Aspects of QCD studies at LAPTh

François Arleo

LAPTh, Annecy

Journées théorie CPTG

LPSC Grenoble - May 2012

Three axes of research

- Loop calculations in QCD
 - GOLEM project

QCD phenomenology

- Photon production in deep inelastic scattering and hadronic collisions
- QCD under extreme conditions
 - Study of quark-gluon plasma in heavy-ion collisions

Permanent staff

• F. Arleo, P. Aurenche, J.-Ph. Guillet, É. Pilon

Ph.D. students

• C. L. Nguyen, M. Zidi Sadok

External collaborators

M. Fontannaz, G. Heinrich, S. Peigné, I. Schienbein, T. Stavreva, M. Werlen, B. Zakharov, ...

Part I

Loop calculations in QCD

Why multileg loop calculation

QCD precision studies at the LHC

- NLO accuracy in order to
 - reduce the (arbitrary) scale dependence of the calculations
 - test the convergence of the perturbative series
- One-loop multi-leg processes to investigate multiparticle production
 - n jets, Z/W's + jets, ...

Why multileg loop calculation

QCD precision studies at the LHC

- NLO accuracy in order to
 - reduce the (arbitrary) scale dependence of the calculations
 - test the convergence of the perturbative series
- One-loop multi-leg processes to investigate multiparticle production
 - n jets, Z/W's + jets, ...

Status of NLO calculations

- $2 \rightarrow 3$ Standard
- $2 \rightarrow 4$ State-of-the-art
- $2 \rightarrow 5$ Rare cases

GOLEM method

GOLEM = General One Loop Evaluator of transition Matrix elements

Algorithm for the algebraic reduction of Feynman diagrams into a linear combination of process dependent tensor structures weighted by universal form factors

GOLEM = General One Loop Evaluator of transition Matrix elements

Algorithm for the algebraic reduction of Feynman diagrams into a linear combination of process dependent tensor structures weighted by universal form factors

Golem95 numerical library

- Fortran 95 library to compute form factor up to six external legs available: http://lappweb.in2p3.fr/lapth/Golem/golem95.html
- No internal mass up to now
 - Almost complete for real masses
 - Work in progress for complex masses

Applications

•
$$p + p \rightarrow Z + Z + \text{jet}$$

• $p + p \rightarrow b + \bar{b} + b + \bar{b}$ (quark induced case)

イロト イ得ト イヨト イヨト

Part II

QCD phenomenology

Francois Arleo (LAPTh)

Aspects of QCD studies at LAPTh

Journées théorie CPTG 8 / 15

Long-time expertise in the calculation of photon production at NLO in

- e⁺e⁻ collisions at LEP
- ep deep inelastic scattering at HERA
- hadronic collisions at RHIC, Tevatron, and LHC

Numerical programs available (PHOX family)

- DIPHOX: $h_1 + h_2 \rightarrow \gamma + \gamma + X$
- JETPHOX: $h_1 + h_2 \rightarrow \gamma + jet + X$

Allows for a variety of phenomenological analyses involving photons, hadrons and jets in the final state

Jet - hadron correlations in deep inelastic scattering

- Azimuthal decorrelation between hadron and jet in ep scattering
- Sensitive test of QCD radiation dynamics (DGLAP vs BFKL)

Photon production in hadronic collisions

p p collisions

- Global analysis of inclusive photon production and comparison with world data
- Study of γ jet correlations from Tevatron to LHC
 - probe of parton distributions and fragmentation into photons

Photon production in hadronic collisions

p A collisions

Predictions of photon + Q production from RHIC to LHC

constraints on the gluon distribution in nuclei

$$\frac{\sigma(\rho \ A \to \gamma \ Q \ X)}{\sigma(\rho \ \rho \to \gamma \ Q \ X)} \simeq \frac{G^A(x_{\perp} \ e^{-y})}{G^\rho(x_{\perp} \ e^{-y})}$$

Photon production in hadronic collisions

Work in progress

 Improving the calculation of photon + heavy-quark production by including fragmentation of partons into heavy-quarks

イロト イ押ト イヨト イヨト

Part III

QCD under extreme conditions

Confinement

Quarks and gluons are confined into hadrons (pions, protons, ...) and can't propagate over "large" distances as compared to $\Lambda_{_{OCD}}^{-1}\simeq 1~{\rm fm}=10^{-15}~{\rm m}$

The origin of confinement is still unknown !

Confinement

Quarks and gluons are confined into hadrons (pions, protons, \dots) and can't propagate over "large" distances as compared to $\Lambda_{_{OCD}}^{-1}\simeq 1~{\rm fm}=10^{-15}~{\rm m}$

The origin of confinement is still unknown !

A new state of matter

At high temperature ($T \simeq 200 \text{ MeV} \simeq 2 \times 10^{12} \text{ K}$) transition from confined matter towards quark-gluon plasma

- Existed less than a micro-second after the Big Bang
- Expected to be produced at the early stage of heavy ion collisions, with short lifetime ($\tau \sim 10$ fm/c $\sim 10^{-21}$ s)
- Quenches the production of jets due to parton energy loss

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Energy loss in (cold) nuclear matter

Might be at the origin of charmonium (J/ψ) suppression in p–A collisions

Energy loss in (hot) quark-gluon plasma

Mass hierarchy

$$\left(\Delta E\Big|_{g}>\right)\Delta E\Big|_{q}>\Delta E\Big|_{c}>\Delta E\Big|_{b}$$

can be studied through the correlations of photons with heavy-quark jets

That's all, thanks for your attention !