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What are integrable systems?

An elementary definition : Systems for which we can compute exactly (hence in
a non-perturbative way) all observable (measurable) quantities.

They constitute a paradox as they are both exceptional (rare) and somehow
ubiquitous systems : If we consider an arbitrary system it will hardly be
integrable; however numerous " classical” examples of important (textbooks)
physical systems are integrable!

@ In classical and quantum mechanics : harmonic oscillators, Kepler
problem, various tops, ...

@ In continuous systems : integrable non-linear equations like KdV,
Non-linear Shrodinger, sine-Gordon, ...

@ In classical 2-d statistical mechanics : Ising, 6 and 8-vertex lattices, ...
@ In quantum 1-d systems : Heisenberg spin chains, Bose gas, ...

@ In 141 dimensional quantum field theories : CFT, sine-Gordon, Thirring
model, o-models, ...
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A short historical overview

@ classical mechanics : Liouville, Hamilton, Jacobi, ...

@ continuous classical systems : non-linear partial differential equations, Lax
pairs, classical inverse problem method, ...

@ classical and quantum statistical mechanics : transfer matrix methods,
Bethe ansatz, ...

@ synthesis of these two lines in the 80" : quantum inverse scattering
method, algebraic Bethe ansatz, Yang-Baxter equation, ...

@ links to mathematics : Riemann-Hilbert methods, quantum groups and
their representations, knot theory, ...

@ many applications from string theory to condensed matter systems
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Integrable systems in classical mechanics (1)

We consider Hamiltonian systems H(p;, g;) with n canonical conjugate
variables p; and g;, i = 1,...n and equations of motion :
dp,' 70H dq,- o ()H

dr aqi dt opi

and Poisson bracket structure for two functions f and g of the canonical
variables :

hence with the property ‘d’—’: ={H, f}

Definition : This Hamiltonian system is said to be Liouville integrable if it
possesses n independent conserved quantities F; in involution, namely
{H,Fi} =0and {F;,F;} =0withi,j=1,...n.

Liouville Theorem :The solution of the equations of motion of a Liouville
integrable system is obtained by quadrature.
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Integrable systems in classical mechanics (I1)

Conserved quantities F; — Poisson generators of corresponding symmetries
and reductions of the phase space to the sub-variety M defined by F; = f; for
given constants f;.

— separation of variables (Hamilton-Jacobi) and action-angles variables :
canonical transformation (pj, i) — (®i,w;) with H = H({®;}) and trivial
equations of motion :

{H., ¢,‘} =0— CD,'(t) = cte

tHowy — OH

00, — cte — wi(t) = taj + wi(0)

Construct inverse map (®;,w;i) — (pi, gi) to get pi(t) and gi(t).
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Algebraic tools : classical systems

Main question : How to construct and solve classical integrable systems?

— Lax pair N x N matrices L and M which are functions on the phase space
such that the equations of motion are equivalent to the N? equations :
d
—L=[LM
dt (L. M]
which for any integer p leads to a conserved quantity since <tr(L?) = 0.

dt

Integrable canonical structure (commutation of the invariants of the matrix L)
equivalent to the existence of an r-matrix such that :

{L1, Ly} = [n2, Li] — [ro1, L2]

Important (simple) cases : r» is a constant matrix with 1 = —ri2 and satisfies
(Jacobi identity) the classical Yang-Baxter relation,

[n2, n3] + [r2, 23] + [r13, 23] = 0

— reconstruction of M in terms of L and r (Lie algebras and Lie groups
representation theory) and resolution of the equations of motion (algebraic
factorization problem).
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Integrability for quantum systems

Quantum systems described by an Hamiltonian operator H acting on a given
Hilbert space (the space of states) H.

A definition of integrability : There exists a commuting generating operator of
conserved quantities 7(\), namely such that for arbitrary A, u

[H,r (M1 =0 [7(A),7(1)] =0

H is a function of 7(A\) and 7(\) has simple spectrum (diagonalizable) —
complete characterization of the spectrum and eigenstates of H.

— what we wish to compute in an algebraic way :

@ spectrum and eigenstates of H and 7()\) (energy levels and quantum
numbers)

@ matrix elements of any operator in this eigenstate basis (leads to
measurable quantities like structure factors)
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Algebraic tools : quantum systems

Yang-Baxter equation and algebras for the L and R matrices : quantum version
of the corresponding classical structures for L € End(V ® A), A the quantum
space of states, R€ End(V® V), Li=L®id and L, = id ® L,

R12 Ll . L2 - L2 . Ll R12

Ri2 Riz Rz = Ras Ris Riz

— Recover classical relations for R = id + ilir + O(h?). These equations and
algebras define quantum group structures as quantization of the corresponding
Lie algebras and Lie groups of the classical case, and appear in :

@ 2-d integrable lattice models (vertex models, ...) : Boltzman weights
@ 1-d quantum systems (spin chains, Bose gas, ...) : monodromy matrix

@ 1+41-d quantum field theories : scattering matrices

In all these cases, L and R are depending on additional continuous parameters
L=L(A\) and R = R(\, p).
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Our favorite example : the XXZ Heisenberg chain

The XXZ spin-1/2 Heisenberg chain in a magnetic field is a quantum
interacting model defined on a one-dimensional lattice with M sites, with
Hamiltonian,

M M
_ X X y -y z _z z
HXXZ - E {O-mgm+1 + (Tmo.m+1 + A(O’m('fm+1 - 1)} —h Z Om
m=1 m=1

Quantum space of states : H = @M _H,,, Hpm ~ C? , dimH = 2M.

oXY% : local spin operators (in the spin-% representation) at site m
They act as the corresponding Pauli matrices in the space H,, and as the
identity operator elsewhere.

@ periodic boundary conditions

o disordered regime, |A| <1 and h < h
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The spin-1/2 XXZ Heisenberg chain : results

Spectrum :
@ Bethe ansatz : Bethe, Hulthen, Orbach, Walker, Yang and Yang,...
@ Algebraic Bethe ansatz : Faddeev, Sklyanin, Taktadjan,...

Correlation functions :
@ Free fermion point A = 0 : Lieb, Shultz, Mattis, Wu, McCoy, Sato,
Jimbo, Miwa,...
@ Starting 1985 lzergin, Korepin : first attempts using Bethe ansatz for
general A
@ General A : multiple integral representations in 1992 and 1996 Jimbo and
Miwa — from qKZ equation, in 1999 Kitanine, Maillet, Terras — from
Algebraic Bethe Ansatz.
Several developments since 2000: (Kitanine, Maillet, Slavnov, Terras; Boos,
Jimbo, Miwa, Smirnov, Takeyama; Gohmann, Klumper,Seel; Caux, Hagemans,
Maillet; ...)
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Diagonalization of the Hamiltonian

Monodromy matrix:

T()\) = TaAlu,M(A) - La/\/l()\) o La2(A)Lal()\)

I
S
>
~
>
Nl
[on}
—~
>
N
S~—
S,

with LQH(A):(S'nh(A+nnn) Slnhnon_)
®

sinhn oy sinh(A —no7) )

<— Yang-Baxter algebra: o generators A, B, C, D
o commutation relations given by the R-matrix

Rab(A; 1) To(N) To (1) = To(1) To(A) Rab(A, 1)
— commuting conserved charges: 7 (\) = A(\) + D())

— construction of the space of states by action of B operators on a reference

state [0)=| 17... 1)

— eigenstates : [¢) =[], B(A«)|0) with {\} solution of the Bethe
equations.
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Action of local operators on eigenstates

— Resolution of the quantum inverse scattering problem: reconstruct local
operators 07" in terms of the generators T. . of the Yang-Baxter algebra:

o7 ={(A+D)(©)Y " -B(0)- {(A+D)(0)}’
of = {(A+D)(0)Y - C(0)- {(A+ D)(0)}
of = {(A+D)(0)Y ' - (A-D)(0)- {(A+ D)(0)}

— use the Yang-Baxter commutation relations for A, B, C, D to get the action
on arbitrary states

— correlation functions = sums over scalar products that are computed as
ratios of determinants.
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Correlation functions of critical (integrable) models

o Asymptotic results predictions

o Luttinger liquid approximation / C.F.T. and finite size effects
Luther and Peschel, Haldane, Cardy, Affleck, ... Lukyanov,

e Exact results (XXZ, NLS, ...)
o Free fermion point A = 0: Lieb, Shultz, Mattis, Wu, McCoy, Sato,
Jimbo, Miwa ...
o From 1984: lzergin, Korepin ... (first attempts using ABA)

o General A: (form factors and building blocks)
* 1992-96 Jimbo, Miwa ... — for infinite chain from QG
* 1999 Kitanine, M, Terras — for finite and infinite chain from ABA

o Several developments for the last twelve years: Temperature case,
numerics and actual experiments, master equation representation,
some asymptotics, fermionic structures, etc.

— Compute explicitly relevant physical correlation functions?
< Connect to the CFT limit from the exact results on the lattice?
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Physical correlation function : general strategies

At zero temperature only the ground state |w) contributes :
g12 = (w]0102|w)
Two main strategies to evaluate such a function:

(i) compute the action of local operators on the ground state 616;|w) = |©) and
then calculate the resulting scalar product:

&)

(ii) insert a sum over a complete set of eigenstates |w;) to obtain a sum over
one-point matrix elements (form factor type expansion) :

g =Y (wlfi|ws) - (wilf|w)

i

g2 = (w
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Correlation functions : ABA approach

@ Diagonalise the Hamiltonian using ABA
— key point : Yang-Baxter algebra A()\), B()\), C()\), D())
— |g) = B(A1)...B(An)|0) with Y(Xj; {\}) =0 (Bethe eq.)

@ Act with local operators on eigenstates
— solve the quantum inverse problem (1999):
o\ = (A+ DY X)(A+ D) with X®) = A, B, C, D
— use Yang-Baxter commutation relations

@ Compute the resulting scalar products (determinant representation)
— determinant representation for form factors of the finite chain
— elementary building blocks of correlation functions as multiple
integrals in the thermodynamic limit (2000)

@ Two-point function: sum up elementary blocks or form factors?
— master equation representation in finite volume
— numerical sum of form factors : dynamical structure factors

@ Analysis of the two-point functions (2008-2011):
— series expansion (multiple integrals) and large distance asymptotics
— analysis of correlation functions from form factor series
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Numerical summation of form factor series (XXX)

@ Structure factors define the dynamics of the models

@ They can be measured experimentally

Energy o (meV)

-1 o5 o 05 1
Wavevector q along chain (units of 2x)

S5(Q,w) is the dynamical spin-spin structure factor. The Bethe ansatz
curve is computed for a chain of 500 sites (with J.- S. Caux) compared to
the experimental curve obtained by A. Tennant in Berlin by neutron
scattering. Colors indicate the value of the function S(Q,w).
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Results from multiple integrals representations

Generating function

Qfm:H<1;H+1;H~Ji> with k = e

n=1

Asymptotic behavior (RH techniques applied to multiple integrals)

(79m) = GO(B, m)[1+ o(1)]+ > GO(B+ 2ima, m)[1 + o(1)]

non-oscillating s oscillating terms

GO(8, m) = C(B) e ™D s L 2(q)?

1
Z()) is the dressed charge  Z()\) + / e EKO = Z(m) =1

_ (5?7 k
@ D is the average density D = / p(p)dp = 1-{) =L
J—q

2 7\'
The coefficient C(3) is given as the ratio of four Fredholm determinants.

sub-leading oscillating terms restore the 27i-periodicity in 3 related to
periodicity in Fredholm determinant of generalized sine kernel
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Results from multiple integrals representations

Generating function

Qfm:H<1;H+1;H~Ji> with k = e

n=1

Asymptotic behavior (RH techniques applied to multiple integrals)

(79m) = GO(B, m)[1+ o(1)]+ > GO(B+ 2ima, m)[1 + o(1)]

non-oscillating s oscillating terms

GO(8, m) = C(B) e ™D s L 2(q)?

1
Z()) is the dressed charge  Z()\) + / e EKO = Z(m) =1

_ (5?7 k
@ D is the average density D = / p(p)dp = 1-{) =L
J—q

2 7\'
The coefficient C(3) is given as the ratio of four Fredholm determinants.

sub-leading oscillating terms restore the 27i-periodicity in 3 related to
periodicity in Fredholm determinant of generalized sine kernel

2-point function asymptotic behavior

2Z(q) cos(2mk) 0(1 1 )

m2Z(a)? m2’ m2Z(a)?
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Form factors strike back!

The umklapp form factor

<M>222 [b({p})|o? [ ({A}))]? =|F, =
oo \2 ) (I [W@DIE ~

22% = 7(q)* + Z(—q)’

lim

@ {)\} are the Bethe parameters of the ground state

@ {u} are the Bethe parameters for the excited state with one particle and one
hole on opposite sides of the Fermi boundary (umklapp type excitation).

@ the critical exponents for the form factor behavior (in terms of size M) and
for the correlation function (in terms of distance) are equal!
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Form factors strike back!

The umklapp form factor

( M )222 (DI _ |
it \Zr ) To(IE T(ODIE ~

22% = 7(q)* + Z(—q)’

lim

@ {)\} are the Bethe parameters of the ground state
@ {u} are the Bethe parameters for the excited state with one particle and one
hole on opposite sides of the Fermi boundary (umklapp type excitation).
@ the critical exponents for the form factor behavior (in terms of size M) and
for the correlation function (in terms of distance) are equal!
— Higher terms in the asymptotic expansion will involve particle/holes form
factors corresponding to 2¢k, oscillations and properly normalized form factors will
be related to the corresponding amplitudes

— Analyze the asymptotic behavior of the correlation function directly from the
form factor series!
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Spin-spin correlation functions as sum over form factors

(of o) = D FL ]—'ﬁs}(erl) with  F) (m) = (elonle’)

) oI 197
v
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Spin-spin correlation functions as sum over form factors

(i oh) = D FDL ) FE) (m+1) with  F) (m) = (L)

IEIEIEAL
197

e = Jim 3 Y AL m )
l=—o00 |’ )inPyclass

2
T 2imlkp — ss g (s) G 1 + 6F )
- Mlinx Z € M [‘7:@1 Yy d’t Yg flnlte H G2 1 + el + EF )

{=—00

xS & exHRnen ({p°}, {hHeF.)

{p}.{h}
n;rfnsz

sum over all possible configurations of integers
in the Py class
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Spin-spin correlation functions as sum over form factors

(i oh) = D FDL ) FE) (m+1) with  F) (m) = (L)

IEIEIEAL
197

(0F oin)er = lim Z > F9L)FR) (m)
l=—o00 |’ )inPyclass

2
T 2imlkp — ss g (s) G 1 + 6F )
- Mlinx Z € M [}—w Yy d’t g flnlte H G2 1 + Eé + EF)

l=—o00

xS & exHRnen ({p°}, {hHeF.)

{p}.{h}
n;rfnsz

sum over all possible configurations of integers
in the Py class

> Yy SwEnesindg, g0, (n116)

np,np=0 p1<-- <Pnp hy<-- <Iv,,/7
np—np=L  p,eN* h,EN*

_GX14L+F) el
 GX(1+F) (1- ezf;ﬂm)(w)z
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Correlation function (0§ 0Z,,4)

z _z 1 Tio
(010m41) = o2 oD (e Qm”a:o —2D+1

where D2, is the second lattice derivative, D is the average density, and

1 & .
szﬁg(lfa—k)

~ study form factors  (a({p}) €9 |4, )  where |9ho({p})) is an
a-deformed Bethe state, with {u} solution of

N+1
Mpo( W ZG He; /uk —27T<€j+a— T)
For the Py class:
@ excitation momentum  2akr + Pex
@ shift functions F1.: F_=F, =aZ+((Z—-1) with Z = Z(%q)
where Z()) is the dressed charge given by

1 /9 sin2¢ B
ZA)+ 21 /_q du sinh(A — p + i¢) sinh(A — o — i¢) 2 =1

@ exponent Og1¢:  Ooie = 2[(a+ 4)2]27
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Correlation function (0§ 0Z,,4)

~~ leading asymptotic terms for all oscillating harmonics:

<627rm¢Qm>Cr = Z ‘.7'—a+£‘ﬁnite
Pl (

with 0. = 2[(a + £) 2],

2 . 0
and ‘.7 DK‘Ff‘finite = |lim M7at¢
M— oo

2im(o+-L)kp

m) Oate

| Welvare)
9] ? ||[$arel]?
where | q¢ ) is the (a + £)-shifted ground state

Rm: terms ¢ = 0, +1 coincide with results from multiple integrals analysis

~ leading asymptotic terms for the two-point function:

. cos(2mlk, )
<Ulam+1>Cr = (2D - 1)2 + 22 ‘ff |f\mte m

. 1//)\2
with | FZ)2 .. = I|m My = M'
| 7% |finice [[0g ]2 [ 2

where |1} ) is the ¢-shifted ground state
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Correlation function (o &

m1)

~~ critical excited states of the P, class in the (N + 1)-sector

@ critical values of the shift function in the Py class:

1
F,fé(Zfl)fE, F+7Z(Zfl)+—2z
1
@ critical exponents: 0, = 2022 ¢ 532

@ simplest form factor in the P, class:
‘ sl [el

where | 1)) is the (-shifted ground state in the (N + 1)-sector

2 .
} = lim
finite M— o0

~~ leading asymptotic terms for the two-point function:

(71)m €9 e2im£ ke

4 + 12
Z (_1) ‘-7:[ finite W

<Uf o—n:+1>Cf = 1
(2rm)222 ,=—,
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Results for the XXZ chain

2-point functions

;2 272 = cos(2mlk
<(71(7m+]_>cr = (2D - 1)2 - 2 + ZZ ‘-7:( |f2inite M
=1

T2 (2rm)2222
B (71)m e9 p . e2im[l<F
(01 Opsr)er = m Z (=1)" |F, [finite W
{=—o00

@ Z = Z(q) where Z()) is the dressed charge
9 dp
Z0+ [ AR =) 2 =1
q 1—{(o* k
@ D is the average density D = / p(p)du = % ==t
T
J—q
/y z 2
° |ff}f = lim Mzzzzz (e |Ul|wi>“‘
e M—oo (Ve |ve) (Ve 1)
“ ENE
o 1F = fim m(Ze) (Wl lvo)

(g [Yg) (e |9e)
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Further results and open questions

@ Further results

o Time dependent case for the Bose gas (simpler model: no
bound-states) (to appear)
~~ contribution of a saddle point away from the Fermi surface

o Asymptotics for large distances in the temperature case (contact
with QTM method)
~ see Kozlowski, Maillet, Slavnov J. Stat. Mech. P12010 (2011)

o Arbitrary n-point correlation functions in the CFT limit (to appear)
o In fact all the derivation applies to a large class of non integrable

models as well

@ Some open problems...

o Sub-leading terms for each harmonics?

o Time dependent case for XXZ : needs careful treatment of
bound-states (complex roots)

o Deeper links with TASEP, Z-measures, ...?
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