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Integrable structures in gauge theory scattering
amplitudes

James Drummond
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Outline

✔ Gauge theory and scattering amplitudes at tree-level.

✔ Dual superconformal symmetry and Yangian symmetry.

✔ Loop amplitudes and Wilson loops

✔ Analytic structure and bootstraps
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Gauge theory

The Yang-Mills action:

S =

Z

d4x Tr
“

− 1
4F µν(x)Fµν(x)

”

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

✔ It is local.

✔ It has a gauge symmetry.

✔ One must fix a gauge to compute amplitudes, e.g. ∂µAµ = 0.

✔ Tree-level amplitude is given by a rational function with local poles,

1

(pi + pi+1 + . . . pj)2
.
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Feynman rules

1
p2

fabc pµ

fabcfcde
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Tree-level amplitudes

An on shell momentum p2 = 0 can be written as pαα̇ = λαλ̃α̇.

The free Yang-Mills field equations and Bianchi identity ∂µFµν = 0, ∂[µFνρ] = 0

become ∂αα̇Fαβ = 0, ∂αα̇Fα̇β̇ = 0

with solution Fαβ = λαλβG+, Fα̇β̇ = λ̃α̇λ̃β̇G−

We are interested in ordered scattering amplitudes of these on-shell states.

Examples:

✔ A(−− + + . . . +) (MHV),

✔ A(−−− + + . . . +) (NMHV),

✔ ...
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Tree-level recursion relations

Imagine calculating tree-level scattering amplitudes.

You will have a sum of Feynman diagrams (many, many...)

A(p1, . . . , pn) =
X

Now let us deform two of the momenta: Britto, Cachazo, Feng
Britto, Cachazo, Feng, Witten

pαα̇
i = λα

i λ̃
α̇
i −→ (λα

i − zλα
j )λ̃α̇

i = pαα̇
i (z)

pαα̇
j = λα

j λ̃
α̇
j −→ λα

j (λ̃α̇
j + zλ̃α̇

i ) = pαα̇
j (z)

The amplitudeA(z) will have poles at values of z where an internal propagator goes on shell.

1

P 2(z)
=

1

(pk + . . . + pi(z) + . . . + pl)2

Can reconstruct amplitude from its residues - products of lower point amplitudes.
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Maximal Supersymmetry

On-shell N = 4 SYM is described by a PCT self-conjugate supermultiplet:

Φ(η) = G+ + ηAΓA + 1
2η

AηBSAB + 1
3!η

AηBηCεABCDΓ̄D + 1
4! (η)

4G−

pαα̇ = λαλ̃α̇, qαA = λαηA, q̄α̇
A = λ̃α̇ ∂

∂ηA
.

Amplitudes:
A(Φ1 . . . Φn) = (η1)4(η2)4A(−− + + . . . +) + . . .

pA = qA = 0 =⇒ A(Φ1, . . . , Φn) =
δ4(p)δ8(q)

〈12〉 . . . 〈n1〉
P(λ, λ̃, η), 〈ij〉 = λα

i λjα.

P = PMHV + PNMHV + . . . + PMHV.

Tree-level gluon amplitudes are identical in any gauge theory - e.g. QCD.
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All tree-level amplitudes

Solve for all tree-level amplitudes. JMD, Henn

. . .. .
.. . .

1̂1̂
2

2 3

n̄n̄

P̂ P̂i

i − 1 i

+
P

The full tree-level amplitude is fixed by its analytic structure.

NMHV example: JMD, Henn, Korchemsky Sokatchev

ANMHV
n =

δ(4)(p) δ(8)(q)

〈1 2〉〈2 3〉 . . . 〈n 1〉

X

2≤s<t≤n−1

Rn;st

Rr;s,t =
〈s s − 1〉〈t t − 1〉δ4(〈r|xrsxst|θtr〉 + 〈r|xrtxts|θsr〉)

x2
st〈r|xrsxst|t〉〈r|xrsxst|t − 1〉〈r|xrtxts|s〉〈r|xrtxts|s − 1〉

pαα̇
i = λα

i λ̃
α̇
i = xαα̇

i − xαα̇
i+1, qαA

i = λα
i η

A
i = θαA

i − θαA
i+1.

Rr;s,t has non-local (spurious) poles - cancel in sum.
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Dual Superconformal Symmetry

Solution for amplitudes also has a new symmetry. JMD, Henn, Korchemsky Sokatchev

The variables x and θ have a meaning as coordinates of a dual space,

The amplitudes are covariant under superconformal transformations of the dual variables x and θ.

Distinct from the original superconformal symmetry of the N = 4 SYM Lagrangian.

x1

x2

x3

x4

xn

p1

p2

p3

pn



CERN 21/01/11 - p. 10/16

Yangian symmetry JMD,Henn,Plefka

Think of dual superconformal symmetries as fundamental. JMD,Ferro

An =
δ4(p)δ8(q)

〈12〉〈23〉 . . . 〈n1〉
Pn, JaPn = 0.

Momentum twistorsWA
i = (λα

i µα̇
i = xαα̇

i λiα | χA
i = θαA

i λiα): Hodges

JA
B =

X

i

WA
i

∂

∂WB
i

Original conformal symmetry kαα̇An = 0 induces second order symmetry of Pn,

J(1)A
B =

X

i<j

(−1)C
»

WA
i

∂

∂WC
i

WC
j

∂

∂WB
j

− (j, i)

–

.

so we have
JaPn = 0 J(1)

a Pn = 0.

Simplest invariant: Mason, Skinner

[a, b, c, d, e] =
δ4(χa(bcde) + cyclic)

(abcd)(bcde)(cdea)(deab)(eabc)
(abcd) = WA

a WB
b WC

c WD
d εABCD .
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Beyond tree-level: amplitudes and Wilson loops

Beyond tree-level, amplitudes are infrared divergent.

AMHV
n = AMHVtree

n exp
h

IR div + FMHV
n (p1, . . . , pn)

i

.

For MHV: amplitude/Wilson loop duality - contour is the lightlike polygon. Alday,Maldacena,
JMD,Korchemsky,Sokatchev,
Brandhuber,Heslop,Travaglini,

JMD,Henn,Korchemsky,Sokatchev.

Wn = exp
h

UV div + FWL
n (x1, . . . , xn)

i

.

x1

x2

x3

x4

xn

p1

p2

p3

pn

Beyond MHV: appropriate supersymmetrisation. Mason,Skinner,
Caron-Huot.
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Wilson loops : conformal symmetry

Conformal Ward identity for WL =⇒ dual conformal symmetry for MHV amplitude.
JMD, Henn, Korchemsky Sokatchev

KµFn = Γcusp(a)
X

i

(2xµ
i − xµ

i−1 − xµ
i+1) log x2

i−1,i+1

Solution unique when there are no conformal invariants.

None for n = 4, 5 =⇒ unique solution: e.g. FMHV
4 = Γcusp(a) log2(s/t)

For six points and beyond there are invariants,

u =
x2
13x2

46

x2
14x2

36

=⇒ Fn = FBDS
n + Rn(u1, . . . um) .

Remainder function Rn finite and dual conformally invariant.

Beyond MHV:

A = AMHV
tree exp

h

[IR div] + FMHV
i

P

Ratio function P IR finite and dual conformally invariant.
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Ratio function

NMHV, 6 points:
[1, 2, 3, 4, 5] = (6) . . .

P = [(1) + (4)]V1 + [(2) + (5)]V2 + [(3) + (6)]V3

+[(1) − (4)]Ṽ1 − [(2) − (3)]Ṽ2 + [(3) − (6)]Ṽ3 .

V (1)
1 =

1

2

h

− log u log w log(uw) log v + Li2(1 − u) + Li2(1 − v) + Li2(1 − w) − 2ζ2
i

.

Ṽ (1)
1 = 0 .

Dual superconformal symmetry:

Rational functions (1), (2), ... dual superconformal invariant.

Transcendental functions V1, ... only dual conformal invariant (like remainder function for MHV).

Non-zero variations Q̄eRP understood in terms of higher-point amplitudes. [Caron-Huot,He], [ Bullimore,Skinner]
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Analytic structure and bootstraps

Pick two sides of polygon and form a light-like square:

Can think of Wilson loop as flux tube propagating from bottom to top.

Perform an operator product expansion at bottom and top. Alday, Gaiotto, Maldacena, Sever, Vieira

Exchanged states are flux lines with excitations.

Can use this to predict discontinuities of Wilson loops.

Three-loop prediction for remainder function, two-loop ratio function. Dixon, JMD, Henn
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Symbols

Technology from theory of iterated integrals very useful.

Consider ‘pure’ functions (iterated integrals, multi-dimensional (Goncharov) polylogarithms):

df(k) =
X

r

f(k−1)
r d logφr

Sum over r finite, φr algebraic functions. f(1) = logφ.

Symbol:

S(f(k)) =
X

r

S(f(k−1)
r ) ⊗ logφr

Very useful in dramatic simplification of two-loop remainder function. Goncharov, Spradlin, Vergu, Volovich

Also in bootstrap procedure (for two-loop ratio function can even promote symbol to function).

Arises from Hopf algebra structure of iterated integrals.
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Summary and Outlook

Symmetries of S-matrix in field theory can be much larger than Poincaré × Internal.

For tree-level amplitudes in N = 4 super Yang-Mills theory the symmetry is Y (psl(4|4)).

[Invariants of the symmetry←→ leading singularities - Grassmannian integral - loop integrands]

Amplitudes can be represented as Wilson loops.

[At strong coupling - the integrability of the sigma model can also be used to calculate the Wilson
loop (minimal surface).]

How to interpolate between weak and strong coupling? What is the best theory of the S-matrix?

What is the role of Hopf algebra structures of iterated integral functions?


