Dynamical reflection algebras: examples from Calogero-Moser models

Work in collaboration with Z.Nagy and G. Rollet (LPTM Cergy) and E. Ragoucy (LAPTH Annecy)

Sponsored in part by ANR Project DIADEMS (ANR SIMI 1 2010-BLAN-0120-02)

References:

A NEW DYNAMICAL REFLECTION ALGEBRA AND RELATED QUANTUM INTEGRABLE SYSTEMS Jean Avan, Eric Ragoucy arXiv:1106.3264, to appear, Lett. Math. Phys. (2012)

POISSON STRUCTURES OF CALOGERO MOSER AND RUIJSENAAR SCHNEIDER MODELS Inês Aniceto, Jean Avan, Antal Jevicki J. Phys. A **43**: 185201, 2010 arXiv:0912.3468

CONSTRUCTION OF DYNAMICAL BRAIDED ALGEBRAS. Zoltan Nagy, Jean Avan, Genevieve Rollet(Cergy-Pontoise U., LPTM) Lett.Math.Phys. **67**, 1-11, 2004

I -1 INTRODUCTION: THE CALOGERO-MOSER MODEL(S)

F. Calogero

S.N.M. Ruijsenaars

J. Moser

A: n-body dynamical system, non-relativistic, with 2-body potential:

$$H = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \sum_{i < j} v(q_i - q_j),$$

v(x) being $1/(sn(x))^2$ or its limits : $1/sin^2(x)$ and $1/x^2$.

 \rightarrow Initially built (Calogero '70) as nucleon-nucleon potential.

→ Also (Jevicki et al.) dynamics of collective variables in matrix models (discretization of strings)

→ Also (Airault-McKean-Moser) dynamics of Korteweg-de Vries solitons (shallow-water wave dynamics in 1+1 dimension)

Exist \rightarrow external field generalizations (Inozemtsev; e.g. add one-body potential $w(q) = q^2$ to rational CM)

- \rightarrow extensions with $q_i + q_k$ dependance (Olshanetski-Perelomov)
- → spin-dependent generalizations (Gibbons-Hermsen) : interaction $S_i S_j v(q_i q_k)$)

Remark: Quantum CM models → special polynomials as eigenfunctions (Jack polynomials).

B: Relativistic generalization : the Ruijsenaar-Schneider model

Relativistic version of the CM model with 2-body potentials combined as:

 $H = \sum_{i} (exp (\beta p_i) \prod_{k \neq i} f(q_i - q_k))$

where $f^2(x) = 1 - g^2/x^2 \dots$ with trigonometric and elliptic generalizations.

 \rightarrow Dynamics of solitons for sine Gordon model (relativistic version of KdV) (Ruijsenaar-Schneider; Babelon-Bernard)

 \rightarrow Possible connection to dynamics of Anti-de Sitter space configurations (``giant magnons") (Aniceto-Jevicki).

Both models and their generalizations : classically Liouville-integrable, with underlying structures of "dynamical reflection algebras" . What are they ?

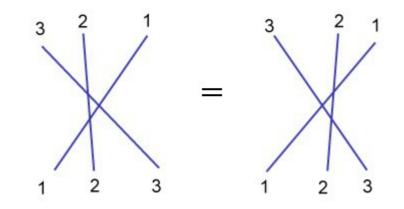
I -2 GENERAL FEATURES: QUANTUM YANG BAXTER AND QUANTUM REFLECTION EQUATIONS.

A: Bulk factorizable amplitudes

1+1 dimensional quantum integrable theories = infinite number of conserved quantities

Hence : factorization of amplitudes : $n \rightarrow n$ as combination of $2 \rightarrow 2$

Implies consistency conditions for $3 \rightarrow 3$ amplitudes (sufficient for $n \rightarrow n$):



 $R_{12}(u) R_{13}(u+v) R_{23}(v) = R_{23}(v) R_{13}(u+v) R_{12}(u),$

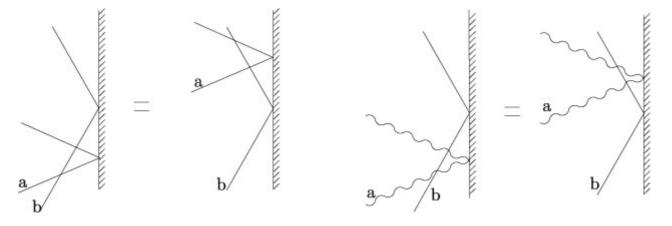
Also obtained as consistency condition for associativity of quantum group structure:

$$R_{23}(z-w)T_{12}(z)T_{13}(w) = T_{13}(w)T_{12}(z)R_{23}(z-w).$$

Considere here only bulk amplitudes (infinite space-time, no boundaries)

B: If boundaries occur:

factorizability requires extra condition including reflection matrix K on boundary:



simplest one: $R_{12}K_1R_{21}K_2 = K_2R_{12}K_1R_{21}$ (Cherednik, Sklyanin) more general: *RKRK*' = *RK'RK*.

Generalization as quadratic (braid) algebra (Maillet-Freidel):

 $A_{12}K_1B_{21}K_2 = K_2C_{12}K_1D_{12}$

with consistency conditions :

unitarity: $C_{12} = B_{21}, A_{12}A_{21} = 1 \otimes 1, D_{12}D_{21} = 1 \otimes 1$

associativity:

 \rightarrow Yang Baxter equations for *A* and *D*;

 \rightarrow Adjoint Yang Baxter equations for A/C and D/B, with form ACC = CCA and DBB = BBD

I-3 A DYNAMICAL DEFORMATION OF YANG BAXTER

From:

→ quantum exchange relation of operators in Liouville theory (Gervais Neveu)

 $\rightarrow\,$ quantum Knizhnik Zamolodchikov equation in CFT (Felder)

Consider more general cubic equation (Gervais-Neveu-Felder equation) for exchange matrix:

$$D_{12}(\lambda + \gamma h_3) D_{13} D_{23}(\lambda + \gamma h_1) = D_{23} D_{13}(\lambda + \gamma h_2) D_{12}$$
(8)

where $\{\lambda_i\}$ = coordinates on dual \mathfrak{h}^* of (Cartan) abelian subalgebra \mathfrak{h} in underlying Lie algebra (on example of Calogero-Moser model λ_i are position variables => « dynamical »); h_a = some suitable representation of \mathfrak{h} .

= abelian deformation of Yang Baxter equation.

 \rightarrow Also holds for Boltzmann weight matrix of particular models in Statistical Mechanics (Interaction Round a Face or IRF).

 \rightarrow Also occurs as consistency condition for associativity of *dynamical* deformation of quantum group structure :

 $D_{12}(\lambda + h_q)T_1 T_2(\lambda + h_1) = T_2 T_1(\lambda + h_2)D_{12}$

Natural question: how to dynamically deform $R_{12}K_1R_{21}K_2 = K_2R_{12}K_1R_{21}$? more precisely:

Introduce extra parameter λ in *R* and *T* such that *R* obey GNF equation ?

More generally how to deform similarly $A_{12}K_1B_{21}K_2 = K_2C_{12}K_1D_{21}$?

II DYNAMICAL DEFORMATIONS OF REFLECTION ALGEBRAS

3 possibilities known at this time; general structure is :

 $A_{12}(\lambda) K_1(\lambda + e_R h_2) B_{21}(\lambda) K_2(\lambda + e_L h_1) = K_2(\lambda + e_R h_1) C_{12}(\lambda) K_1(\lambda + e_L h_2) D_{21}(\lambda)$

plus zero-weight conditions :

 $e_{R} [h_{1} + h_{2}, A_{12}] = e_{L} [h_{1} + h_{2}, D_{12}] = 0; [e_{R} h_{1} + e_{L} h_{2}, C_{12}] = [e_{L} h_{1} + e_{R} h_{2}, B_{12}] = 0$

IIA: "Dynamical boundary algebra": $e_R = e_L = +1$ up to scale γ .

First identified in IRF models with boundaries (Behrend-Pearce-O'Brien) Studied extensively by Fan-Hou- Li-Shi and later by Nagy-Avan-Rollet

IIB: ``Semi-dynamical boundary algebra'': $e_R = 0$, $e_L = 1$ or $e_R = 1$, $e_L = 0$

First identified in quantum Ruijsenaar-Schneider model (see later) by Arutyunov-Chekov-Frolov Extensive studies by Nagy-Avan-Rollet, Avan-Zambon, Avan-Rollet.

IIC: `Second dynamical boundary algebra'': $e_R = -1$, $e_L = 1$ or $e_R = 1$, $e_L = -1$

Identified (classical limit) in second Poisson structure of Calogero-Moser model (Avan-Ragoucy) Studied extensively by Avan-Ragoucy.

IID: Associated Dynamical Yang Baxter equations:

 $A_{12} (\lambda) A_{13} (\lambda + e_R h_2) A_{23} (\lambda) = A_{23} (\lambda + e_R h_1) A_{13} (\lambda) A_{12} (\lambda + e_R h_2) (Dynamical YB eqn)$ $D_{12} (\lambda + e_L h_3) D_{13} (\lambda) D_{23} (\lambda + e_L h_1) = D_{23} (\lambda) D_{13} (\lambda + e_L h_2) D_{12} (\lambda) (dual DYBE)$ $A_{12} (\lambda) C_{13} (\lambda + e_R h_2) C_{23} (\lambda) = C_{23} (\lambda + e_R h_1) C_{13} (\lambda) A_{12} (\lambda + e_L h_2) (adjoint DYBE)$ $D_{12} (\lambda + e_R h_3) B_{13} (\lambda) B_{23} (\lambda + e_L h_1) = B_{23} (\lambda) B_{13} (\lambda + e_L h_2) D_{12} (\lambda) (dual adjoint DYBE)$

III CONNECTIONS TO CALOGERO MOSER MODELS

IIIA: What is a classical r-matrix ?

2n-dimensional classical integrable system (canonical variables $\{p,q\}$) => n Poisson-commuting independent dynamical quantities including initial Hamiltonian.

Characterized by:

1) Lax representation dL/dt = [L,M] where L = L(p,q) = Lax matrix, Lie-algebra (*G*) valued; M = M(p,q) Lie algebra-valued.

2) Poisson structure of Lax matrix elements encapsulated into algebraic, *r*-matrix structure:

 $\{L_1, L_2\} = [r_{12}, L_1] + [r_{21}, L_2] \iff$ conserved quantities $Tr L^n$ Poisson commute.

r in GxG, depends on dynamical variables; Jacobi identity on Poisson bracket realized if r obeys classical Yang Baxter equation. In general:

 $[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{32}, r_{13}] + \{r_{12}, L_3\} + \{r_{13}, L_2\} = 0$

Complicated, semi-implicit non-algebraic equation. Better understood if existence of algebraic form for $\{r_{12}, L_3\}$

examples: $\{r_{12}, L_3\} = (h_3 \cdot d/dq) r_{12}$; $\{r_{12}, L_3\} = (e_R h_3 L_3 + e_L L_3 h_3) \cdot d/dq r_{12}$

In particular when

 \rightarrow degree zero expression available: { r_{12} , L_3 } = (h_3 . d/dq) r_{12}

 \rightarrow plus possibility of additional decomposition into equations for *d* and *s*:

=> dynamical cYB (Feher 1990 from WZNW models):

 $[d_{12}, d_{13}] + [d_{12}, d_{23}] + [d_{13}, d_{23}] + (h_1 \cdot d/dq) d_{23} - (h_2 \cdot d/dq) d_{13} + (h_3 \cdot d/dq) d_{12} = 0$

plus adjoint form for *s* and some other conditions ... yields cYB for d+s.

= **SEMI-CLASSICAL LIMIT OF GNF EQUATION** ($D = 1 \otimes 1 + \hbar d + o(\hbar^2)$, $h \rightarrow \hbar h$: order 2 of expansion in powers of \hbar is classical GNF equation).

Remark: if *r*-matrix has no dynamical dependance plus skew-symmetry: gets classical standard YB equation (classification by Belavin-Drinfel'd)

 $[d_{12}, d_{13}] + [d_{12}, d_{23}] + [d_{13}, d_{23}] = 0$

IIIB Recall: The Calogero-Moser model is integrable

n-body dynamical system, non-relativistic, with 2-body potential:

$$H = \frac{1}{2} \sum_{i=1}^{n} p_i^2 + \sum_{i < j} v(q_i - q_j),$$

v(x) being $1/(sn(x))^2$ or its limits : $1/sin^2(x)$ and $1/x^2$.

Lax matrix is: $(v = \frac{1}{2}u^2)$

$$L_{jk} = p_j \,\delta_{jk} + \sqrt{-1}(1-\delta_{jk}) u(q_j-q_k),$$

r-matrix (for canonical structure $\{p_i, q_j\} = \delta_{ij}$ and rational potential $v(x) = 1/x^2$)

 $r = \sum \frac{1}{(q_i - q_j)} (e_{ij} \otimes e_{ji} + e_{ii} \otimes (e_{ij} - e_{ji}))$

IIIC Connection to semi-dynamical reflection algebra: $e_R = 0$; $e_L = 1$

r = a - c = d - b with zero-weight conditions on *a*,*b*,*c*,*d* corresponding to semidynamical reflection algebra (Arutyunov-Chekov-Frolov): *d* skew-symmetric with sole elements $e_{ij} \otimes e_{ji}$; *b*,*c* semidiagonal; *a* ``full" with both types of components.

- \rightarrow *a* obeys non-dynamical cYB,
- \rightarrow *d* obeys dynamical cYB a la Feher,

 \rightarrow *b* and *c* obey semi-classical limit of semidynamical adjoint YB equations.

CLASSICAL 1ST POISSON STRUCTURE OF LAX CALOGERO-MOSER MATRIX = LINEAR CLASSICAL LIMIT OF SEMIDYNAMICAL REFLECTION ALCERRA

LINEAR CLASSICAL LIMIT OF SEMIDYNAMICAL REFLECTION ALGEBRA

IIID Second Poisson bracket of Calogero-Moser

1: What is ``second Poisson bracket'' ?

From works of Magri et al.:

classical integrability <=> hierarchy of Poisson-commuting Hamiltonians under one PB structure OR classical integrability <=> hierarchy of compatible Poisson structures for one Hamiltonian.

Hierarchies connected by dual time evolution : $\{H_n, X\}_m = \{H_m, X\}_n$

For skew-symmetric, non-dynamical *r*-matrix: easy formulation (Sklyanin; Li-Parmentier)

→ First Poisson bracket:

 $\{L_1, L_2\} = [r_{12}, L_1] + [r_{21}, L_2]$

 \rightarrow Second Poisson bracket:

 ${L_1, L_2} = [r_{12}, L_1 L_2]$ generalized to non-skew-symmetric non-dynamical case as ${L_1, L_2} = a_{12} L_1 L_2 + L_1 s_{12} L_2 + L_2 s_{12} L_1 + L_1 L_2 a_{12}$ (Li-Parmentier, see also Maillet-Freidel)

HERE: DYNAMICAL r-MATRIX, SKLYANIN FORMULATION UNAPPLICABLE

Second Poisson bracket developed for rational CM model by Magri; Bartocchi et al; Continuous limit by Aniceto et al: relevant in aspects of string theory and CFT.

Technically difficult to formulate in terms of (first) canonical variables, easy in terms of Lax observables $Tr L^n$, $Tr Q L^n$, $Q = \text{diag}(q_1, \dots, q_n)$. Explicit form now available for 2 sites (Bartocchi et al.) and 3 sites (Avan-Ragoucy).

2: Connection to second DBA (Avan-Ragoucy)

2-site Lax matrix of rational CM model, with second Poisson bracket. PB structure reads:

 $\{L_1, L_2\} = a_{12}L_1L_2 + L_1b_{12}L_2 + L_2c_{12}L_1 + L_1L_2d_{12}$

where a,b,c,d obey semi-classical limit of 2^{nd} dynamical YB equation.

CLASSICAL 2nd POISSON STRUCTURE OF LAX CALOGERO-MOSER MATRIX

QUADRATIC CLASSICAL LIMIT OF 2nd DYNAMICAL REFLECTION ALGEBRA

NOT TRUE FOR *n*>2 **SITES**: *a,b,c,d* matrices are not known but necessarily *p,q* dependent due to form of PB's .

3: Remark: Ruijsenaar-Schneider model

The Lax matrix of RS endowed with the canonical (first) Poisson structure $\{p_i, q_j\} = \delta_{ij}$ has quadratic r-matrix structure :

 $\{L_1, L_2\} = a_{12}L_1L_2 + L_1b_{12}L_2 + L_2c_{12}L_1 + L_1L_2d_{12}$

BUT with *a*,*b*,*c*,*d* parametrizing the **first** Poisson structure of Calogero-Moser: = **SDRA**

CLASSICAL 1ST POISSON STRUCTURE OF LAX RUIJSENAAR-SCHNEIDER MATRIX = QUADRATIC CLASSICAL LIMIT OF SEMIDYNAMICAL REFLECTION ALGEBRA