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I -1  INTRODUCTION: THE CALOGERO-MOSER MODEL(S)

 F. Calogero                                           S.N.M. Ruijsenaars                             J. Moser

A: n-body dynamical system, non-relativistic, with 2-body potential:

v (x) being 1/ (sn(x))² or its limits : 1/ sin²(x)  and 1/x². 

→ Initially built (Calogero '70) as nucleon-nucleon potential.
→ Also (Jevicki et al.) dynamics of collective variables in matrix models (discretization of strings)
→ Also (Airault-McKean-Moser) dynamics of Korteweg-de Vries solitons (shallow-water
wave dynamics in 1+1 dimension)



Exist → external field generalizations (Inozemtsev; e.g.  add one-body potential   w(q) = q²  to 
rational CM)
          → extensions with qi  + qk  dependance (Olshanetski-Perelomov) .... 
          → spin-dependent generalizations (Gibbons-Hermsen) : interaction SiSj  v(qi  - qk ))

Remark: Quantum CM models → special polynomials as eigenfunctions  (Jack polynomials).

B:  Relativistic generalization : the Ruijsenaar-Schneider model

Relativistic version of the CM model with  2-body potentials combined as:

H =  ∑ i (exp (β pi ) ∏  k i f(qi  - qk ))

where   f² (x) = 1 – g²/x² …  with trigonometric and elliptic generalizations.

→ Dynamics of solitons for sine Gordon model (relativistic version of KdV) (Ruijsenaar-Schneider; 
Babelon-Bernard)
→ Possible connection to dynamics of Anti-de Sitter space configurations (``giant magnons'')
(Aniceto-Jevicki).

Both models and their generalizations : classically Liouville-integrable, with underlying structures 
of ''dynamical reflection algebras'' . What are they ?

 I -2  GENERAL FEATURES: QUANTUM YANG BAXTER AND QUANTUM 
REFLECTION EQUATIONS.

 A: Bulk factorizable amplitudes

1+1 dimensional quantum integrable theories = infinite number of conserved quantities

Hence : factorization of amplitudes : n → n as combination of 2 → 2 

Implies consistency conditions for 3 → 3 amplitudes (sufficient for n → n):

                          



Also obtained as consistency condition for associativity of quantum group structure:

 

Considere here only bulk amplitudes (infinite space-time, no boundaries)

B: If boundaries occur: 

factorizability requires extra condition including reflection matrix K on boundary:

simplest one:  R12 K1R21K2 = K2R12K1R21                         more general: RKRK' = RK'RK. 
 (Cherednik, Sklyanin)                                    

Generalization as quadratic (braid) algebra  (Maillet-Freidel):

                                                A12 K1 B21K2 = K2C12K1D12 

with consistency conditions :

unitarity:   C12 = B21, A12 A21 = 11, D12 D21 = 11

associativity: 

→ Yang Baxter equations for A and D; 
→ Adjoint Yang Baxter equations for A/C and D/B, with form ACC = CCA and DBB = BBD

I-3 A DYNAMICAL DEFORMATION OF YANG BAXTER

From: 
→ quantum exchange relation of operators in Liouville theory (Gervais Neveu)
→ quantum Knizhnik Zamolodchikov equation in CFT (Felder )



Consider more general cubic equation (Gervais-Neveu-Felder equation) for  exchange matrix:

where {λi}  = coordinates on dual  of (Cartan) abelian subalgebra  in underlying Lie algebra (on 

example of Calogero-Moser model   λi  are position variables  =>  « dynamical ») ; ha  = some
suitable representation of  .

= abelian deformation of Yang Baxter equation. 

→ Also holds for Boltzmann weight matrix of particular models in Statistical
Mechanics (Interaction Round a Face or IRF ).

→ Also occurs as consistency condition for associativity of dynamical deformation of quantum 
group structure : 

D12( λ+ hq)T1 T2( λ+h1) = T2 T1( λ+h2)D12

Natural question: how to dynamically deform  R12 K1R21K2 = K2R12K1R21    ?  more precisely:

Introduce extra parameter λ in R and T  such that R obey GNF equation ?

More generally how to deform similarly  A12 K1B21K2 = K2C12K1D21    ?

II   DYNAMICAL DEFORMATIONS OF REFLECTION ALGEBRAS

3 possibilities known at this time; general structure is :

A12  (λ) K1  (λ+ eR  h 2  ) B21  (λ)  K 2 (λ+ e L h 1 )  = K2    (λ+ e R  h 1 )     C12  (λ) K1  (λ+ e L h 2  )D21  (λ)

plus zero-weight conditions :

   eR  [ h1 + h2,  A12] =  e L [ h1 + h2,  D12]  = 0;   [ eR h 1 + eL h 2 , C12  ] = [ eL h 1 + eR h 2 , B12  ] = 0

IIA: ``Dynamical boundary algebra'' :   eR  = eL  = +1  up to scale γ .

First identified in IRF models with boundaries ( Behrend-Pearce-O'Brien)
Studied extensively by Fan-Hou- Li-Shi and later by Nagy-Avan-Rollet

IIB: ``Semi-dynamical boundary algebra'':   eR  = 0,  eL  = 1   or   eR   = 1 ,  eL  = 0

First identified in quantum Ruijsenaar-Schneider model (see later) by Arutyunov-Chekov-Frolov
Extensive studies by Nagy-Avan-Rollet, Avan-Zambon, Avan-Rollet.



IIC: ``Second dynamical boundary algebra'' :  eR  = -1 ,  eL  = 1  or   eR  = 1 ,  eL  = -1

Identified (classical limit) in second Poisson structure of Calogero-Moser model (Avan-Ragoucy)
Studied extensively by Avan-Ragoucy.

IID:  Associated Dynamical Yang Baxter equations:

 A12  (λ )A13  (λ+eR  h 2 ) A23 (λ)  = A23 (λ+eR  h 1 ) A13 (λ) A12  (λ+eR  h 2 )  (Dynamical YB eqn)
D12 (λ+eL  h 3 ) D13 (λ) D23 (λ+eL  h 1 ) = D23 (λ ) D 13 (λ+ eL  h 2 ) D 12 (λ ) (dual DYBE)
A12  (λ) C13  (λ+eR  h 2 ) C23 (λ)  = C23 (λ+eR  h 1) C13 (λ) A12  (λ+e L  h 2 )  (adjoint DYBE)
D12 (λ+eR h 3) B13 (λ) B23 (λ+eL h 1) =  B23 (λ ) B 13   (λ+e L  h 2) D 12 (λ)  (dual adjoint DYBE)

III CONNECTIONS TO CALOGERO MOSER MODELS

IIIA:  What is a classical r-matrix ?

2n-dimensional classical integrable system (canonical variables {p,q}) => n Poisson-commuting 
independent dynamical quantities including initial Hamiltonian.

Characterized by:

1) Lax representation dL/dt = [L,M] where L = L(p,q) =  Lax matrix,
Lie-algebra (G) valued; M = M(p,q) Lie algebra-valued.

2) Poisson structure of Lax matrix elements encapsulated into algebraic, r-matrix structure:

{L1 , L2 } = [r12 , L 1] + [r21 , L 2]  <=> conserved quantities Tr L^n Poisson commute.
 
r  in GxG , depends on dynamical variables; Jacobi identity on Poisson bracket realized if
r obeys classical Yang Baxter equation. In general:

[r 12 , r 13] + [r 12 ,  r 23 ] +  [r 32 , r 13] +  {r 12 , L 3} +  {r 13 , L2} = 0

Complicated, semi-implicit non-algebraic equation. 
 Better understood if  existence of algebraic form for  {r 12, L 3 } 

examples:    {r 12 , L 3} = (h3 . d/dq) r12   ;  {r12 , L 3} = (eR  h3  L 3  +e L   L3  h 3 ). d/dq  r12 

In particular when  

→degree zero expression available: {r 12, L 3 } = (h3 . d/dq) r12   
→plus possibility of additional decomposition into equations for d and s:  

 => dynamical cYB (Feher 1990 from WZNW models):

[d12 , d13] + [d12 ,  d23 ] +  [d13,  d23] +  (h1 . d/dq) d23  - (h2 . d/dq) d13    + (h3 . d/dq) d12  = 0

plus adjoint form for s and some other conditions … yields cYB for d+s.



= SEMI-CLASSICAL LIMIT OF GNF EQUATION (D = 1 1+ ħ d + o( ħ² ), h →  ħ h : 
order 2 of expansion in powers of ħ is classical GNF equation).

Remark: if r-matrix has no dynamical dependance plus skew-symmetry: gets classical standard YB 
equation (classification by Belavin-Drinfel'd)

 [d12 , d13] + [d12,  d23 ] +  [d 13,  d23] = 0

IIIB  Recall: The Calogero-Moser model is integrable

n-body dynamical system, non-relativistic, with 2-body potential:

v (x) being 1/ (sn(x))² or its limits : 1/ sin²(x)  and 1/x². 

Lax  matrix is:  (v = ½ u²)

r- matrix (for canonical structure {pi  , qj  }  = δij    and  rational potential v(x) = 1/x² )

 
r  = ∑ 1/(qi – qj) (e ij    e ji + e ii   (e ij   - e ji  ))  

IIIC Connection to semi-dynamical reflection algebra:  eR  = 0; e L  = 1

r = a – c = d – b    with  zero-weight conditions on a,b,c,d corresponding to
semidynamical reflection algebra (Arutyunov-Chekov-Frolov): d skew-symmetric
with sole elements e ij    e ji  ; b,c semidiagonal ; a ``full''  with both types of components. 

→ a obeys non-dynamical cYB, 
→ d obeys dynamical cYB a la Feher, 
→ b and c obey semi-classical limit of semidynamical adjoint YB equations.
      

      CLASSICAL 1ST POISSON STRUCTURE OF LAX CALOGERO-MOSER MATRIX

                                                                     =
        LINEAR   CLASSICAL LIMIT OF SEMIDYNAMICAL REFLECTION ALGEBRA



IIID Second Poisson bracket of Calogero-Moser

1: What is ``second Poisson bracket'' ?

From works of Magri et al.:

classical integrability <=> hierarchy of Poisson-commuting Hamiltonians under one PB structure
OR
classical integrability <=> hierarchy of compatible Poisson structures for one Hamiltonian.

Hierarchies connected by dual time evolution : {Hn , X}m  = {Hm , X}n      

For skew-symmetric, non-dynamical r-matrix: easy formulation (Sklyanin; Li-Parmentier)

 → First Poisson bracket:

{L 1 , L 2} = [r 12 , L 1] + [r 21 , L 2]

→ Second Poisson bracket:

{L 1 , L 2 } = [r 12 , L 1 L 2]  generalized to non-skew-symmetric non-dynamical case
as {L 1 , L 2 } = a12 L 1 L 2 + L 1 s 12 L 2 + L 2  s 12   L 1 + L 1 L 2 a12   ( Li-Parmentier, see also Maillet-
Freidel)

HERE: DYNAMICAL r-MATRIX, SKLYANIN FORMULATION UNAPPLICABLE

Second Poisson bracket developed for rational CM model by Magri; Bartocchi et al; Continuous
limit by Aniceto et al: relevant in aspects of string theory and CFT.

Technically difficult to formulate in terms of (first) canonical variables, easy in terms of Lax
observables  Tr L^n, Tr Q L^n, Q = diag (q1  , … qn ). Explicit form now available for
2 sites (Bartocchi et al.) and 3 sites (Avan-Ragoucy).

2: Connection to second DBA (Avan-Ragoucy)

2-site Lax matrix of rational CM model, with second Poisson bracket.  PB structure reads:

{L 1 , L 2 } = a12 L 1 L 2  + L 1b12 L 2  + L 2 c12   L 1  + L 1 L 2 d12 

where a,b,c,d obey semi-classical limit of 2nd dynamical YB equation.

CLASSICAL 2nd  POISSON STRUCTURE OF LAX CALOGERO-MOSER MATRIX

                                                                     =
  QUADRATIC  CLASSICAL LIMIT OF 2nd DYNAMICAL REFLECTION ALGEBRA

NOT TRUE FOR n>2 SITES: a,b,c,d  matrices are not known but necessarily
p,q dependent due to form of PB's .



3: Remark: Ruijsenaar-Schneider model

The Lax matrix of RS endowed with the canonical (first) Poisson structure  {pi  , qj  }  = δij   
has quadratic r-matrix structure :

{L 1 , L 2 } = a12 L 1 L 2  + L 1 b12 L 2  + L 2  c12   L 1  + L 1 L 2 d12  

BUT  with a,b,c,d parametrizing the first Poisson structure of Calogero-Moser: = SDRA

CLASSICAL 1ST POISSON STRUCTURE OF LAX RUIJSENAAR-SCHNEIDER MATRIX

                                                                     =
  QUADRATIC  CLASSICAL LIMIT OF SEMIDYNAMICAL REFLECTION ALGEBRA


