Dynamical reflection algebras: examples from Calogero-Moser models

Work in collaboration with Z.Nagy and G. Rollet (LPTM Cergy) and E. Ragoucy (LAPTH Annecy)
Sponsored in part by ANR Project DIADEMS (ANR SIMI 1 2010-BLAN-0120-02)
References:

```
A NEW DYNAMICAL REFLECTION ALGEBRA AND RELATED QUANTUM INTEGRABLE SYSTEMS
Jean Avan, Eric Ragoucy
arXiv:1106.3264, to appear, Lett. Math. Phys. (2012)
```


POISSON STRUCTURES OF CALOGERO MOSER AND RUIJSENAAR SCHNEIDER

 MODELSInês Aniceto, Jean Avan, Antal Jevicki
J. Phys. A 43: 185201, 2010
arXiv:0912.3468
CONSTRUCTION OF DYNAMICAL BRAIDED ALGEBRAS.
Zoltan Nagy, Jean Avan, Genevieve Rollet(Cergy-Pontoise U., LPTM)
Lett.Math.Phys. 67, 1-11, 2004

I-1 INTRODUCTION: THE CALOGERO-MOSER MODEL(S)

A: n-body dynamical system, non-relativistic, with 2-body potential:

$$
H=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i<j} v\left(q_{i}-q_{j}\right)
$$

$v(x)$ being $1 /(\operatorname{sn}(x))^{2}$ or its limits: $1 / \sin ^{2}(x)$ and $1 / x^{2}$.
\rightarrow Initially built (Calogero '70) as nucleon-nucleon potential.
\rightarrow Also (Jevicki et al.) dynamics of collective variables in matrix models (discretization of strings)
\rightarrow Also (Airault-McKean-Moser) dynamics of Korteweg-de Vries solitons (shallow-water wave dynamics in $1+1$ dimension)

Exist \rightarrow external field generalizations (Inozemtsev; e.g. add one-body potential $w(q)=q^{2}$ to rational CM)
\rightarrow extensions with $q_{i}+q_{k}$ dependance (Olshanetski-Perelomov)
\rightarrow spin-dependent generalizations (Gibbons-Hermsen) : interaction $S_{i} S_{j} v\left(q_{i}-q_{k}\right)$)
Remark: Quantum CM models \rightarrow special polynomials as eigenfunctions (Jack polynomials).
B: Relativistic generalization : the Ruijsenaar-Schneider model
Relativistic version of the CM model with 2-body potentials combined as:
$H=\sum_{i}\left(\exp \left(\beta p_{i}\right) \prod_{k \neq i} f\left(q_{i}-q_{k}\right)\right)$
where $f^{2}(x)=1-g^{2} / x^{2} \ldots$ with trigonometric and elliptic generalizations.
\rightarrow Dynamics of solitons for sine Gordon model (relativistic version of KdV) (Ruijsenaar-Schneider; Babelon-Bernard)
\rightarrow Possible connection to dynamics of Anti-de Sitter space configurations (`giant magnons") (Aniceto-Jevicki).

Both models and their generalizations : classically Liouville-integrable, with underlying structures of "dynamical reflection algebras" . What are they ?

I -2 GENERAL FEATURES: QUANTUM YANG BAXTER AND QUANTUM REFLECTION EQUATIONS.

A: Bulk factorizable amplitudes

$1+1$ dimensional quantum integrable theories = infinite number of conserved quantities
Hence : factorization of amplitudes : $n \rightarrow n$ as combination of $2 \rightarrow 2$
Implies consistency conditions for $3 \rightarrow 3$ amplitudes (sufficient for $n \rightarrow n$):

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u),
$$

Also obtained as consistency condition for associativity of quantum group structure:

$$
R_{23}(z-w) T_{12}(z) T_{13}(w)=T_{13}(w) T_{12}(z) R_{23}(z-w)
$$

Considere here only bulk amplitudes (infinite space-time, no boundaries)

B: If boundaries occur:

factorizability requires extra condition including reflection matrix K on boundary:

simplest one: $R_{12} K_{1} R_{21} K_{2}=K_{2} R_{12} K_{1} R_{21}$ (Cherednik, Sklyanin)

more general: $R K R K^{\prime}=R K^{\prime} R K$.

Generalization as quadratic (braid) algebra (Maillet-Freidel):

$$
A_{12} K_{1} B_{21} K_{2}=K_{2} C_{12} K_{1} D_{12}
$$

with consistency conditions :
unitarity: $\quad C_{12}=B_{21}, A_{12} A_{21}=1 \otimes 1, D_{12} D_{21}=1 \otimes 1$
associativity:
\rightarrow Yang Baxter equations for A and D;
\rightarrow Adjoint Yang Baxter equations for A / C and D / B, with form $A C C=C C A$ and $D B B=B B D$

I-3 A DYNAMICAL DEFORMATION OF YANG BAXTER

From:
\rightarrow quantum exchange relation of operators in Liouville theory (Gervais Neveu)
\rightarrow quantum Knizhnik Zamolodchikov equation in CFT (Felder)

Consider more general cubic equation (Gervais-Neveu-Felder equation) for exchange matrix:
$D_{12}\left(\lambda+\gamma h_{3}\right) D_{13} D_{23}\left(\lambda+\gamma h_{1}\right)=D_{23} D_{13}\left(\lambda+\gamma h_{2}\right) D_{12}$
where $\left\{\lambda_{i}\right\}=$ coordinates on dual \mathfrak{h}^{*} of (Cartan) abelian subalgebra \mathfrak{h} in underlying Lie algebra (on example of Calogero-Moser model λ_{i} are position variables => «dynamical»); $h_{a}=$ some suitable representation of \mathfrak{h}.
= abelian deformation of Yang Baxter equation.
\rightarrow Also holds for Boltzmann weight matrix of particular models in Statistical Mechanics (Interaction Round a Face or IRF).
\rightarrow Also occurs as consistency condition for associativity of dynamical deformation of quantum group structure :
$D_{12}\left(\lambda+h_{q}\right) T_{1} T_{2}\left(\lambda+h_{1}\right)=T_{2} T_{1}\left(\lambda+h_{2}\right) D_{12}$
Natural question: how to dynamically deform $R_{12} K_{1} R_{21} K_{2}=K_{2} R_{12} K_{1} R_{21}$? more precisely:
Introduce extra parameter λ in R and T such that R obey GNF equation ?
More generally how to deform similarly $A_{12} K_{1} B_{21} K_{2}=K_{2} C_{12} K_{1} D_{21}$?

II DYNAMICAL DEFORMATIONS OF REFLECTION ALGEBRAS

3 possibilities known at this time; general structure is :
$A_{12}(\lambda) K_{1}\left(\lambda+e_{R} h_{2}\right) B_{21}(\lambda) K_{2}\left(\lambda+e_{L} h_{1}\right)=K_{2}\left(\lambda+e_{R} h_{1}\right) C_{12}(\lambda) K_{1}\left(\lambda+e_{L} h_{2}\right) D_{21}(\lambda)$
plus zero-weight conditions:

$$
e_{R}\left[h_{1}+h_{2}, A_{12}\right]=e_{L}\left[h_{1}+h_{2}, D_{12}\right]=0 ; \quad\left[e_{R} h_{1}+e_{L} h_{2}, C_{12}\right]=\left[e_{L} h_{1}+e_{R} h_{2}, B_{12}\right]=0
$$

IIA: '`Dynamical boundary algebra'' : \(e_{R}=e_{L}=+1\) up to scale \(\gamma\). First identified in IRF models with boundaries (Behrend-Pearce-O'Brien) Studied extensively by Fan-Hou- Li-Shi and later by Nagy-Avan-Rollet IIB: '`Semi-dynamical boundary algebra'': $e_{R}=0, e_{L}=1$ or $e_{R}=1, e_{L}=0$
First identified in quantum Ruijsenaar-Schneider model (see later) by Arutyunov-Chekov-Frolov Extensive studies by Nagy-Avan-Rollet, Avan-Zambon, Avan-Rollet.

IIC: ' ${ }^{\prime}$ Second dynamical boundary algebra'' $: e_{R}=-1, e_{L}=1$ or $e_{R}=1, e_{L}=-1$
Identified (classical limit) in second Poisson structure of Calogero-Moser model (Avan-Ragoucy) Studied extensively by Avan-Ragoucy.

IID: Associated Dynamical Yang Baxter equations:

$$
\begin{aligned}
& A_{12}(\lambda) A_{13}\left(\lambda+e_{R} h_{2}\right) A_{23}(\lambda)=A_{23}\left(\lambda+e_{R} h_{1}\right) A_{13}(\lambda) A_{12}\left(\lambda+e_{R} h_{2}\right) \text { (Dynamical YB eqn) } \\
& D_{12}\left(\lambda+e_{L} h_{3}\right) D_{13}(\lambda) D_{23}\left(\lambda+e_{L} h_{1}\right)=D_{23}(\lambda) D_{13}\left(\lambda+e_{L} h_{2}\right) D_{12}(\lambda) \text { (dual DYBE) } \\
& A_{12}(\lambda) C_{13}\left(\lambda+e_{R} h_{2}\right) C_{23}(\lambda)=C_{23}\left(\lambda+e_{R} h_{1}\right) C_{13}(\lambda) A_{12}\left(\lambda+e_{L} h_{2}\right) \text { (adjoint DYBE) } \\
& D_{12}\left(\lambda+e_{R} h_{3}\right) B_{13}(\lambda) B_{23}\left(\lambda+e_{L} h_{1}\right)=B_{23}(\lambda) B_{13}\left(\lambda+e_{L} h_{2}\right) D_{12}(\lambda) \text { (dual adjoint DYBE) }
\end{aligned}
$$

III CONNECTIONS TO CALOGERO MOSER MODELS

IIIA: What is a classical r-matrix ?

$2 n$-dimensional classical integrable system (canonical variables $\{p, q\}$) $=>n$ Poisson-commuting independent dynamical quantities including initial Hamiltonian.

Characterized by:

1) Lax representation $d L / d t=[L, M]$ where $L=L(p, q)=$ Lax matrix, Lie-algebra (G) valued; $M=M(p, q)$ Lie algebra-valued.
2) Poisson structure of Lax matrix elements encapsulated into algebraic, r-matrix structure:

$$
\left\{L_{1}, L_{2}\right\}=\left[r_{12}, L_{1}\right]+\left[r_{21}, L_{2}\right]<=>\text { conserved quantities } \operatorname{Tr} L \wedge n \text { Poisson commute. }
$$

r in $G x G$, depends on dynamical variables; Jacobi identity on Poisson bracket realized if r obeys classical Yang Baxter equation. In general:
$\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{32}, r_{13}\right]+\left\{r_{12}, L_{3}\right\}+\left\{r_{13}, L_{2}\right\}=0$
Complicated, semi-implicit non-algebraic equation.
Better understood if existence of algebraic form for $\left\{r_{12}, L_{3}\right\}$
examples: $\left\{r_{12}, L_{3}\right\}=\left(h_{3} . d / d q\right) r_{12} ;\left\{r_{12}, L_{3}\right\}=\left(e_{R} h_{3} L_{3}+e_{L} L_{3} h_{3}\right) . d / d q r_{12}$
In particular when
\rightarrow degree zero expression available: $\left\{r_{12}, L_{3}\right\}=\left(h_{3} . d / d q\right) r_{12}$
\rightarrow plus possibility of additional decomposition into equations for d and s :
=> dynamical cYB (Feher 1990 from WZNW models):
$\left[d_{12}, d_{13}\right]+\left[d_{12}, d_{23}\right]+\left[d_{13}, d_{23}\right]+\left(h_{1} . d / d q\right) d_{23}-\left(h_{2} . d / d q\right) d_{13}+\left(h_{3} . d / d q\right) d_{12}=0$
plus adjoint form for s and some other conditions ... yields cYB for $d+s$.
$=$ SEMI-CLASSICAL LIMIT OF GNF EQUATION $\left(D=1 \otimes 1+\hbar d+o\left(\hbar^{2}\right), h \rightarrow \hbar h\right.$: order 2 of expansion in powers of \hbar is classical GNF equation).

Remark: if r-matrix has no dynamical dependance plus skew-symmetry: gets classical standard YB equation (classification by Belavin-Drinfel'd)

$$
\left[d_{12}, d_{13}\right]+\left[d_{12}, d_{23}\right]+\left[d_{13}, d_{23}\right]=0
$$

IIIB Recall: The Calogero-Moser model is integrable

n-body dynamical system, non-relativistic, with 2-body potential:

$$
H=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i<j} v\left(q_{i}-q_{j}\right)
$$

$v(x)$ being $1 /(\operatorname{sn}(x))^{2}$ or its limits: $1 / \sin ^{2}(x)$ and $1 / x^{2}$.
Lax matrix is: $\left(v=1 / 2 u^{2}\right)$

$$
L_{j k}=p_{j} \delta_{j k}+\sqrt{-1}\left(1-\delta_{j k}\right) u\left(q_{j}-q_{k}\right)
$$

r- matrix (for canonical structure $\left\{p_{i}, q_{j}\right\}=\delta_{i j}$ and rational potential $v(x)=1 / x^{2}$)
$r=\sum 1 /\left(q_{i}-q_{i j}\right)\left(e_{i j} \otimes e_{j i}+e_{i i} \otimes\left(e_{i j}-e_{j i}\right)\right)$
IIIC Connection to semi-dynamical reflection algebra: $e_{R}=0 ; e_{L}=1$
$r=a-c=d-b$ with zero-weight conditions on a, b, c, d corresponding to semidynamical reflection algebra (Arutyunov-Chekov-Frolov): d skew-symmetric with sole elements $e_{i j} \otimes e_{j i} ; b, c$ semidiagonal ; a "full" with both types of components.
$\rightarrow a$ obeys non-dynamical cYB,
$\rightarrow d$ obeys dynamical cYB a la Feher,
$\rightarrow b$ and c obey semi-classical limit of semidynamical adjoint YB equations.

CLASSICAL 1ST POISSON STRUCTURE OF LAX CALOGERO-MOSER MATRIX =
 LINEAR CLASSICAL LIMIT OF SEMIDYNAMICAL REFLECTION ALGEBRA

IIID Second Poisson bracket of Calogero-Moser

1: What is ``second Poisson bracket' ?

From works of Magri et al.:
classical integrability <=> hierarchy of Poisson-commuting Hamiltonians under one PB structure OR
classical integrability <=> hierarchy of compatible Poisson structures for one Hamiltonian.
Hierarchies connected by dual time evolution : $\left\{H_{n}, X\right\}_{m}=\left\{H_{m}, X\right\}_{n}$
For skew-symmetric, non-dynamical r-matrix: easy formulation (Sklyanin; Li-Parmentier)
\rightarrow First Poisson bracket:
$\left\{L_{1}, L_{2}\right\}=\left[r_{12}, L_{1}\right]+\left[r_{21}, L_{2}\right]$
\rightarrow Second Poisson bracket:
$\left\{L_{1}, L_{2}\right\}=\left[r_{12}, L_{1} L_{2}\right]$ generalized to non-skew-symmetric non-dynamical case
as $\left\{L_{1}, L_{2}\right\}=a_{12} L_{1} L_{2}+L_{1} S_{12} L_{2}+L_{2} S_{12} L_{1}+L_{1} L_{2} a_{12}$ (Li-Parmentier, see also MailletFreidel)

HERE: DYNAMICAL r-MATRIX, SKLYANIN FORMULATION UNAPPLICABLE

Second Poisson bracket developed for rational CM model by Magri; Bartocchi et al; Continuous limit by Aniceto et al: relevant in aspects of string theory and CFT.

Technically difficult to formulate in terms of (first) canonical variables, easy in terms of Lax observables $\operatorname{Tr} L^{\wedge} n, \operatorname{Tr} Q L^{\wedge} n, Q=\operatorname{diag}\left(q_{1}, \ldots q_{n}\right)$. Explicit form now available for 2 sites (Bartocchi et al.) and 3 sites (Avan-Ragoucy).

2: Connection to second DBA (Avan-Ragoucy)

2-site Lax matrix of rational CM model, with second Poisson bracket. PB structure reads:
$\left\{L_{1}, L_{2}\right\}=a_{12} L_{1} L_{2}+L_{1} b_{12} L_{2}+L_{2} C_{12} L_{1}+L_{1} L_{2} d_{12}$
where a, b, c, d obey semi-classical limit of $2^{\text {nd }}$ dynamical YB equation.

CLASSICAL $2^{\text {nd }}$ POISSON STRUCTURE OF LAX CALOGERO-MOSER MATRIX =
 QUADRATIC CLASSICAL LIMIT OF $2^{\text {nd }}$ DYNAMICAL REFLECTION ALGEBRA

NOT TRUE FOR $\boldsymbol{n}>2$ SITES: a, b, c, d matrices are not known but necessarily p, q dependent due to form of PB's .

3: Remark: Ruijsenaar-Schneider model

The Lax matrix of RS endowed with the canonical (first) Poisson structure $\left\{p_{i}, q_{j}\right\}=\delta_{i j}$ has quadratic r-matrix structure :
$\left\{L_{1}, L_{2}\right\}=a_{12} L_{1} L_{2}+L_{1} b_{12} L_{2}+L_{2} C_{12} L_{1}+L_{1} L_{2} d_{12}$
BUT with a, b, c, d parametrizing the first Poisson structure of Calogero-Moser: = SDRA

CLASSICAL 1ST POISSON STRUCTURE OF LAX RUIJSENAAR-SCHNEIDER MATRIX =
QUADRATIC CLASSICAL LIMIT OF SEMIDYNAMICAL REFLECTION ALGEBRA

