An introduction to integrable systems

Jean-Michel Maillet

CNRS & ENS Lyon, France

Jean-Michel Maillet An introduction to integrable systems - Grenoble 2012

문어 문

An elementary definition : Systems for which we can compute exactly (hence in a non-perturbative way) all observable (measurable) quantities.

They constitute a paradox as they are both exceptional (rare) and somehow ubiquitous systems : If we consider an arbitrary system it will hardly be integrable; however numerous "classical" examples of important (textbooks) physical systems are integrable!

- In classical and quantum mechanics : harmonic oscillators, Kepler problem, various tops, ...
- In continuous systems : integrable non-linear equations like KdV, Non-linear Shrodinger, sine-Gordon, ...
- In classical 2-d statistical mechanics : Ising, 6 and 8-vertex lattices, ...
- In quantum 1-d systems : Heisenberg spin chains, Bose gas, ...
- In 1+1 dimensional quantum field theories : CFT, sine-Gordon, Thirring model, σ -models, ...

通 と く ヨ と く ヨ と

э.

- classical mechanics : Liouville, Hamilton, Jacobi, ...
- continuous classical systems : non-linear partial differential equations, Lax pairs, classical inverse problem method, ...
- classical and quantum statistical mechanics : transfer matrix methods, Bethe ansatz, ...
- synthesis of these two lines in the 80' : quantum inverse scattering method, algebraic Bethe ansatz, Yang-Baxter equation, ...
- links to mathematics : Riemann-Hilbert methods, quantum groups and their representations, knot theory, ...
- many applications from string theory to condensed matter systems

Integrable systems in classical mechanics (I)

We consider Hamiltonian systems $H(p_i, q_i)$ with *n* canonical conjugate variables p_i and q_i , i = 1, ..., n and equations of motion :

$$\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i} \qquad \frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}$$

and Poisson bracket structure for two functions f and g of the canonical variables :

$$\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} - \frac{\partial g}{\partial p_{i}} \frac{\partial f}{\partial q_{i}}\right)$$

hence with the property $\frac{df}{dt} = \{H, f\}$

Definition : This Hamiltonian system is said to be Liouville integrable if it possesses *n* independent conserved quantities F_i in involution, namely $\{H, F_i\} = 0$ and $\{F_i, F_j\} = 0$ with i, j = 1, ... n.

Liouville Theorem :The solution of the equations of motion of a Liouville integrable system is obtained by quadrature.

Conserved quantities $F_i \rightarrow$ Poisson generators of corresponding symmetries and reductions of the phase space to the sub-variety M_f defined by $F_i = f_i$ for given constants f_i .

 \rightarrow separation of variables (Hamilton-Jacobi) and action-angles variables : canonical transformation $(p_i, q_i) \rightarrow (\Phi_i, \omega_i)$ with $H = H(\{\Phi_i\})$ and trivial equations of motion :

$$\{H, \Phi_i\} = 0 \rightarrow \Phi_i(t) = cte$$

$$\{H,\omega_i\}=rac{\partial H}{\partial \Phi_i}=cte
ightarrow \omega_i(t)=tlpha_i+\omega_i(0)$$

Construct inverse map $(\Phi_i, \omega_i) \rightarrow (p_i, q_i)$ to get $p_i(t)$ and $q_i(t)$.

Algebraic tools : classical systems

Main question : How to construct and solve classical integrable systems?

 \rightarrow Lax pair $N \times N$ matrices L and M which are functions on the phase space such that the equations of motion are equivalent to the N^2 equations :

$$\frac{d}{dt}L = [L, M]$$

which for any integer p leads to a conserved quantity since $\frac{d}{dt}tr(L^p) = 0$.

Integrable canonical structure (commutation of the invariants of the matrix L) equivalent to the existence of an r-matrix such that :

$$\{L_1, L_2\} = [r_{12}, L_1] - [r_{21}, L_2]$$

Important (simple) cases : r_{12} is a constant matrix with $r_{21} = -r_{12}$ and satisfies (Jacobi identity) the classical Yang-Baxter relation,

$$[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0$$

 \rightarrow reconstruction of M in terms of L and r (Lie algebras and Lie groups representation theory) and resolution of the equations of motion (algebraic factorization problem).

Quantum systems described by an Hamiltonian operator H acting on a given Hilbert space (the space of states) H.

A definition of integrability : There exists a commuting generating operator of conserved quantities $\tau(\lambda)$, namely such that for arbitrary λ, μ

 $[H, \tau(\lambda)] = 0 \qquad [\tau(\lambda), \tau(\mu)] = 0$

H is a function of $\tau(\lambda)$ and $\tau(\lambda)$ has simple spectrum (diagonalizable) \rightarrow complete characterization of the spectrum and eigenstates of *H*.

 \rightarrow what we wish to compute in an algebraic way :

- spectrum and eigenstates of H and $\tau(\lambda)$ (energy levels and quantum numbers)
- matrix elements of any operator in this eigenstate basis (leads to measurable quantities like structure factors)

Yang-Baxter equation and algebras for the L and R matrices : quantum version of the corresponding classical structures for $L \in End(V \otimes A)$, A the quantum space of states, $R \in End(V \otimes V)$, $L_1 = L \otimes id$ and $L_2 = id \otimes L$,

 $R_{12} L_1 \cdot L_2 = L_2 \cdot L_1 R_{12}$

 $R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12}$

 \rightarrow Recover classical relations for $R = id + i\hbar r + O(\hbar^2)$. These equations and algebras define quantum group structures as quantization of the corresponding Lie algebras and Lie groups of the classical case, and appear in :

- 2-d integrable lattice models (vertex models, ...) : Boltzman weights
- 1-d quantum systems (spin chains, Bose gas, ...) : monodromy matrix
- 1+1-d quantum field theories : scattering matrices

In all these cases, L and R are depending on additional continuous parameters $L = L(\lambda)$ and $R = R(\lambda, \mu)$.

The XXZ spin-1/2 Heisenberg chain in a magnetic field is a quantum interacting model defined on a one-dimensional lattice with M sites, with Hamiltonian,

$$H_{XXZ} = \sum_{m=1}^{M} \left\{ \sigma_m^x \sigma_{m+1}^x + \sigma_m^y \sigma_{m+1}^y + \Delta (\sigma_m^z \sigma_{m+1}^z - 1) \right\} - \mathbf{h} \sum_{m=1}^{M} \sigma_m^z$$

Quantum space of states : $\mathcal{H}=\otimes_{m=1}^M\mathcal{H}_m,~\mathcal{H}_m\sim\mathbb{C}^2$, $\dim\mathcal{H}=2^M.$

 $\sigma_m^{x,y,z}$: local spin operators (in the spin- $\frac{1}{2}$ representation) at site mThey act as the corresponding Pauli matrices in the space \mathcal{H}_m and as the identity operator elsewhere.

- periodic boundary conditions
- disordered regime, $|\Delta| < 1$ and $h < h_c$

The spin-1/2 XXZ Heisenberg chain : results

Spectrum :

- Bethe ansatz : Bethe, Hulthen, Orbach, Walker, Yang and Yang,...
- Algebraic Bethe ansatz : Faddeev, Sklyanin, Taktadjan,...

Correlation functions :

- $\bullet\,$ Free fermion point $\Delta=0$: Lieb, Shultz, Mattis, Wu, McCoy, Sato, Jimbo, Miwa,...
- $\bullet\,$ Starting 1985 Izergin, Korepin : first attempts using Bethe ansatz for general $\Delta\,$
- General Δ : multiple integral representations in 1992 and 1996 Jimbo and Miwa \rightarrow from qKZ equation, in 1999 Kitanine, Maillet, Terras \rightarrow from Algebraic Bethe Ansatz.

Several developments since 2000: (Kitanine, Maillet, Slavnov, Terras; Boos, Jimbo, Miwa, Smirnov, Takeyama; Gohmann, Klumper, Seel; Caux, Hagemans, Maillet; ...)

Diagonalization of the Hamiltonian

Monodromy matrix:

$$T(\lambda) \equiv T_{a,1...M}(\lambda) = L_{aM}(\lambda) \dots L_{a2}(\lambda) L_{a1}(\lambda) = \begin{pmatrix} A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda) \end{pmatrix}_{[a]}$$

with $L_{an}(\lambda) = \begin{pmatrix} \sinh(\lambda + \eta\sigma_n^z) & \sinh\eta\sigma_n^- \\ \sinh\eta\sigma_n^+ & \sinh(\lambda - \eta\sigma_n^z) \end{pmatrix}_{[a]}$

 \hookrightarrow Yang-Baxter algebra: \circ generators A, B, C, D

 \circ commutation relations given by the R-matrix

 $R_{ab}(\lambda,\mu) T_{a}(\lambda) T_{b}(\mu) = T_{b}(\mu) T_{a}(\lambda) R_{ab}(\lambda,\mu)$ \rightarrow commuting conserved charges: $T(\lambda) = A(\lambda) + D(\lambda)$

 \rightarrow construction of the space of states by action of B operators on a reference state $|\,0\,\rangle\equiv|\uparrow\uparrow\ldots\uparrow\rangle$

 \rightarrow eigenstates : $|\psi\rangle = \prod_k B(\lambda_k) |0\rangle$ with $\{\lambda_k\}$ solution of the Bethe equations.

 \rightarrow Resolution of the quantum inverse scattering problem: reconstruct local operators σ_i^{α} in terms of the generators $T_{\epsilon,\epsilon'}$ of the Yang-Baxter algebra:

$$\sigma_{j}^{-} = \{(A+D)(0)\}^{j-1} \cdot B(0) \cdot \{(A+D)(0)\}^{-j}$$

$$\sigma_{j}^{+} = \{(A+D)(0)\}^{j-1} \cdot C(0) \cdot \{(A+D)(0)\}^{-j}$$

$$\sigma_{j}^{z} = \{(A+D)(0)\}^{j-1} \cdot (A-D)(0) \cdot \{(A+D)(0)\}^{-j}$$

 \rightarrow use the Yang-Baxter commutation relations for A, B, C, D to get the action on arbitrary states

 $\rightarrow\,$ correlation functions = sums over scalar products that are computed as ratios of determinants.

Correlation functions of critical (integrable) models

• Asymptotic results predictions

• Luttinger liquid approximation / C.F.T. and finite size effects Luther and Peschel, Haldane, Cardy, Affleck, ... Lukyanov, ...

• Exact results (XXZ, NLS, ...)

- Free fermion point $\Delta=0$: Lieb, Shultz, Mattis, Wu, McCoy, Sato, Jimbo, Miwa \ldots
- From 1984: Izergin, Korepin ... (first attempts using ABA)
- General Δ: (form factors and building blocks)
 ★ 1992-96 Jimbo, Miwa ... → for infinite chain from QG
 ★ 1999 Kitanine, M, Terras → for finite and infinite chain from ABA
- Several developments for the last twelve years: Temperature case, numerics and actual experiments, master equation representation, some asymptotics, fermionic structures, etc.

 \hookrightarrow Compute explicitly relevant physical correlation functions?

 \hookrightarrow Connect to the CFT limit from the exact results on the lattice?

Physical correlation function : general strategies

At zero temperature only the ground state $|\omega
angle$ contributes :

 $g_{12} = \langle \omega | \theta_1 \theta_2 | \omega \rangle$

Two main strategies to evaluate such a function:

(i) compute the action of local operators on the ground state $\theta_1 \theta_2 |\omega\rangle = |\tilde{\omega}\rangle$ and then calculate the resulting scalar product:

 $g_{12} = \langle \omega | \tilde{\omega}
angle$

(ii) insert a sum over a complete set of eigenstates $|\omega_i\rangle$ to obtain a sum over one-point matrix elements (form factor type expansion) :

 $g_{12} = \sum_i \langle \omega | heta_1 | \omega_i
angle \cdot \langle \omega_i | heta_2 | \omega
angle$

Correlation functions : ABA approach

O Diagonalise the Hamiltonian using ABA

- \rightarrow key point : Yang-Baxter algebra $A(\lambda)$, $B(\lambda)$, $C(\lambda)$, $D(\lambda)$
- $\rightarrow |\psi_g\rangle = B(\lambda_1) \dots B(\lambda_N) |0\rangle \text{ with } \mathcal{Y}(\lambda_j; \{\lambda\}) = 0 \text{ (Bethe eq.)}$
- Act with local operators on eigenstates
 - → solve the quantum inverse problem (1999): $\sigma_i^{(\alpha)} = (A + D)^{j-1} X^{(\alpha)} (A + D)^{-j}$ with $X^{(\alpha)} = A, B, C, D$
 - $\rightarrow\,$ use Yang-Baxter commutation relations
- Ompute the resulting scalar products (determinant representation)
 → determinant representation for form factors of the finite chain
 → elementary building blocks of correlation functions as multiple integrals in the thermodynamic limit (2000)
- **Two-point function:** sum up elementary blocks or form factors?
 - $\rightarrow\,$ master equation representation in finite volume
 - $\rightarrow\,$ numerical sum of form factors : dynamical structure factors
- **•** Analysis of the two-point functions (2008-2011):
 - $\rightarrow\,$ series expansion (multiple integrals) and large distance asymptotics
 - $\rightarrow~$ analysis of correlation functions from form factor series

< 注 > < 注 > 注 = のへ⊙

Numerical summation of form factor series (XXX)

- Structure factors define the dynamics of the models
- They can be measured experimentally

 $S(Q, \omega)$ is the dynamical spin-spin structure factor. The Bethe ansatz curve is computed for a chain of 500 sites (with J.- S. Caux) compared to the experimental curve obtained by A. Tennant in Berlin by neutron scattering. Colors indicate the value of the function $S(Q, \omega)$.

Results from multiple integrals representations

Generating function

$$Q_{1,m}^{\kappa} = \prod_{n=1}^{m} \left(\frac{1+\kappa}{2} + \frac{1-\kappa}{2} \cdot \sigma_n^z \right) \quad \text{with} \ \kappa = e^{\beta}$$

Asymptotic behavior (RH techniques applied to multiple integrals) $\langle e^{\beta Q_{1m}} \rangle = \underbrace{\mathcal{G}^{(0)}(\beta, m)[1 + o(1)]}_{\text{non-oscillating terms}} + \underbrace{\sum_{\sigma=\pm}^{\sigma=\pm} \mathcal{G}^{(0)}(\beta + 2i\pi\sigma, m)[1 + o(1)]}_{\text{oscillating terms}}$ $\mathcal{G}^{(0)}(\beta, m) = \mathcal{C}(\beta) e^{m\beta D} m^{\frac{\beta^2}{2\pi^2}Z(q)^2}$

- $Z(\lambda)$ is the dressed charge $Z(\lambda) + \int_{-a}^{a} \frac{d\mu}{2\pi} K(\lambda \mu) Z(\mu) = 1$
- *D* is the average density $D = \int_{-q}^{q} \rho(\mu) d\mu = \frac{1 \langle \sigma^z \rangle}{2} = \frac{k_F}{\pi}$
- The coefficient $C(\beta)$ is given as the ratio of four Fredholm determinants.
- sub-leading oscillating terms restore the $2\pi i$ -periodicity in β related to periodicity in Fredholm determinant of generalized sine kernel

2-point function asymptotic behavior

$$\langle \sigma_1^z \sigma_{m+1}^z \rangle = (2D-1)^2 - \frac{2Z(q)^2}{\pi^2 m^2} + 2|F_{\sigma^z}|^2 \cdot \frac{\cos(2mk_F)}{m^{2Z(q)^2}} + o\left(\frac{1}{m^2}, \frac{1}{m^{2Z(q)^2}}\right)$$

Results from multiple integrals representations

Generating function

$$Q_{1,m}^{\kappa} = \prod_{n=1}^{m} \left(\frac{1+\kappa}{2} + \frac{1-\kappa}{2} \cdot \sigma_n^z \right) \quad \text{with} \ \kappa = e^{\beta}$$

Asymptotic behavior (RH techniques applied to multiple integrals) $\langle e^{\beta Q_{1m}} \rangle = \underbrace{G^{(0)}(\beta, m)[1 + o(1)]}_{\text{non-oscillating terms}} + \underbrace{\sum_{\sigma=\pm}^{\sigma=\pm} G^{(0)}(\beta + 2i\pi\sigma, m)[1 + o(1)]}_{\text{oscillating terms}}$ $G^{(0)}(\beta, m) = C(\beta) e^{m\beta D} m^{\frac{\beta^2}{2\pi^2} Z(q)^2}$

- $Z(\lambda)$ is the dressed charge $Z(\lambda) + \int_{-a}^{a} \frac{d\mu}{2\pi} K(\lambda \mu) Z(\mu) = 1$
- *D* is the average density $D = \int_{-q}^{q} \rho(\mu) d\mu = \frac{1 \langle \sigma^z \rangle}{2} = \frac{k_F}{\pi}$
- The coefficient $C(\beta)$ is given as the ratio of four Fredholm determinants.
- sub-leading oscillating terms restore the $2\pi i$ -periodicity in β related to periodicity in Fredholm determinant of generalized sine kernel

2-point function asymptotic behavior

$$\langle \sigma_1^z \sigma_{m+1}^z \rangle = (2D-1)^2 - \frac{2Z(q)^2}{\pi^2 m^2} + 2|F_{\sigma^z}|^2 \cdot \frac{\cos(2mk_F)}{m^{2Z(q)^2}} + o\left(\frac{1}{m^2}, \frac{1}{m^{2Z(q)^2}}\right)$$

Form factors strike back!

The umklapp form factor

$$\lim_{\substack{N,M\to\infty\\ \text{with}}} \left(\frac{M}{2\pi}\right)^{2\mathcal{Z}^2} \frac{|\langle\psi(\{\mu\})|\sigma^z|\psi(\{\lambda\})\rangle|^2}{\|\psi(\{\mu\})\|^2 \cdot \|\psi(\{\lambda\})\|^2} = |F_{\sigma^z}|^2.$$
with
$$2\mathcal{Z}^2 = Z(q)^2 + Z(-q)^2$$

- $\{\lambda\}$ are the Bethe parameters of the ground state
- {µ} are the Bethe parameters for the excited state with one particle and one hole on opposite sides of the Fermi boundary (umklapp type excitation).
- the critical exponents for the form factor behavior (in terms of size M) and for the correlation function (in terms of distance) are equal!

 \hookrightarrow Higher terms in the asymptotic expansion will involve particle/holes form factors corresponding to $2\ell k_F$ oscillations and properly normalized form factors will be related to the corresponding amplitudes

 \hookrightarrow Analyze the asymptotic behavior of the correlation function directly from the form factor series!

э

Form factors strike back!

The umklapp form factor

$$\lim_{\substack{N,M\to\infty\\ \text{with}}} \left(\frac{M}{2\pi}\right)^{2\mathcal{Z}^2} \frac{|\langle\psi(\{\mu\})|\sigma^z|\psi(\{\lambda\})\rangle|^2}{\|\psi(\{\mu\})\|^2 \cdot \|\psi(\{\lambda\})\|^2} = |F_{\sigma^z}|^2.$$
with
$$2\mathcal{Z}^2 = Z(q)^2 + Z(-q)^2$$

- $\{\lambda\}$ are the Bethe parameters of the ground state
- {µ} are the Bethe parameters for the excited state with one particle and one hole on opposite sides of the Fermi boundary (umklapp type excitation).
- the critical exponents for the form factor behavior (in terms of size M) and for the correlation function (in terms of distance) are equal!

 \hookrightarrow Higher terms in the asymptotic expansion will involve particle/holes form factors corresponding to $2\ell k_{_F}$ oscillations and properly normalized form factors will be related to the corresponding amplitudes

 \hookrightarrow Analyze the asymptotic behavior of the correlation function directly from the form factor series!

4 E N 4 E N

Spin-spin correlation functions as sum over form factors

Spin-spin correlation functions as sum over form factors

$$\begin{split} \langle \sigma_{1}^{s} \sigma_{m+1}^{s'} \rangle &= \sum_{|\psi'\rangle} \mathcal{F}_{\psi_{g}\psi'}^{(s)}(1) \cdot \mathcal{F}_{\psi'\psi_{g}}^{(s')}(m+1) \quad \text{with} \quad \mathcal{F}_{\psi\psi'}^{(s)}(m) = \frac{\langle \psi | \sigma_{m}^{s} | \psi'\rangle}{||\psi|| \cdot ||\psi'||} \\ \langle \sigma_{1}^{s} \sigma_{m+1}^{s'} \rangle_{cr} &= \lim_{M \to \infty} \sum_{\ell=-\infty}^{\infty} \sum_{|\psi'\rangle} \sum_{\text{in } P_{\ell} \text{ class}} \mathcal{F}_{\psi_{g}\psi'}^{(s)}(1) \cdot \mathcal{F}_{\psi'\psi_{g}}^{(s')}(m+1) \\ &= \lim_{M \to \infty} \sum_{\ell=-\infty}^{\infty} e^{2im\ell k_{F}} M^{-\theta_{\ell}^{(s')}} [\mathcal{F}_{\psi_{g}\psi_{\ell}}^{(s)} \mathcal{F}_{\psi_{\ell}\psi_{g}}^{(s')}]_{\text{finite}} \prod_{e=\pm} \frac{G^{2}(1+\epsilon\ell+\epsilon_{F_{e}})}{G^{2}(1+\epsilon\ell+\epsilon_{F_{e}})} \\ &\times \sum_{\substack{\{p\},\{h\}\\ n_{p}^{+}-n_{h}^{+}=\ell}} e^{\frac{2\pi i m}{M} \mathcal{P}_{ex}^{(d)}} \prod_{e=\pm} R_{n_{p}^{e},n_{h}^{e}}(\{p^{e}\},\{h^{e}\}|\epsilon F_{e}) \\ &\text{sum over all possible configurations of integers} \end{split}$$

Spin-spin correlation functions as sum over form factors

$$\begin{split} \langle \sigma_{1}^{s} \sigma_{m+1}^{s'} \rangle &= \sum_{|\psi'\rangle} \mathcal{F}_{\psi_{g}\psi'}^{(s)}(1) \cdot \mathcal{F}_{\psi'\psi_{g}}^{(s')}(m+1) \quad \text{with} \quad \mathcal{F}_{\psi\psi'}^{(s)}(m) = \frac{\langle \psi | \sigma_{m}^{s} | \psi'\rangle}{||\psi|| \cdot ||\psi'||} \\ \langle \sigma_{1}^{s} \sigma_{m+1}^{s'} \rangle_{\text{cr}} &= \lim_{M \to \infty} \sum_{\ell=-\infty}^{\infty} \sum_{|\psi'\rangle} \sum_{\text{in } \mathsf{P}_{\ell} \text{ class}} \mathcal{F}_{\psi_{g}\psi'}^{(s)}(1) \cdot \mathcal{F}_{\psi'\psi_{g}}^{(s')}(m+1) \\ &= \lim_{M \to \infty} \sum_{\ell=-\infty}^{\infty} e^{2im\ell k_{F}} M^{-\theta_{\ell}^{(s')}} [\mathcal{F}_{\psi_{g}\psi_{\ell}}^{(s)} \mathcal{F}_{\psi_{\ell}\psi_{g}}^{(s')}]_{\text{finite}} \prod_{\epsilon=\pm} \frac{G^{2}(1+\epsilon F_{\epsilon})}{G^{2}(1+\epsilon \ell+\epsilon F_{\epsilon})} \\ &\times \underbrace{\sum_{\substack{\{\rho\},\{h\}\\ n_{p}^{+}-n_{h}^{+}=\ell}}_{\text{sum over all possible configurations of integers}} R_{n_{p}^{e},n_{h}^{e}}^{\epsilon}(\{p^{\epsilon}\},\{h^{\epsilon}\}|\epsilon F_{\epsilon})} \end{split}$$

$$\sum_{\substack{n_p, n_h = 0\\ n_p - n_h = \ell}}^{\infty} \sum_{\substack{p_1 < \dots < p_{n_p} \\ p_a \in \mathbb{N}^*}} \sum_{\substack{h_1 < \dots < h_{n_h} \\ h_a \in \mathbb{N}^*}} e^{\frac{2\pi i m}{M} \left[\sum_{j=1}^{n_p} (p_j - 1) + \sum_{k=1}^{n_h} h_k \right]} R_{n_p, n_h}(\{p\}, \{h\} | F)$$
$$= \frac{G^2(1 + \ell + F)}{G^2(1 + F)} \frac{e^{\frac{i \pi m}{M} \ell(\ell - 1)}}{\left(1 - e^{\frac{2i \pi m}{M}}\right)^{(F + \ell)^2}}$$

문 문 문

Correlation function $\langle \sigma_1^z \sigma_{m+1}^z \rangle$

$$\begin{split} \langle \sigma_1^z \sigma_{m+1}^z \rangle &= -\frac{1}{2\pi^2} \, \partial_{\alpha}^2 \mathbf{D}_m^2 \langle e^{2\pi i \alpha \mathcal{Q}_m} \rangle \big|_{\alpha=0} - 2D + 1 \\ \text{where } \mathbf{D}_m^2 \text{ is the second lattice derivative, } D \text{ is the average density, and} \\ \mathcal{Q}_m &= \frac{1}{2} \sum_{k=1}^m (1 - \sigma_k^z) \end{split}$$

 \rightsquigarrow study form factors $\langle \psi_{\alpha}(\{\mu\}) | e^{2\pi i \alpha Q_m} | \psi_g \rangle$ where $| \psi_{\alpha}(\{\mu\}) \rangle$ is an α -deformed Bethe state, with $\{\mu\}$ solution of

$$Mp_0(\mu_{\ell_j}) - \sum_{k=1}^{N} \theta(\mu_{\ell_j} - \mu_{\ell_k}) = 2\pi \Big(\ell_j + \alpha - \frac{N+1}{2}\Big)$$

For the \boldsymbol{P}_ℓ class:

- excitation momentum $2\alpha k_F + \mathcal{P}_{ex}$
- shift functions F_{\pm} : $F_{-} = F_{+} = \alpha Z + \ell(Z 1)$ with $Z = Z(\pm q)$ where $Z(\lambda)$ is the dressed charge given by $Z(\lambda) + \frac{1}{2\pi} \int_{-q}^{q} d\mu \frac{\sin 2\zeta}{\sinh(\lambda - \mu + i\zeta)\sinh(\lambda - \mu - i\zeta)} Z(\mu) = 1$

• exponent $\theta_{\alpha+\ell}$: $\theta_{\alpha+\ell} = 2[(\alpha+\ell)\mathcal{Z}]^2$,

(日) 日

Correlation function $\langle \sigma_1^z \sigma_{m+1}^z \rangle$

 $\begin{array}{l} \rightsquigarrow \text{ leading asymptotic terms for all oscillating harmonics:} \\ \langle e^{2\pi i \alpha \mathcal{Q}_m} \rangle_{cr} = \sum_{\ell=-\infty}^{\infty} |\mathcal{F}_{\alpha+\ell}|_{\text{finite}}^2 \frac{e^{2im(\alpha+\ell)k_F}}{(2\pi m)^{\theta_{\alpha+\ell}}} \\ \text{with} \quad \theta_{\alpha+\ell} = 2[(\alpha+\ell)\mathcal{Z}]^2, \\ \text{and} \quad |\mathcal{F}_{\alpha+\ell}|_{\text{finite}}^2 = \lim_{M \to \infty} M^{\theta_{\alpha+\ell}} \frac{|\langle \psi_g | \psi_{\alpha+\ell} \rangle|^2}{||\psi_g||^2 ||\psi_{\alpha+\ell}||^2}, \\ \text{where} \mid \psi_{\alpha+\ell} \rangle \text{ is the } (\alpha+\ell) \text{-shifted ground state} \end{array}$

Rm: terms $\ell=0,\pm 1$ coincide with results from multiple integrals analysis

$\begin{array}{l} \rightsquigarrow \text{ leading asymptotic terms for the two-point function:} \\ \langle \sigma_1^z \sigma_{m+1}^z \rangle_{\rm cr} = (2D-1)^2 - \frac{2\mathcal{Z}^2}{\pi^2 m^2} + 2\sum_{\ell=1}^{\infty} |\mathcal{F}_{\ell}^z|_{\rm finite}^2 \; \frac{\cos(2m\ell k_F)}{(2\pi m)^{2\ell^2 \mathcal{Z}^2}} \\ \text{with} \quad |\mathcal{F}_{\ell}^z|_{\rm finite}^2 = \lim_{M \to \infty} M^{2\ell^2 \mathcal{Z}^2} \frac{|\langle \psi_g | \sigma_1^z | \psi_\ell \rangle|^2}{||\psi_g||^2 ||\psi_\ell||^2}, \\ \text{where } | \psi_\ell \rangle \text{ is the } \ell \text{-shifted ground state} \end{array}$

Correlation function $\langle \sigma_1^+ \sigma_{m+1}^- \rangle$

- \rightsquigarrow critical excited states of the \mathbf{P}_{ℓ} class in the $(N_0 + 1)$ -sector
 - critical values of the shift function in the \mathbf{P}_{ℓ} class: $F_{-} = \ell(\mathcal{Z} - 1) - \frac{1}{2\mathcal{Z}}, \qquad F_{+} = \ell(\mathcal{Z} - 1) + \frac{1}{2\mathcal{Z}}$ • critical exponents: $\theta_{\ell} = 2\ell^{2}\mathcal{Z}^{2} + \frac{1}{2\mathcal{Z}^{2}}$ • simplest form factor in the \mathbf{P}_{ℓ} class: $|\mathcal{I}_{+}^{++}|^{2} = |\mathcal{I}_{+}^{++}| \psi_{\ell}|^{2}$

$$|\mathcal{F}_{\ell}^{+}|_{\text{finite}}^{L} = \lim_{M \to \infty} M^{(2\ell-2) + \frac{1}{2Z^{2}}} \frac{|\nabla \varphi|^{1} + \frac{1}{2L}}{||\psi_{g}||^{2} ||\psi_{\ell}||^{2}}$$

where $|\,\psi_\ell\,\rangle$ is the $\ell\text{-shifted}$ ground state in the ($\mathit{N}_0+1)\text{-sector}$

 $\stackrel{\text{$\sim>$ leading asymptotic terms for the two-point function:} $ \langle \sigma_1^+ \sigma_{m+1}^- \rangle_{cr} = \frac{(-1)^m}{(2\pi m)^{\frac{1}{2Z^2}}} \sum_{\ell=-\infty}^{\infty} (-1)^\ell |\mathcal{F}_\ell^+|_{\text{finite}}^2 \frac{e^{2im\ell k_F}}{(2\pi m)^{2\ell^2 Z^2}} $ }$

Results for the XXZ chain

2-point functions

$$\langle \sigma_{1}^{z} \sigma_{m+1}^{z} \rangle_{\rm cr} = (2D-1)^{2} - \frac{2\mathcal{Z}^{2}}{\pi^{2}m^{2}} + 2\sum_{\ell=1}^{\infty} |\mathcal{F}_{\ell}^{z}|_{\rm finite}^{2} \frac{\cos(2m\ell k_{\rm F})}{(2\pi m)^{2\ell^{2}\mathcal{Z}^{2}}} \langle \sigma_{1}^{+} \sigma_{m+1}^{-} \rangle_{\rm cr} = \frac{(-1)^{m}}{(2\pi m)^{\frac{1}{2\mathcal{Z}^{2}}}} \sum_{\ell=-\infty}^{\infty} (-1)^{\ell} |\mathcal{F}_{\ell}^{+}|_{\rm finite}^{2} \frac{e^{2im\ell k_{\rm F}}}{(2\pi m)^{2\ell^{2}\mathcal{Z}^{2}}}$$

•
$$Z = Z(q)$$
 where $Z(\lambda)$ is the dressed charge
 $Z(\lambda) + \int_{-q}^{q} \frac{d\mu}{2\pi} K(\lambda - \mu) Z(\mu) = 1$

• *D* is the average density
$$D = \int_{-q}^{q} \rho(\mu) d\mu = \frac{1 - \langle \sigma^z \rangle}{2} = \frac{k_F}{\pi}$$

•
$$|\mathcal{F}_{\ell}^{z}|_{\text{finite}}^{2} = \lim_{M \to \infty} M^{2\ell^{2} \mathcal{Z}^{2}} \frac{|\langle \psi_{g} | \sigma_{1}^{z} | \psi_{\ell} \rangle|^{2}}{\langle \psi_{g} | \psi_{g} \rangle \langle \psi_{\ell} | \psi_{\ell} \rangle}$$

•
$$|\mathcal{F}_{\ell}^{+}|_{\text{finite}}^{2} = \lim_{M \to \infty} M^{\left(2\ell^{2}\mathcal{Z}^{2} + \frac{1}{2\mathcal{Z}^{2}}\right)} \frac{\left|\langle \psi_{g} | \sigma_{1}^{+} | \psi_{\ell} \rangle\right|^{2}}{\langle \psi_{g} | \psi_{g} \rangle \langle \psi_{\ell} | \psi_{\ell} \rangle}$$

문제 세 문제 ...

ъ.

Further results and open questions

• Further results

- Time dependent case for the Bose gas (simpler model: no bound-states) (to appear)
 → contribution of a saddle point away from the Fermi surface
- Asymptotics for large distances in the temperature case (contact with QTM method)
 → see Kozlowski, Maillet, Slavnov J. Stat. Mech. P12010 (2011)
- Arbitrary n-point correlation functions in the CFT limit (to appear)
- In fact all the derivation applies to a large class of non integrable models as well
- Some open problems...
 - Sub-leading terms for each harmonics?
 - Time dependent case for XXZ : needs careful treatment of bound-states (complex roots)
 - Deeper links with TASEP, Z-measures, ...?

医下口 医下