Positive Electronic Cross-Correlations in a Highly Transparent Normal-Superconducting Beam Splitter

Régis Mélin, Institut NÉEL, Grenoble

May 24, 2012

• Condensed matter theory

- Condensed matter theory
- Proposal and interpretation of experiments

- Condensed matter theory
- Proposal and interpretation of experiments
- Field of nanoscale superconductivity

- Condensed matter theory
- Proposal and interpretation of experiments
- Field of nanoscale superconductivity
- Long term goal is to realize devices based on electronic entanglement

- Condensed matter theory
- Proposal and interpretation of experiments
- Field of nanoscale superconductivity
- Long term goal is to realize devices based on electronic entanglement
- All Hamiltonians are quadratic

- Condensed matter theory
- Proposal and interpretation of experiments
- Field of nanoscale superconductivity
- Long term goal is to realize devices based on electronic entanglement
- All Hamiltonians are quadratic
- Ballistic (localizing effects of disorder treated qualitatively)

- Condensed matter theory
- Proposal and interpretation of experiments
- Field of nanoscale superconductivity
- Long term goal is to realize devices based on electronic entanglement
- All Hamiltonians are quadratic
- Ballistic (localizing effects of disorder treated qualitatively)
- Technical difficulty: Calculation of nonequilibrium transport properties (current and noise), even for strong nonequilibrium

- Condensed matter theory
- Proposal and interpretation of experiments
- Field of nanoscale superconductivity
- Long term goal is to realize devices based on electronic entanglement
- All Hamiltonians are quadratic
- Ballistic (localizing effects of disorder treated qualitatively)
- Technical difficulty: Calculation of nonequilibrium transport properties (current and noise), even for strong nonequilibrium
- All considered systems are solvable:
 - Two types of methods:
 - Scattering calculations (wave-function approach)
 - Non equilibrium microscopic Green's functions
 - Two types of solutions
 - Exact analytical expressions
 - Numerical calculations = very small error-bars

- Condensed matter theory
- Proposal and interpretation of experiments
- Field of nanoscale superconductivity
- Long term goal is to realize devices based on electronic entanglement
- All Hamiltonians are quadratic
- Ballistic (localizing effects of disorder treated qualitatively)
- Technical difficulty: Calculation of nonequilibrium transport properties (current and noise), even for strong nonequilibrium
- All considered systems are solvable:
 - Two types of methods:
 - Scattering calculations (wave-function approach)
 - Non equilibrium microscopic Green's functions
 - Two types of solutions
 - Exact analytical expressions
 - Numerical calculations = very small error-bars
- Physical difficulty: Often, interpretation comes at the end, as for experiments \rightarrow sometimes, surprises and nontrivial effects

SN Junction: Andreev Reflection (1/2)

SN Junction: Andreev Reflection (2/2)

SN Junction: Nonlocal Andreev Reflection (1/3)

Nonlocal Andreev Reflection (2/3)

Régis Mélin Positive Cross-Correlations in a NSN Beam Splitter

Nonlocal Andreev Reflection \equiv Cooper Pair Splitting (3/3)

Three-terminal set-up required in experiments Quest: Manipulation of spatially separated spin-entangled pairs of electron

First theoretical contributions: Byers-Flatté, Martin, Anatram-Datta, Deutscher-Feinberg, Falci-Hekking, Choi-Bruder-Loss, Mélin

Highly Transparent Contacts (Chandrasekhar group, North-Western University, PRL '06)

High values of interface transparency

Régis Mélin Positive Cross-Correlations in a NSN Beam Splitter

• Yes or no is it a way to obtain a massive signal for separated pairs ?

- Yes or no is it a way to obtain a massive signal for separated pairs ?
- <u>Answer is no:</u> Experimental signal not controlled by Cooper pair splitting

ANR PNANO Elec-EPR (2008-2011): The Noise

- Lefloch / Courtois experiment, PRL 2011
- Incoherent SNSNS
- SQUID-based amplifiers
- CEA-Grenoble / NEEL

Current noise $S_{a,a}$ and current noise cross-correlations $S_{a,b}$

$$S_{a,a}(t') = \langle \delta \hat{l}_{a}(t+t') \delta \hat{l}_{a}(t) \rangle$$
 and $S_{a,b}(t') = \langle \delta \hat{l}_{a}(t+t') \delta \hat{l}_{b}(t) \rangle$

Race to Positive Current-Current Cross-Correlations: Example of Exact Analytical Solution

Collaboration with

Martina Flöser

Axel Freyn

Small transparency

Cooper pair splitting \Rightarrow Positive current-current cross-correlations

Small transparency

Cooper pair splitting \Rightarrow Positive current-current cross-correlations

Common wisdom for all transparency

Positive current-current cross-correlations \Rightarrow Cooper pair splitting

Small transparency

Cooper pair splitting \Rightarrow Positive current-current cross-correlations

Common wisdom for all transparency

Positive current-current cross-correlations \Rightarrow Cooper pair splitting

What we have shown at high transparency

Positive current-current cross-correlations \Rightarrow Cooper pair splitting

The method (Blonder, Tinkham, Klapwijk PRB 1982)

- One-dimensional geometry
- Two-component wave-functions for electrons and holes
- Matching of $\psi(x)$ and $\partial \psi(x)/\partial x$ at the interfaces
- Below the gap:
 - Evanescent wave-functions in S + response linear in voltage
 - Current is conserved: quasi-particles converted as pairs

Wave-function matching for a NSN structure

- Calculation of the *s*-matrix
- Asumption: applied voltages small compared to the gap
- \Rightarrow Evanescent wave-functions in S
 - Mimicking a multichannel 3D junction with a 1D systems \Rightarrow averaging over λ_F oscillations in 1D model
 - Analytic expression for the average $S_{a,b} = \langle \delta \hat{l}_a \delta \hat{l}_b \rangle$ at arbitrary transparency
- $\Rightarrow S_{a,b} > 0$ at high transparency without Cooper pair splitting
 - Unusual sign due to exchange of two fermions

Dettille Constitution in a NCN David Californi

What is the value of interface transparency for probing entanglement ?

• Probing entanglement at high transparency ?

Régis Mélin Positive Cross-Correlations in a NSN Beam Splitter

- Probing entanglement at high transparency ?
- Presumably NO in spite of positive cross-correlations (absence of Cooper pair splitting)

- Probing entanglement at high transparency ?
- Presumably NO in spite of positive cross-correlations (absence of Cooper pair splitting)
- Probing entanglement at moderate of interface transparency ?

- Probing entanglement at high transparency ?
- Presumably NO in spite of positive cross-correlations (absence of Cooper pair splitting)
- Probing entanglement at moderate of interface transparency ?
- Answer is NO (absence of positive cross-correlations)

- Probing entanglement at high transparency ?
- Presumably NO in spite of positive cross-correlations (absence of Cooper pair splitting)
- Probing entanglement at moderate of interface transparency ?
- Answer is NO (absence of positive cross-correlations)
- Probing entanglement for tunnel contacts ?

- Probing entanglement at high transparency ?
- Presumably NO in spite of positive cross-correlations (absence of Cooper pair splitting)
- Probing entanglement at moderate of interface transparency ?
- Answer is NO (absence of positive cross-correlations)
- Probing entanglement for tunnel contacts ?
- Simple theoretical anwser is YES (Cooper pair splitting) ... But simple perturbation theory contradicted by experiments (Delft, Karlsruhe, Northwestern University)

- NSN structures should be abandoned in order to produce entangled pairs of electrons
- Three promising directions:
 - N-dot-S-dot-N (production of split pairs)
 - S-N-S-N-S (production of nonlocal pairs of pairs)
 - S-dot-S-dot-S (production of nonlocal pairs of pairs)