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What are integrable systems?

An elementary definition : Systems for which we can compute exactly (hence in
a non-perturbative way) all observable (measurable) quantities.

They constitute a paradox as they are both exceptional (rare) and somehow
ubiquitous systems : If we consider an arbitrary system it will hardly be
integrable; however numerous ”classical” examples of important (textbooks)
physical systems are integrable!

In classical and quantum mechanics : harmonic oscillators, Kepler
problem, various tops, ...

In continuous systems : integrable non-linear equations like KdV,
Non-linear Shrodinger, sine-Gordon, ...

In classical 2-d statistical mechanics : Ising, 6 and 8-vertex lattices, ...

In quantum 1-d systems : Heisenberg spin chains, Bose gas, ...

In 1+1 dimensional quantum field theories : CFT, sine-Gordon, Thirring
model, σ-models, ...
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A short historical overview

classical mechanics : Liouville, Hamilton, Jacobi, ...

continuous classical systems : non-linear partial differential equations, Lax
pairs, classical inverse problem method, ...

classical and quantum statistical mechanics : transfer matrix methods,
Bethe ansatz, ...

synthesis of these two lines in the 80’ : quantum inverse scattering
method, algebraic Bethe ansatz, Yang-Baxter equation, ...

links to mathematics : Riemann-Hilbert methods, quantum groups and
their representations, knot theory, ...

many applications from string theory to condensed matter systems
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Integrable systems in classical mechanics (I)

We consider Hamiltonian systems H(pi , qi ) with n canonical conjugate
variables pi and qi , i = 1, . . . n and equations of motion :

dpi

dt
= −∂H

∂qi

dqi

dt
=
∂H

∂pi

and Poisson bracket structure for two functions f and g of the canonical
variables :

{f , g} =
X

i

(
∂f

∂pi

∂g

∂qi
− ∂g

∂pi

∂f

∂qi
)

hence with the property df
dt

= {H, f }

Definition : This Hamiltonian system is said to be Liouville integrable if it
possesses n independent conserved quantities Fi in involution, namely
{H,Fi} = 0 and {Fi ,Fj} = 0 with i , j = 1, . . . n.

Liouville Theorem :The solution of the equations of motion of a Liouville
integrable system is obtained by quadrature.
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Integrable systems in classical mechanics (II)

Conserved quantities Fi → Poisson generators of corresponding symmetries
and reductions of the phase space to the sub-variety Mf defined by Fi = fi for
given constants fi .

→ separation of variables (Hamilton-Jacobi) and action-angles variables :
canonical transformation (pi , qi ) → (Φi , ωi ) with H = H({Φi}) and trivial
equations of motion :

{H,Φi} = 0→ Φi (t) = cte

{H, ωi} =
∂H

∂Φi
= cte → ωi (t) = tαi + ωi (0)

Construct inverse map (Φi , ωi ) → (pi , qi ) to get pi (t) and qi (t).
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Algebraic tools : classical systems

Main question : How to construct and solve classical integrable systems?

→ Lax pair N × N matrices L and M which are functions on the phase space
such that the equations of motion are equivalent to the N2 equations :

d

dt
L = [L,M]

which for any integer p leads to a conserved quantity since d
dt

tr(Lp) = 0.

Integrable canonical structure (commutation of the invariants of the matrix L)
equivalent to the existence of an r -matrix such that :

{L1, L2} = [r12, L1]− [r21, L2]

Important (simple) cases : r12 is a constant matrix with r21 = −r12 and satisfies
(Jacobi identity) the classical Yang-Baxter relation,

[r12, r13] + [r12, r23] + [r13, r23] = 0

→ reconstruction of M in terms of L and r (Lie algebras and Lie groups
representation theory) and resolution of the equations of motion (algebraic
factorization problem).
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Integrability for quantum systems

Quantum systems described by an Hamiltonian operator H acting on a given
Hilbert space (the space of states) H.

A definition of integrability : There exists a commuting generating operator of
conserved quantities τ(λ), namely such that for arbitrary λ, µ

[H, τ(λ)] = 0 [τ(λ), τ(µ)] = 0

H is a function of τ(λ) and τ(λ) has simple spectrum (diagonalizable) →
complete characterization of the spectrum and eigenstates of H.

→ what we wish to compute in an algebraic way :

spectrum and eigenstates of H and τ(λ) (energy levels and quantum
numbers)

matrix elements of any operator in this eigenstate basis (leads to
measurable quantities like structure factors)
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Algebraic tools : quantum systems

Yang-Baxter equation and algebras for the L and R matrices : quantum version
of the corresponding classical structures for L ∈ End(V ⊗A), A the quantum
space of states, R ∈ End(V ⊗ V ), L1 = L⊗ id and L2 = id ⊗ L,

R12 L1 · L2 = L2 · L1 R12

R12 R13 R23 = R23 R13 R12

→ Recover classical relations for R = id + i~r + O(~2). These equations and
algebras define quantum group structures as quantization of the corresponding
Lie algebras and Lie groups of the classical case, and appear in :

2-d integrable lattice models (vertex models, ...) : Boltzman weights

1-d quantum systems (spin chains, Bose gas, ...) : monodromy matrix

1+1-d quantum field theories : scattering matrices

In all these cases, L and R are depending on additional continuous parameters
L = L(λ) and R = R(λ, µ).
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Our favorite example : the XXZ Heisenberg chain

The XXZ spin-1/2 Heisenberg chain in a magnetic field is a quantum
interacting model defined on a one-dimensional lattice with M sites, with
Hamiltonian,

HXXZ =
M∑

m=1

{
σx

mσ
x
m+1 + σy

mσ
y
m+1 + ∆(σz

mσ
z
m+1 − 1)

}
− h

M∑
m=1

σz
m

Quantum space of states : H = ⊗M
m=1Hm, Hm ∼ C2 , dimH = 2M .

σx,y ,z
m : local spin operators (in the spin- 1

2 representation) at site m
They act as the corresponding Pauli matrices in the space Hm and as the
identity operator elsewhere.

periodic boundary conditions

disordered regime, |∆| < 1 and h < hc
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The spin-1/2 XXZ Heisenberg chain : results

Spectrum :

Bethe ansatz : Bethe, Hulthen, Orbach, Walker, Yang and Yang,...

Algebraic Bethe ansatz : Faddeev, Sklyanin, Taktadjan,...

Correlation functions :

Free fermion point ∆ = 0 : Lieb, Shultz, Mattis, Wu, McCoy, Sato,
Jimbo, Miwa,...

Starting 1985 Izergin, Korepin : first attempts using Bethe ansatz for
general ∆

General ∆ : multiple integral representations in 1992 and 1996 Jimbo and
Miwa → from qKZ equation, in 1999 Kitanine, Maillet, Terras → from
Algebraic Bethe Ansatz.

Several developments since 2000: (Kitanine, Maillet, Slavnov, Terras; Boos,
Jimbo, Miwa, Smirnov,Takeyama; Gohmann, Klumper,Seel; Caux, Hagemans,
Maillet; ...)
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Diagonalization of the Hamiltonian

Monodromy matrix:

T (λ) ≡ Ta,1...M(λ) = LaM(λ) . . . La2(λ)La1(λ) =

„
A(λ) B(λ)
C(λ) D(λ)

«
[a]

with Lan(λ) =

„
sinh(λ+ ησz

n) sinh η σ−n
sinh η σ+

n sinh(λ− ησz
n)

«
[a]

↪→ Yang-Baxter algebra: ◦ generators A, B, C , D

◦ commutation relations given by the R-matrix

Rab(λ, µ) Ta(λ)Tb(µ) = Tb(µ)Ta(λ) Rab(λ, µ)
→ commuting conserved charges: T (λ) = A(λ) + D(λ)

→ construction of the space of states by action of B operators on a reference
state | 0 〉 ≡ | ↑↑ . . . ↑ 〉

→ eigenstates : |ψ 〉 =
Q

k B(λk)| 0 〉 with {λk} solution of the Bethe
equations.
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Action of local operators on eigenstates

→ Resolution of the quantum inverse scattering problem: reconstruct local
operators σαj in terms of the generators Tε,ε′ of the Yang-Baxter algebra:

σ−j =
˘

(A + D)(0)
¯j−1 · B(0) ·

˘
(A + D)(0)

¯−j

σ+
j =

˘
(A + D)(0)

¯j−1 · C(0) ·
˘

(A + D)(0)
¯−j

σz
j =

˘
(A + D)(0)

¯j−1 · (A− D)(0) ·
˘

(A + D)(0)
¯−j

→ use the Yang-Baxter commutation relations for A,B,C ,D to get the action
on arbitrary states

→ correlation functions = sums over scalar products that are computed as
ratios of determinants.
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Correlation functions of critical (integrable) models

Asymptotic results predictions

Luttinger liquid approximation / C.F.T. and finite size effects
Luther and Peschel, Haldane, Cardy, Affleck, ... Lukyanov, ...

Exact results (XXZ, NLS, ...)

Free fermion point ∆ = 0: Lieb, Shultz, Mattis, Wu, McCoy, Sato,
Jimbo, Miwa . . .

From 1984: Izergin, Korepin . . . (first attempts using ABA)

General ∆: (form factors and building blocks)
? 1992-96 Jimbo, Miwa . . . → for infinite chain from QG
? 1999 Kitanine, M, Terras → for finite and infinite chain from ABA

Several developments for the last twelve years: Temperature case,
numerics and actual experiments, master equation representation,
some asymptotics, fermionic structures, etc.

↪→ Compute explicitly relevant physical correlation functions?

↪→ Connect to the CFT limit from the exact results on the lattice?
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Physical correlation function : general strategies

At zero temperature only the ground state |ω〉 contributes :

g12 = 〈ω|θ1θ2|ω〉

Two main strategies to evaluate such a function:

(i) compute the action of local operators on the ground state θ1θ2|ω〉 = |ω̃〉 and
then calculate the resulting scalar product:

g12 = 〈ω|ω̃〉

(ii) insert a sum over a complete set of eigenstates |ωi 〉 to obtain a sum over
one-point matrix elements (form factor type expansion) :

g12 =
X

i

〈ω|θ1|ωi 〉 · 〈ωi |θ2|ω〉
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Correlation functions : ABA approach

1 Diagonalise the Hamiltonian using ABA
→ key point : Yang-Baxter algebra A(λ), B(λ), C (λ), D(λ)
→ |ψg 〉 = B(λ1) . . .B(λN)| 0 〉 with Y(λj ; {λ}) = 0 (Bethe eq.)

2 Act with local operators on eigenstates
→ solve the quantum inverse problem (1999):

σ
(α)
j = (A + D)j−1X (α)(A + D)−j with X (α) = A,B,C ,D

→ use Yang-Baxter commutation relations

3 Compute the resulting scalar products (determinant representation)
→ determinant representation for form factors of the finite chain
→ elementary building blocks of correlation functions as multiple
integrals in the thermodynamic limit (2000)

4 Two-point function: sum up elementary blocks or form factors?
→ master equation representation in finite volume
→ numerical sum of form factors : dynamical structure factors

5 Analysis of the two-point functions (2008-2011):
→ series expansion (multiple integrals) and large distance asymptotics
→ analysis of correlation functions from form factor series
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Numerical summation of form factor series (XXX)

Structure factors define the dynamics of the models

They can be measured experimentally
Hahn-Meitner-Institut Berlin
in der Helmholtz-Gemeinschaft

Spinons in KCuF3S(Q,w) Bethe Ansatz

S(Q, ω) is the dynamical spin-spin structure factor. The Bethe ansatz
curve is computed for a chain of 500 sites (with J.- S. Caux) compared to
the experimental curve obtained by A. Tennant in Berlin by neutron
scattering. Colors indicate the value of the function S(Q, ω).
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Results from multiple integrals representations

Generating function

Qκ
1,m =

mY
n=1

„
1 + κ

2
+

1− κ
2
· σz

n

«
with κ = eβ

Asymptotic behavior (RH techniques applied to multiple integrals)

〈eβQ1m 〉 = G (0)(β,m)[1 + o(1)]| {z }
non-oscillating terms

+
X
σ=±

G (0)(β + 2iπσ,m)[1 + o(1)]| {z }
oscillating terms

G (0)(β,m) = C(β) emβD m
β2

2π2 Z(q)2

Z(λ) is the dressed charge Z(λ) +

Z q

−q

dµ

2π
K(λ− µ) Z(µ) = 1

D is the average density D =

Z q

−q

ρ(µ)dµ =
1− 〈σz〉

2
=

kF

π

The coefficient C(β) is given as the ratio of four Fredholm determinants.

sub-leading oscillating terms restore the 2πi-periodicity in β related to
periodicity in Fredholm determinant of generalized sine kernel

2-point function asymptotic behavior

〈σz
1σ

z
m+1〉 = (2D − 1)2 − 2Z(q)2

π2m2
+ 2|Fσz |2 · cos(2mkF )

m2Z(q)2 + o
“ 1

m2
,

1

m2Z(q)2

”
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Form factors strike back!

The umklapp form factor

lim
N,M→∞

„
M

2π

«2Z2

|〈ψ({µ})|σz |ψ({λ})〉|2

‖ψ({µ})‖2 · ‖ψ({λ})‖2
= |Fσz |2.

with
2Z2 = Z(q)2 + Z(−q)2

{λ} are the Bethe parameters of the ground state

{µ} are the Bethe parameters for the excited state with one particle and one
hole on opposite sides of the Fermi boundary (umklapp type excitation).

the critical exponents for the form factor behavior (in terms of size M) and
for the correlation function (in terms of distance) are equal!

↪→ Higher terms in the asymptotic expansion will involve particle/holes form
factors corresponding to 2`kF oscillations and properly normalized form factors will
be related to the corresponding amplitudes

↪→ Analyze the asymptotic behavior of the correlation function directly from the
form factor series!
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Spin-spin correlation functions as sum over form factors

〈σs
1 σ

s′
m+1〉 =

X
|ψ′ 〉

F (s)
ψgψ′

(1) · F (s′)
ψ′ψg

(m + 1) with F (s)
ψψ′(m) =

〈ψ |σs
m|ψ
′ 〉

||ψ||·||ψ′||

〈σs
1 σ

s′
m+1〉cr = lim

M→∞

∞X
`=−∞

X
|ψ′ 〉 in P` class

F (s)
ψgψ′

(1) · F (s′)
ψ′ψg

(m + 1)

= lim
M→∞

∞X
`=−∞

e2im`kF M−θ
(ss′)
`
ˆ
F (s)
ψg ψ`

F (s′)
ψ` ψg

˜
finite

Y
ε=±

G 2(1 + εFε)

G 2(1 + ε`+ εFε)

×
X
{p},{h}

n+
p −n+

h
=`

e
2πim

M
P(d)

ex
Y
ε=±

Rnεp ,n
ε
h
({pε}, {hε}|εFε)

| {z }
sum over all possible configurations of integers

in the P` class

∞X
np ,nh=0
np−nh=`

X
p1<···<pnp

pa∈N∗

X
h1<···<hnh

ha∈N∗

e
2πim

M

ˆPnp
j=1(pj−1)+

Pnh
k=1

hk

˜
Rnp ,nh ({p}, {h}|F )

=
G 2(1 + `+ F )

G 2(1 + F )

e
iπm
M
`(`−1)`

1− e
2iπm

M
´(F+`)2
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Spin-spin correlation functions as sum over form factors
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1 σ
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Spin-spin correlation functions as sum over form factors
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Correlation function 〈σz
1 σz

m+1〉

〈σz
1σ

z
m+1〉 = − 1

2π2
∂2
αD2

m〈e2πiαQm 〉
˛̨
α=0
− 2D + 1

where D2
m is the second lattice derivative, D is the average density, and

Qm =
1

2

mX
k=1

(1− σz
k)

 study form factors 〈ψα({µ}) |e2πiαQm |ψg 〉 where |ψα({µ}) 〉 is an
α-deformed Bethe state, with {µ} solution of

Mp0(µ`j )−
NX

k=1

θ(µ`j − µ`k ) = 2π
“
`j + α− N + 1

2

”
For the P` class:

excitation momentum 2αkF + Pex

shift functions F±: F− = F+ = αZ + `(Z − 1) with Z = Z(±q)

where Z(λ) is the dressed charge given by

Z(λ) +
1

2π

Z q

−q

dµ
sin 2ζ

sinh(λ− µ+ iζ) sinh(λ− µ− iζ)
Z(µ) = 1

exponent θα+`: θα+` = 2[(α + `)Z]2,
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Correlation function 〈σz
1 σz

m+1〉

 leading asymptotic terms for all oscillating harmonics:

〈e2πiαQm 〉cr =
∞X

`=−∞

|Fα+`|2finite
e2im(α+`)k

F`
2πm

´θα+`

with θα+` = 2[(α + `)Z]2,

and |Fα+`|2finite = lim
M→∞

Mθα+`
|〈ψg |ψα+`〉|2

||ψg ||2 ||ψα+`||2
,

where |ψα+` 〉 is the (α + `)-shifted ground state

Rm: terms ` = 0,±1 coincide with results from multiple integrals analysis

 leading asymptotic terms for the two-point function:

〈σz
1σ

z
m+1〉cr = (2D − 1)2 − 2Z2

π2m2
+ 2

∞X
`=1

|F z
` |2finite

cos(2m`kF )

(2πm)2`2Z2

with |F z
` |2finite = lim

M→∞
M2`2Z2 |〈ψg |σz

1 |ψ` 〉|2

||ψg ||2 ||ψ`||2
,

where |ψ` 〉 is the `-shifted ground state
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Correlation function 〈σ+
1 σ−m+1〉

 critical excited states of the P` class in the (N0 + 1)-sector

critical values of the shift function in the P` class:

F− = `(Z − 1)− 1

2Z , F+ = `(Z − 1) +
1

2Z

critical exponents: θ` = 2`2Z2 +
1

2Z2

simplest form factor in the P` class:˛̨
F+
`

˛̨2
finite

= lim
M→∞

M
(2`2Z2+ 1

2Z2 ) |〈ψg |σ+
1 |ψ` 〉|2

||ψg ||2 ||ψ`||2
where |ψ` 〉 is the `-shifted ground state in the (N0 + 1)-sector

 leading asymptotic terms for the two-point function:

〈σ+
1 σ
−
m+1〉cr =

(−1)m

(2πm)
1

2Z2

∞X
`=−∞

(−1)` |F+
`
|2finite

e2im` k
F

(2πm)2`2Z2
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Results for the XXZ chain

2-point functions

〈σz
1σ

z
m+1〉cr = (2D − 1)2 − 2Z2

π2m2
+ 2

∞X
`=1

|F z
` |2finite

cos(2m`kF )

(2πm)2`2Z2

〈σ+
1 σ
−
m+1〉cr =

(−1)m

(2πm)
1
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Z = Z(q) where Z(λ) is the dressed charge
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Further results and open questions

Further results

Time dependent case for the Bose gas (simpler model: no
bound-states) (to appear)
 contribution of a saddle point away from the Fermi surface

Asymptotics for large distances in the temperature case (contact
with QTM method)
 see Kozlowski, Maillet, Slavnov J. Stat. Mech. P12010 (2011)

Arbitrary n-point correlation functions in the CFT limit (to appear)

In fact all the derivation applies to a large class of non integrable
models as well

Some open problems...

Sub-leading terms for each harmonics?

Time dependent case for XXZ : needs careful treatment of
bound-states (complex roots)

Deeper links with TASEP, Z-measures, ...?
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