of photo-generated e-h pairs in bulk Si Wolf et al, J. Appl. Phys. 1998

Solar spectrum

5

CM in bulk PbSe & PbS

Bulk PbSe & PbS: CM efficient above ~2.3 eV (much lower threshold) but PbSe gap = 0.28 eV, PbS gap = 0.43 eV !

+ : Wolf et al, J. Appl. Phys. 1998

, S. J. J. H. Pijpers, R. Ulbricht, K.J. Tielrooij, A. Osherov, Y. Golan, C. Delerue, G. Allan & M. Bonn, Nature Physics 5, 811 (2009)

CM: best situation for PV?

CM: For PV, the goal (dream ?) is to find materials with:

- 1) The lowest threshold for CM
- 2) A sufficiently large gap E_g (determines the V_{oc} of the solar cell)

Constraint (energy conservation): threshold > 2 E_{g}

Université

Potential impact of CM on PV efficiency ?

Maximum power conversion efficiency for single gap devices with various absorber types

Hanna & Nozik, J. Appl. Phys. 100, 074510 (2006)

Impact ionization & CM in QDs

02 : A. Nozik: CM could be enhanced in QDs

Nozik, Physica E 14, 115-120 (2002)

- 1) strong e-e interactions favor impact ionization
- 2) confinement breaks k conservation rules
- 3) less efficient multi-phonon relaxation

04 : group of V. Klimov reported efficient CM in PbSe QDs Schaller & Klimov, Phys. Rev. Lett. 92, 186601 (2004).

Since then: many contradictory reports

CM in QDs: controversy

• InAs QDs: CM observed:

No CM:

• CdSe QDs: CM observed: No CM:

• PbS QDs: CM observed:

No CM:

• PbSe QDs: Efficient CM:

Intermediate:

Weak CM: No CM:

- Klimov, Nano Lett. 7, p3469, 2007 - Pijpers/Bonn, JPC, 111, p4146, 2007
- Pijpers/Bonn, JPC, 112, p4783, 2008
- Ben Lulu, Nano Lett. 8, p1207, 2008

- Klimov, APL 87, p253102, 2005 - Bawendi, PRB, 76, 081304, 2007

- Nozik, Nano Lett, 5, p865, 2006

- Nootz, Sargent... Phys. Rev. B 83, 155302 (2011)
- Bawendi, PRB, 78, 125325, 2008
- Klimov: PRL(2004), Nano Lett. (2006), Nature Phys. (2005), APL (2005)
- Nozik: Nano Lett. (2006), JACS (2006)
- Trinh et al, Nano Lett., 8, 1713 (2008)
- Klimov, Acounts Chem. Res. (2008)
- Trinh et al, Nano Lett 11, 1623 (2011)
- Bawendi, PRB, 78, 125325 (2008)
- Bawendi, ACS Nano (2012)
- Miaja-Avila et al, Nano Lett (2012)

Transient absorption experiments

Pump-probe experiments

Pump-pulse-induced absorption change : $\Delta \alpha$ Lifetime of bi-excitons << mono-excitons

Trinh et al, Nano Lett 08

Convergence of the latest results ?

 $h_V = 3.1 \text{ eV}$ PbSe QDs Variable size $\rightarrow \varepsilon_{\alpha}$

- J. J. H. Pijpers, R. Ulbricht, K.J. Tielrooij, A. Osherov, Y. Golan, C. Delerue, G. Allan & M. Bonn, Nature Physics (2009)
 : John A. McGuire, Jin Joo, Jeffrey M. Pietryga, Richard D. Schaller, and Victor I. Klimov, Acc. Chem. Res. (2008)
- M. Aerts, C.S.S. Sandeep, Y. Gao, T.J. Savenije, J.M. Schins, A.J. Houtepen, S. Kinge, and L.D.A. Siebbeles, Nano Lett (2011)
 R.D. Schaller, V.M. Agranovitch, V.I. Klimov, Nature Physics (2005)

CM in PbS QDs

Recent systematic studies CM in PbS QDs

G. Nootz et al Phys. Rev. B 83, 155302 (2011)

Interpretation of these results ? Impact on the power conversion efficiency ?

Université Lille1

Theoretical description of CM

Possible approaches:

- Models (many free parameters)
- *Ab initio* Time-Domain Studies (e.g. group of O. Prezhdo, Rochester). Time-consuming, small clusters (10 atoms).

Our approach: Two steps:

- 1) Step 1: Calculation of the impact ionization rates
- 2) Step 2 : Simulation of the relaxation of the carriers \Rightarrow CM

Step 1: calculation of impact ionization rates

Calculation of the impact ionization rate W versus energy E (lifetime $\tau = 1/W$)

E = 0: top of the bulk valence band

Methodology / calculations: Electronic structure in tight-binding Dielectric matrix in RPA Matrix elements of the Coulomb interaction W : Fermi golden rule

Lille1

Step 1: calculation of impact ionization rates

Transition rate?

Electronic states calculated in tight binding Calculation of the dielectric screening (RPA) Calculation of the screened Coulomb interaction Fermi golden rule \rightarrow transition rate

$$W = \frac{2\pi}{\hbar} \sum_{i,f} p(i) |\langle f|V|i \rangle|^2 \delta(E_f - E_i)$$

 $|i\rangle$, $|f\rangle$: Slater determinants built on tight binding wave-functions

$$V(r,r') = \int \varepsilon^{-1}(r,r'') \frac{e^2}{|r-r'|} d^3r''$$

Université

Step 2: simulation of the relaxation of the carriers

Calculation of CM efficiency

Competition between: 1) multi-phonon relaxation 2) impact ionization

Methodology: 1) Calculation of oscillator strengths and $\alpha(h\nu)$ 2) Multi-phonon relaxation: assume an energy-independent relaxation time τ_{ph} 3) Impact ionization: using calculated lifetimes 4) Numerical simulation of the relaxation

Impact ionization in bulk Si

Calculated impact ionization rates/lifetimes in bulk Si:

Lille1

Impact ionization lifetime in PbSe QDs

Very similar behavior in PbS, InAs, Si

Origin of the energy dependence

The variations of the impact ionization rate are mainly due to the variations of the density of final states

If $\Delta E = E_g$, only one final state

Origin of the energy dependence

The variations of the impact ionization rate are mainly due to the variations of the density of final states

```
If \Delta E >> E_q, many final states
```


Impact ionization lifetime in PbSe QDs

Very similar behavior in PbS, InAs, Si

Impact ionization: QD / bulk

Impact ionization is less efficient in QDs than in bulk (same efficiency at high excess energy)

Reasons :

- 1) The momentum conservation rule plays no role at high excess energy. In bulk, k conservation can be ignored. E.O. Kane, Phys. Rev., 159 (1967)
- 2) The density of final states is smaller in QDs than in bulk

Calculations: case of bulk PbSe & PbS

: experiments : theory ($\tau_{ph} = 0.5 \text{ ps}$)

J. J. H. Pijpers, R. Ulbricht, K.J. Tielrooij, A. Osherov, Y. Golan, C. Delerue, G. Allan & M. Bonn, Nature Physics (2009)

Calculations: case of PbS QDs

Experiments: G. Nootz et al, Phys. Rev. B 83, 155302 (2011) + : $E_g = 0.42 \text{ eV}$ (bulk) + : $E_g = 0.63 \text{ eV}$ + : $E_g = 0.72 \text{ eV}$ + : $E_g = 1.02 \text{ eV}$ + : $E_g = 1.33 \text{ eV}$

Lines : theory ($\tau_{ph} = 0.5 \text{ ps}$)

PbS: energy efficiency of CM

: Experiments: G. Nootz et al, Phys. Rev. B 83, 155302 (2011)

....:: theory ($\tau_{ph} = 1 \text{ ps}$)

Max PV efficiency of PbS QD cell

Maximum power conversion efficiency for single gap devices

Efficiency calculated from the experimental CM yields Similar results using calculated CM yields

⇒Small impact of CM in PbS QD PV devices (could be higher using concentrated light)

CM threshold in PbS QDs

CM threshold remains too high in energy even if it is considerably smaller than in Si

CM yield: Si bulk / PbS QDs

Comparison : PbS QDs / bulk Si (gap = 1.2 eV)

+ : Wolf, M.; Brendel, R.; Werner, J. H.; Queisser, H. J. J. Appl. Phys. 1998

Strategy to get more efficient CM

General behavior of the impact ionization lifetime

Possible strategy:

 Horizontal shift : to small |E| ⇒ small bandgap materials

2) Vertical shift : to high density of final states \Rightarrow materials with degenerate bands

3) To adjust the gap using quantum confinement

Test of the strategy: α -Sn

Calculated band structure of α -Sn

α -Sn: impact ionization lifetime

α -Sn: CM yield

Test of the strategy: α -Sn

G. Allan and C. Delerue, ACS Nano 5, 7318 (2011).

Test of the strategy: α -Sn

G. Allan and C. Delerue, ACS Nano 5, 7318 (2011).

On-going work

Weak point of all these works:

The phonon-assisted relaxation lifetime τ_{ph} is a parameter

 \Rightarrow Calculation of scattering rates for the relaxation by emission of phonons

Our approach:

- 1) Electronic structure in TB
- 2) Phonons using a valence-force field model
- 3) Calculation of the e-ph coupling Hamiltonian (position-dependent TB)
- 4) Calculation of the couplings and scattering rates

Collaboration: Y.M. Niquet, INAC/CEA

Université

Scattering rates: bulk Si

Scattering rates: Si nanorods

Cylindrical rod: 77 nm x 2 nm

Scattering rates: Si QDs

Moskalenko et al, PRB 85, 085432 (2012)

Spherical Si QD

Future work

Next steps:

- 1) Calculation of the impact ionization rates
- 2) Full simulation of the CM process

Conclusion

CM in QDs:

- Controversies remain
- Origin of the discrepancies not really known
- Latest experimental results (with CM >0) explained by impact ionization
- Small influence of CM in PbS & PbSe QDs solar cells
- But still room for improvement \Rightarrow CM engineering
- We have proposed a possible strategy
- On-going calculations for phonon-assisted processes

G. Allan and C. Delerue, Phys. Rev. B 73, 205423 (2006)

- G. Allan and C. Delerue, Phys. Rev. B 77, 125340 (2008)
- G. Allan and C. Delerue, Phys. Rev. B 79, 195324 (2009).
- J. J. H. Pijpers, R. Ulbricht, K.J. Tielrooij, A. Osherov, Y. Golan, C. Delerue, G. Allan & M. Bonn, Nature Physics 5, 811 (2009)
- C. Delerue, G. Allan, J.J.H. Pijpers, and M. Bonn, Phys. Rev. B 81, 125306 (2010).
- G. Allan and C. Delerue, ACS Nano 5, 7318 (2011).

