Higgs Physics

as the origin of elementary particle masses

Abdelhak DJOUADI (Paris-Sud/CERN)

- The Standard Model of particle physics
 - The Higgs mechanism
 - The Higgs at the LHC
 - Implications of a Higgs discovery
 - Conclusion

1. The Standard Model

The SM of the electromagnetic, weak and strong interactions:

- is relativistic quantum field theory
- based on a local gauge symmetry: invariance under local symmetry group
- more or less a carbon–copy of QED the QF theory of electromagnetism

QED: invariance under the local transformations of abelian group $U(1)_{\rm Q}$

- transformation of electron field: $\Psi(\mathbf{x}) o \Psi'(\mathbf{x}) = e^{\mathbf{i} \mathbf{e} lpha(\mathbf{x})} \Psi(\mathbf{x})$
- transformation of photon field: $A_{\mu}(\mathbf{x}) \rightarrow A'_{\mu}(\mathbf{x}) = A_{\mu}(\mathbf{x}) \frac{1}{e} \partial_{\mu} \alpha(\mathbf{x})$ The Lagrangian density is invariant under above field transformations:

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4}\mathbf{F}_{\mu\nu}\mathbf{F}^{\mu\nu} + i\bar{\boldsymbol{\Psi}}\,\mathbf{D}_{\mu}\gamma^{\mu}\boldsymbol{\Psi} - \mathbf{m_e}\bar{\boldsymbol{\Psi}}\boldsymbol{\Psi}$$

field strength ${f F}_{\mu
u}\!=\!\partial_\mu{f A}_
u\!-\!\partial_
u{f A}_\mu$ and cov. derivative ${f D}_\mu\!=\!\partial_\mu\!-\!i{f e}{f A}_\mu$

Very simple and successful quantum field theory:

- minimal
- perturbative
- renormalisable
- unitary

predictive theory +
very precise measurements

=

most succesfull theory!

1. The Standard Model: brief introduction

The Standard Model is based on the local gauge symmetry group

$$G_{SM} \equiv SU(3)_C \times SU(2)_L \times U(1)_Y$$

- The group $SU(3)_C$ describes the strong force:
- interaction between quarks which are SU(3) triplets: q, q , q
- mediated by 8 gluons, $G_{\mu}^{\mathbf{a}}$ corresponding to 8 generators of $SU(3)_{\mathbf{C}}$
- asymptotic freedom: interaction "weak" at high energy, $lpha_{
 m s}=rac{{f g}_{
 m s}^2}{4\pi}\ll 1$
- ullet $SU(2)_L imes U(1)_Y$ describes the electroweak interaction:
- between the three families of quarks and leptons: ${f f_{L/R}}={1\over 2}(1\mp\gamma_{f 5}){f f}$

$$egin{aligned} I_f^{3L,3R} = \pm rac{1}{2}, 0 & \Rightarrow L = inom{
u_e}{e^-}_L, \, R = e_R^-, \, Q = inom{u}{d}_L, \, u_R, \, d_R \\ Y_f = 2Q_f - 2I_f^3 \end{aligned}$$

Same holds for the two other generations: $\mu,
u_{\mu}, \mathbf{c}, \mathbf{s}; \ au,
u_{ au}, \mathbf{t}, \mathbf{b}$.

There is no $\nu_{\mathbf{R}}$ (and neutrinos are and stay exactly massless).

– mediated by the $W^{1,2,3}_{\mu}$ (isospin) and B_{μ} (hypercharge) gauge bosons

 $\mathcal{L}_{\mathbf{SM}}$: same structure as $\mathcal{L}_{\mathbf{QED}}$ but mathematically more involved ...

but gauge bosons, and fermions should be exactly massless....

1. The Standard Model: brief introduction

Indeed, if gauge boson and fermion masses are put by hand in \mathcal{L}_{SM} $\frac{1}{2}M_V^2V^\mu V_\mu$ and/or $m_f\overline{f}f$ terms: breaking of gauge symmetry.

This statement can be visualized by taking the example of QED where the photon is massless because of the local $U(1)_{\mathbb{O}}$ local symmetry:

$$\Psi(\mathbf{x}) \rightarrow \Psi'(\mathbf{x}) = e^{i\mathbf{e}\alpha(\mathbf{x})}\Psi(\mathbf{x}) , \ \mathbf{A}_{\mu}(\mathbf{x}) \rightarrow \mathbf{A}'_{\mu}(\mathbf{x}) = \mathbf{A}_{\mu}(\mathbf{x}) - \frac{1}{\mathbf{e}}\partial_{\mu}\alpha(\mathbf{x})$$

• For the photon (or B field for instance) mass we would have:

$$\frac{1}{2}\mathbf{M_A^2}\mathbf{A}_{\mu}\mathbf{A}^{\mu} \to \frac{1}{2}\mathbf{M_A^2}(\mathbf{A}_{\mu} - \frac{1}{e}\partial_{\mu}\alpha)(\mathbf{A}^{\mu} - \frac{1}{e}\partial^{\mu}\alpha) \neq \frac{1}{2}\mathbf{M_A^2}\mathbf{A}_{\mu}\mathbf{A}^{\mu}$$
 and thus, gauge invariance is violated with a photon mass.

• For the fermion masses, we would have (e.g. for the electron):

$$\mathbf{m_e}\mathbf{\bar{e}e} = -\mathbf{m_e}\mathbf{\bar{e}}\left(\frac{1}{2}(\mathbf{1} - \gamma_5) + \frac{1}{2}(\mathbf{1} + \gamma_5)\right)\mathbf{e} = -\mathbf{m_e}(\mathbf{\bar{e}_R}\mathbf{e_L} + \mathbf{\bar{e}_L}\mathbf{e_R})$$

manifestly non-invariant under SU(2) isospin symmetry transformations We need a less "brutal" way to generate particle masses in the SM....

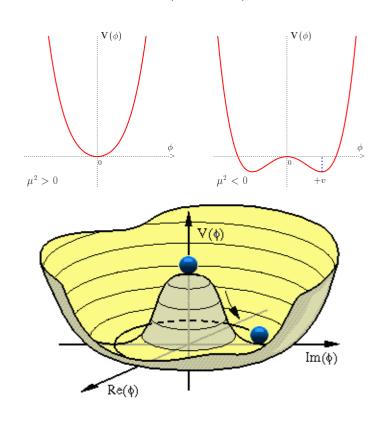
⇒ The Brout–Engelert–Higgs (or Higgs for short) mechanism!

2. The Higgs mechanism

In the SM, for the mechanism of spontaneous EW symmetry breaking,

 \Rightarrow introduce a doublet of complex scalar fields: $\Phi\!=\!\begin{pmatrix}\phi^+\\\phi^0\end{pmatrix},\ Y_\Phi\!=\!+1$ with a Lagrangian that is invariant under $SU(2)_L imes U(1)_Y$

$$\mathcal{L}_{\mathbf{S}} = (\mathbf{D}^{\mu} \mathbf{\Phi})^{\dagger} (\mathbf{D}_{\mu} \mathbf{\Phi}) - \mu^{2} \mathbf{\Phi}^{\dagger} \mathbf{\Phi} - \lambda (\mathbf{\Phi}^{\dagger} \mathbf{\Phi})^{2}$$


 $\mu^2 > 0$: 4 scalar particles.

 $\mu^2 < 0$: Φ develops a vev:

$$\langle 0 | \Phi | 0
angle = inom{0}{{
m v}/\sqrt{2}}$$

with
$$\mathbf{v} \equiv \mathbf{vev} = (-\mu^2/\lambda)^{\frac{1}{2}}$$

To obtain the physical states, write $\mathcal{L}_{\mathbf{S}}$ with the true vacuum...

2. The Higgs mechanism: mass generation

 $-\!\!\!>$ 3 degrees of freedom for ${f W}_{f L}^{\pm},{f Z}_{f L}$ and thus ${f M}_{{f W}^{\pm}},{f M}_{f Z}$:

$$\mathbf{M_W} = \frac{1}{2}\mathbf{vg_2} \;,\; \mathbf{M_Z} = \frac{1}{2}\mathbf{v}\sqrt{\mathbf{g_2^2 + g_1^2}} \;,\; \mathbf{M_A} = \mathbf{0} \;,$$

with the value of the vev given by $v=1/(\sqrt{2}G_F)^{1/2}\sim 246~{
m GeV}$.

- \Rightarrow The photon stays massless and thus $U(1)_{\mathbf{QED}}$ is preserved.
- ullet For fermion masses, use $\underline{\mathsf{same}}$ doublet field Φ and its conjugate field

$$\mathcal{L}_{\text{Yuk}} = -f_{\mathbf{e}}(\mathbf{\bar{e}}, \bar{\nu})_{\mathbf{L}} \Phi \mathbf{e_R} - f_{\mathbf{d}}(\mathbf{\bar{u}}, \mathbf{\bar{d}})_{\mathbf{L}} \Phi \mathbf{d_R} - f_{\mathbf{u}}(\mathbf{\bar{u}}, \mathbf{\bar{d}})_{\mathbf{L}} \tilde{\Phi} \mathbf{u_R} + \cdots$$

$$\Phi \to \frac{1}{\sqrt{2}} \binom{0}{H+\mathbf{v}} \Rightarrow \mathbf{m_e} = \frac{f_{\mathbf{e}} \mathbf{v}}{\sqrt{2}}, \ \mathbf{m_u} = \frac{f_{\mathbf{u}} \mathbf{v}}{\sqrt{2}}, \ \mathbf{m_d} = \frac{f_{\mathbf{d}} \mathbf{v}}{\sqrt{2}}$$

With same Φ , generated $m_{\mathbf{V}}, m_{\mathbf{f}}$ while preserving (hidden) SU(2)xU(1)!

Residual dof corresponds to the spin-zero scalar Higgs boson, H.

- The Higgs boson mass is given by: $M_H^2 = 2\lambda v^2 = -2\mu^2$.
- ullet The self–couplings are: ${f g_{H^3}=3i\,M_H^2/v}\,,\,\,{f g_{H^4}=3iM_H^2/v^2}$
- Higgs couplings to gauge bosons and fermions almost derived:

$$\mathcal{L}_{\mathbf{M_V}} \sim \mathbf{M_V^2} (\mathbf{1} + \mathbf{H/v})^2 \; , \; \mathcal{L}_{\mathbf{m_f}} \sim -\mathbf{m_f} (\mathbf{1} + \mathbf{H/v})^2$$

 $ightarrow \mathbf{g_{Hff}} = i\mathbf{m_f/v} \;,\; \mathbf{g_{HVV}} = -2i\mathbf{M_V^2/v} \;,\; \mathbf{g_{HHVV}} = -2i\mathbf{M_V^2/v^2} \;,$

Since v is known, the only free parameter in the SM is M_{H} (or λ).

2. The Higgs mechanism: constraints on $M_{\rm H}$

Theory constraints from energy/ $m M_{H}$ range up to which the SM is valid-

Heavy Higgs: strong W/Z interactions

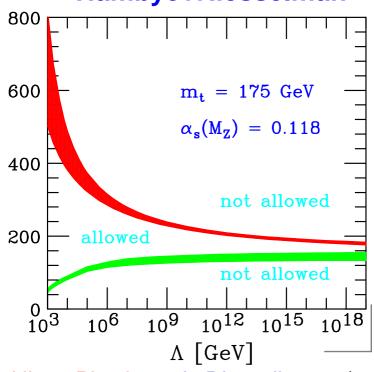
$$egin{aligned} |\mathbf{A_0}(\mathbf{VV}
ightarrow \mathbf{VV})| \overset{\mathbf{s}\gg \mathbf{M_H^2}}{\longrightarrow} rac{\mathbf{M_H^2}}{8\pi\mathbf{v^2}} < rac{1}{2} \ \Rightarrow \mathbf{M_H} \lesssim 710~\mathrm{GeV} \end{aligned}$$

(OK with lattice: $M_H \lesssim 650~GeV)$

$$egin{aligned} |\mathbf{A_0}(\mathbf{VV}
ightarrow \mathbf{VV})| \overset{\mathbf{s} \ll \mathbf{M_H^2}}{\longrightarrow} rac{\mathbf{s}}{32\pi \mathbf{v^2}} < rac{1}{2} \ \Rightarrow \sqrt{\mathbf{s}} \lesssim 1.2~\mathrm{TeV} \end{aligned}$$

• Triviality and stability bounds:

$$\lambda(\mathbf{Q^2}) \approx \lambda(\mathbf{v^2}) \left[1 - \frac{3}{4\pi^2} \lambda(\mathbf{v^2}) \log \frac{\mathbf{Q^2}}{\mathbf{v^2}} \right]^{-1} \stackrel{\triangleright}{\mathbb{Q}}$$


 $\lambda\!\gg\!1$ coupling blows up (Landau pole) Ξ

$$\lambda \! \ll \! 1$$
 potential unstable (no EWSB)

$$\Lambda \sim 1~TeV:70 \lesssim M_H \lesssim 700~GeV$$

$$\Lambda \sim M_{GUT}: 130 \lesssim M_{H} \lesssim 180~GeV$$

Hambye+Riesselman

Higgs Physics – A. Djouadi – p.7/35

2. The Higgs mechanism: beyond the SM

A major problem in the SM: the hierarchy/naturalness problem

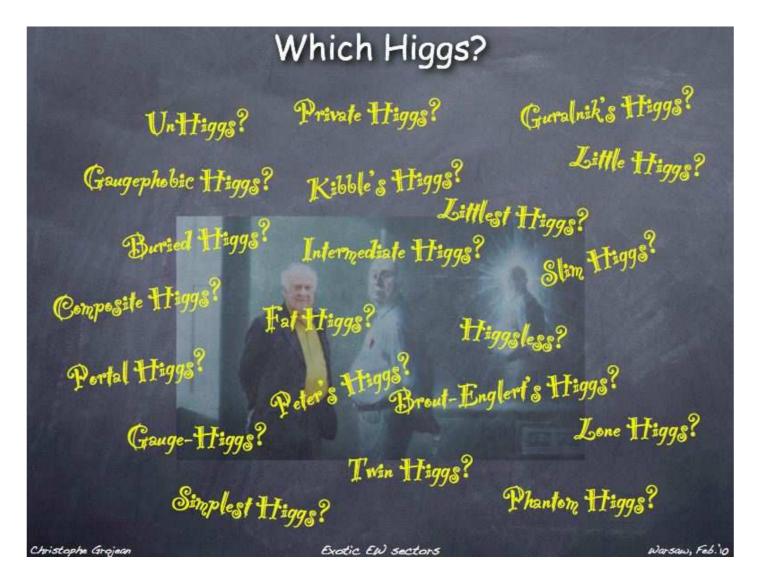
Radiative corrections to M_H^2 in SM with a cut–off $\Lambda\!=\!M_{NP}\!\sim\!M_{Pl}$

$$\Delta M_H^2 \ \equiv \ \stackrel{\text{H}}{---} \stackrel{\text{f}}{---} \cdots \qquad \propto \Lambda^2 \approx (10^{18} \ GeV)^2$$

 $M_{
m H}$ prefers to be close to the high scale than to the EWSB scale...

Three main avenues for solving the hierarchy problem:

Supersymmetry: a set of new/light SUSY particles cancel the divergence.


- MSSM \equiv two Higgs doublet model \Rightarrow 5 physical states $\mathbf{h}, \mathbf{H}, \mathbf{A}, \mathbf{H}^{\pm}$
- very predictive: only two free parameters at tree–level ($an\!eta, \mathbf{M_A}$)
- upper bound on light Higgs $M_h \lesssim 130~GeV$ and $M_{H,H^\pm} \approx M_A \lesssim TeV$ Extra dimensions: there is a cut–off at TeV scale where gravity sets in.
- in most cases: SM-like Higgs sector but properties possibly affected
- but in some cases, there might be no Higgs at all (Higgsless models)....

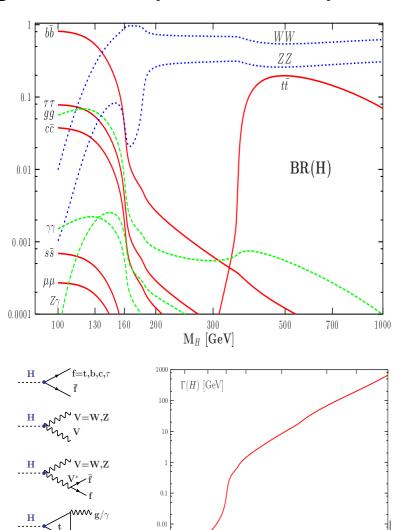
Strong interactions/compositness: the Higgs is not an elementary scalar.

- H is a bound state of fermions like for the pions in QCD...
- H emerges as a Nambu–Goldstone of a strongly interacting sector...

2. The Higgs mechanism: beyond the SM

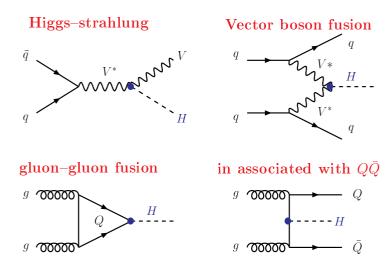
and along the avenues, many possible streets, paths, corners...

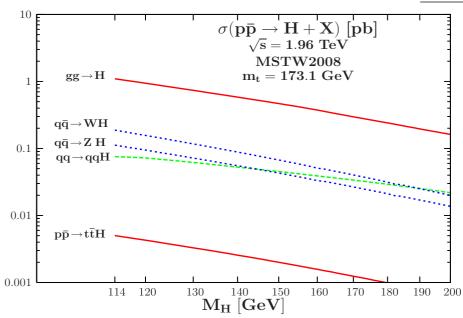
Which scenario chosen by Nature? The LHC will/should tell!


3. The Higgs at hadron colliders: decays

Since v is known, the only free parameter in the SM is M_H (or λ). Once M_H known, all properties of the Higgs are fixed (modulo QCD).

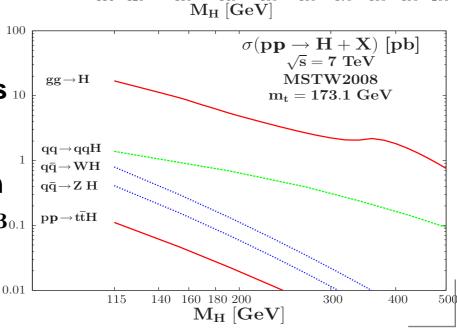
First: Higgs decays in the SM


- \bullet As $g_{HPP} \propto m_P$, H will decay into heaviest particle phase-space allowed:
- ullet $M_H \lesssim 130~GeV, H
 ightarrow bar{b}$
- $-\mathbf{H} \to \mathbf{cc}, \tau^+\tau^-, \mathbf{gg} = \mathcal{O}(\mathbf{few}\%)$
- $-\mathbf{H} \rightarrow \gamma \gamma, \mathbf{Z} \gamma = \mathcal{O}(0.1\%)$
- ullet $\mathbf{M_H} \gtrsim \mathbf{130~GeV}$, $\mathbf{H}
 ightarrow \mathbf{WW}, \mathbf{ZZ}$
- below threshold decays possible
- above threshold: B(WW)= $\frac{2}{3}$, B(ZZ)= $\frac{1}{3}$
- decays into $t\overline{t}$ for heavy Higgs
- Total Higgs decay width:
- very small for a light Higgs
- comparable to mass for heavy Higgs


HDECAY: Kalinowski, Spira, AD

3. The Higgs at hadron colliders: production

Main Higgs production channels

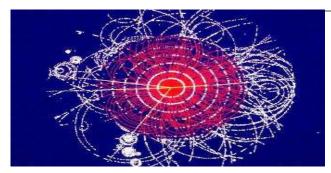

Large production cross sections

with gg \rightarrow H by far dominant process 10

1 fb^{-1} \Rightarrow $\mathcal{O}(10^4)$ events@IHC \Rightarrow $\mathcal{O}(10^3)$ events @Tevatron

but eg BR(H $ightarrow\gamma\gamma,\mathbf{ZZ}
ightarrow4\ell)\!pprox\!\mathbf{10^{-3}}_{\scriptscriptstyle{0.1}}$

... a small # of events at the end...


Higgs Physics – A. Djouadi – p.11/35

3. The Higgs at hadron colliders: challenges

⇒ an extremely challenging task!

- Huge cross sections for QCD processes
- ullet Small cross sections for EW Higgs signal S/B $\gtrsim 10^{10} \Rightarrow$ a needle in a haystack!
- Need some strong selection criteria:
- trigger: get rid of uninteresting events...
- select clean channels: $\mathbf{H} \! \to \! \gamma \gamma, \mathbf{VV} \! \to \! \ell$
- use specific kinematic features of Higgs
- Combine # decay/production channels (and eventually several experiments...)
- Have a precise knowledge of S and B rates (higher orders can be factor of 2! see later)
- Gigantic experimental + theoretical efforts (more than 30 years of very hard work!)

For a flavor of how it is complicated from the theory side: a look at the $gg \to H$ case

Higgs Physics – A. Djouadi – p.12/35

3. The Higgs at hadron colliders: gg fusion

LO^a: already at one loop

QCD: exact NLO b : $ext{K} pprox 2$ (1.7)

EFT NLO^c : good approx.

EFT NNLO d : K pprox3 (2)

EFT NNLL $^{\mathrm{e}}$: $\approx +10\%$ (5%)

EFT other HO^f: a few %.

EW: EFT NLO: g : $pprox \pm$ very small

exact NLO h : $pprox \pm$ a few %

QCD+EW': a few %

Distributions: two programs¹

^aGeorgi+Glashow+Machacek+Nanopoulos

^bSpira+Graudenz+Zerwas+AD (exact)

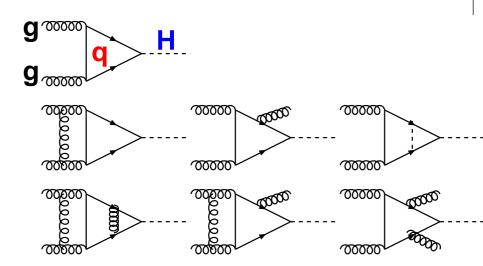
^cSpira+Zerwas+AD; Dawson (EFT)

^dHarlander+Kilgore, Anastasiou+Melnikov 1.5

Ravindran+Smith+van Neerven

^eCatani+de Florian+Grazzini+Nason

¹Moch+Vogt; Ahrens et al.


^gGambino+AD; Degrassi et al.

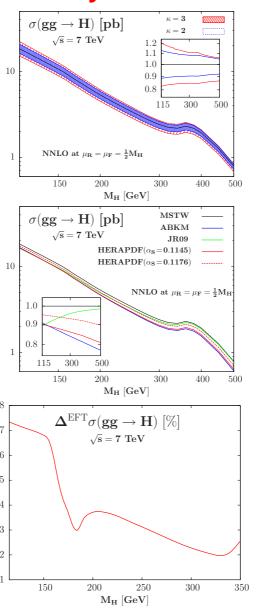
^hActis+Passarino+Sturm+Uccirati

'Anastasiou+Boughezal+Pietriello

^jAnastasiou et al.; Grazzini

The $\sigma^{ ext{theory}}_{\mathbf{gg} o \mathbf{H}}$ long story (70s–now) ...

3. The Higgs at hadron colliders: uncertainties

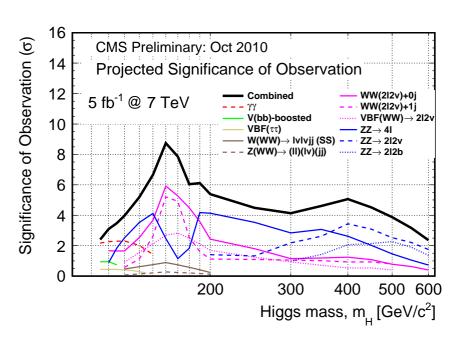

Despite of that, the $\mathbf{g}\mathbf{g} \! \to \! \mathbf{H}$ cross section still affected by uncertainties

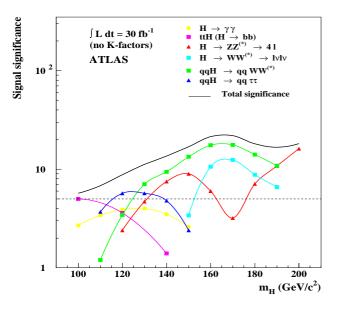
Higher-order or scale uncertainties:
 K-factors large ⇒ HO could be important
 HO estimated by varying scales of process

$$\mu_{\mathbf{0}}/\kappa \leq \mu_{\mathbf{R}}, \mu_{\mathbf{F}} \leq \kappa \mu_{\mathbf{0}}$$
 at IHC: $\mu_{\mathbf{0}} = \frac{1}{2}\mathbf{M_H}, \kappa = \mathbf{2} \Rightarrow \Delta_{\mathbf{scale}} \approx \mathbf{10}\%$

- gluon PDF+associated $\alpha_{\rm s}$ uncertainties: gluon PDF at high-x less constrained by data α_s uncertainty (WA, DIS?) affects $\sigma \propto \alpha_{\rm s}^2$ \Rightarrow large discrepancy between NNLO PDFs PDF4LHC recommend: $\Delta_{\rm pdf} \approx 10\%$ @lHC
- Uncertainty from EFT approach at NNLO $m_{loop}\gg M_H$ good for top if $M_H\!\lesssim\! 2m_t$ but not above and not b ($\approx\! 10\%$), W/Z loops Estimate from (exact) NLO: $\Delta_{EFT}\!\approx\! 5\%$
- ullet Include Δ BR(HoX) of at most few % total $\Delta\sigma_{
 m gg o H o X}^{
 m NNLO}pprox 20$ –25%@IHC

LHC-HxsWG; Baglio+AD ⇒


3. The Higgs at hadron colliders: expectations


Expectations for 2011 and beyond:

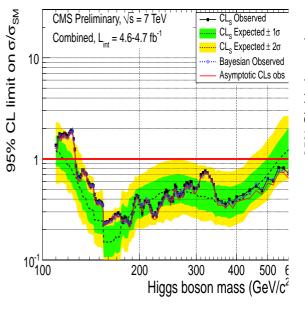
At IHC: $\sqrt{s} = 7$ TeV and $\mathcal{L} \approx few \ fb^{-1}$ 5σ discovery for $M_H \approx 130$ –200 GeV 95%CL sensitivity for $M_H \lesssim 600$ GeV $gg \to H \to \gamma\gamma$ ($M_H \lesssim 130$ GeV) $gg \to H \to WW \to \ell\nu\ell\nu + 0, 1$ jets $gg \to H \to ZZ \to 4\ell, 2\ell2\nu, 2\ell2b$ Help from VBF/VH; $gg \to H \to \tau\tau$?

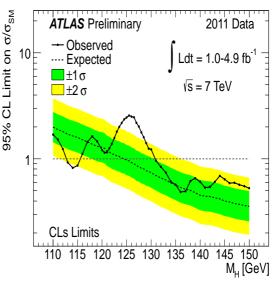
Tevatron: some data still to be analyzed now surpassed by IHC in all channels. Still $HV \to b\bar{b}\ell X@M_H \lesssim$ 130 GeV! Full LHC: same as IHC plus some others

- VBF: $qqH \rightarrow \tau\tau, \gamma\gamma, \mathbf{ZZ^*}, \mathbf{WW^*}$
- VH→Vbb with jet substructure tech.
- ttH: H $\rightarrow \gamma \gamma$ bonus, H $\rightarrow bb$ hopeless?

Higgs Physics – A. Djouadi – p.15/35

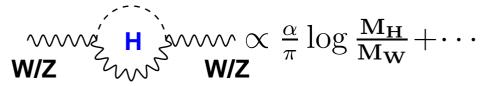

4. Implications of Higgs discovery


We desperately wanted a Higgs for last Christmas and we got:

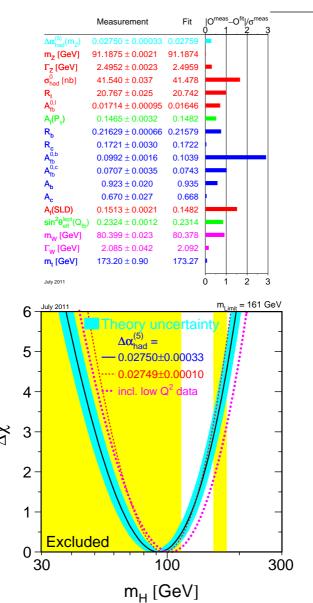

– SM Higgs excluded everywhere except for M_H =123.5-127.5 GeV

– $a \approx 3\sigma$ signal at $M_H \approx$ 125 GeV \rightarrow thanks to LHC, ATLAS, CMS! (let us hope it will not go away....)

Also a 2.2 σ "hint" from Tevatron!



4. Implications of Higgs discovery: SM


The SM: a rather predictive theory:
A triumph for high-energy physics!
Indirect constraints from EW data^a
H contributes to RC to W/Z masses:

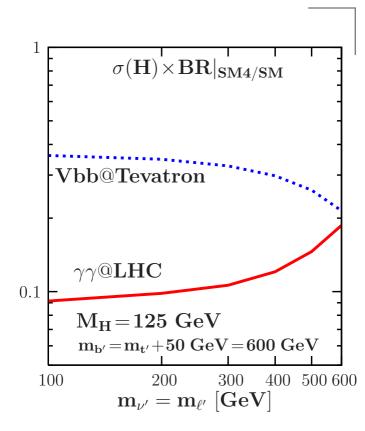
Fit the EW precision measurements, one obtains $M_{\rm H}=92^{+34}_{-26}$ GeV, or

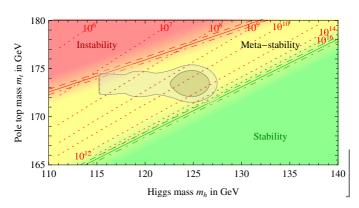
$$M_{H} \lesssim 161$$
 GeV at 95% CL

compared with "observed" $M_H\!=\!125$ GeV A very non–trivial check of SM consistency! In 1995: top discovery with $m_t\!\approx\!175$ GeV while best-fit in the SM is for same value: it was considered as a great achievement....

 $[^]a$ Still some problems with ${f A_{FB}^b}$ (LEP), ${f A_{FB}^t}$ (TeV) and ${f g-2}$ but not severe...

4. Implications of Higgs discovery: SM


If excess due to Higgs: spectrum complete no room for a 4th fermionic generation! extra fermion doublet (with heavy ν') will:


- increase $\sigma(\mathbf{gg} o \mathbf{H})$ by factor $pprox \mathbf{9}$
- Hightarrowgg suppresses BR(bb,VV) by pprox2
- strongly suppresses ${
 m BR}({
 m H} o \gamma \gamma)$

If indeed a 125GeV H: SM4 ruled out...

 $M_H \!=\! 125$ GeV, SM valid up to M_{GUT} No problem with triviality: $M_H \lesssim 180$ GeV SM valid only if v=EW-min, ie $\lambda(Q^2) \!>\! 0$ $\Lambda_C \!\sim\! M_P \Rightarrow M_H \!\gtrsim\! 130 \ GeV$ refinements+uncertainties+metastability \Rightarrow A 125 GeV Higgs is still OK!

Espinosa et al. 2011

Higgs Physics – A. Djouadi – p.18/35

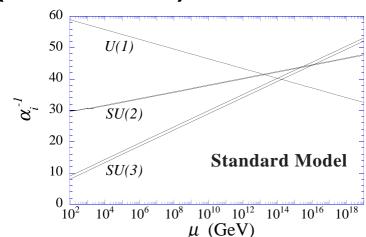
4. Implications of Higgs discovery: SM respectable theory?

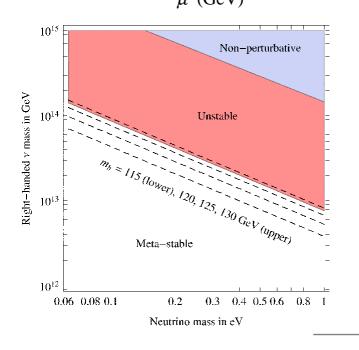
With the Higgs, the SM is a perturbative, renormalisable, unitary theory.

Can be extrapolated up to very high energy (even ultimate) scales.

However there are theoretical problems:

- extremely fine—tuned.... so what?
- no coupling unification; thresholds?
- not a theory of flavor; too bad...
 - ⇒ Maybe nature is not perfect?


To be extended to cope with experiment:


- needs framework for neutrino masses
- \Rightarrow simply add $\nu_{\mathbf{R}}$'s at very high scale will enter stability limit and help BAU?

Espinosa et al, 2011

- no thermal dark matter candidate
- ⇒ axion would make it? try harder...

Maybe minimal SM extension is the TO(a)E? (esp. no hint of new physics@LHC yet...)

4. Implications of Higgs discovery: MSSM

In MSSM with two Higgs doublets:
$$m H_1=inom{H_1^0}{H_1^-}$$
 and $m H_2=inom{H_2^+}{H_2^0}$,

- ullet to cancel the chiral anomalies introduced by the new h field,
- give separately masses to d and u fermions in SUSY invariant way.

After EWSB (which can be made radiative: more elegant than in SM): three dof to make $W_L^\pm, Z_L \Rightarrow$ 5 physical states left out: h, H, A, H^\pm Only two free parameters at the tree level: $tan\beta, M_A$; others are:

$$\begin{aligned} \mathbf{M_{h,H}^2} &= \tfrac{1}{2} \left[\mathbf{M_A^2} + \mathbf{M_Z^2} \mp \sqrt{(\mathbf{M_A^2} + \mathbf{M_Z^2})^2 - 4\mathbf{M_A^2}\mathbf{M_Z^2}\mathbf{cos^2}2\beta} \right] \\ & \mathbf{M_{H^\pm}^2} = \mathbf{M_A^2} + \mathbf{M_W^2} \\ & \tan \! 2\alpha = \tan \! 2\beta \left(\mathbf{M_A^2} + \mathbf{M_Z^2} \right) / (\mathbf{M_A^2} - \mathbf{M_Z^2}) \end{aligned}$$

We have important constraint on the MSSM Higgs boson masses:

$$\mathbf{M_h} \leq \min(\mathbf{M_A}, \mathbf{M_Z}) \cdot |\mathbf{cos2}\beta| \leq \mathbf{M_Z}, \, \mathbf{M_{H^\pm}} > \mathbf{M_W}, \mathbf{M_H} > \mathbf{M_A}...$$

 $M_{A}\gg M_{Z}$: decoupling regime, all Higgses heavy except for h:

$$|\mathbf{M_h} \sim \mathbf{M_Z} |\mathbf{cos2}\beta| \leq \mathbf{M_Z}! \; , \; \mathbf{M_H} \sim \mathbf{M_{H^{\pm}}} \sim \mathbf{M_A} \; , \; \alpha \sim \frac{\pi}{2} - \beta$$

 \Rightarrow Inclusion of radiative corrections to $m M_h$ important and necessary.

4. Implications of Higgs discovery: pMSSM

The mass value 125 GeV is rather large for the MSSM h boson,

 \Rightarrow one needs from the very beginning to almost maximize it...

Maximizing M_h is maximizing the radiative corrections; at 1-loop:

$$\mathbf{M_h} \overset{\mathbf{M_A} \gg \mathbf{M_Z}}{\longrightarrow} \mathbf{M_Z} |\mathbf{cos2}\beta| + \frac{3\bar{\mathbf{m}_t^4}}{2\pi^2\mathbf{v^2sin^2}\beta} \left[\log \frac{\mathbf{M_S^2}}{\bar{\mathbf{m}_t^2}} + \frac{\mathbf{X_t^2}}{2\mathbf{M_S^2}} \left(1 - \frac{\mathbf{X_t^2}}{6\mathbf{M_S^2}} \right) \right]$$

- ullet decoupling regime with $\mathbf{M_A}\!\sim\!\mathcal{O}$ (TeV);
- ullet large values of $aneta \gtrsim 10$ to maximize tree-level value;
- ullet maximal mixing scenario: ${
 m X_t}=\sqrt{6}{
 m M_S}$;
- \bullet heavy stops, i.e. large $M_S\!=\!\sqrt{m_{\tilde{t}_1}m_{\tilde{t}_2}}$;

we choose at maximum $M_{\rm S}\!\lesssim\!3$ TeV, not to have too much fine-tuning....

Do the complete job as in real life:

- ullet small contributions of entire SUSY spectrum: $m{\Phi}, \chi_{f i}^{\pm}, \chi_{f i}^{m{0}}, m{ ilde{q}_i}, m{ ilde{l}_i}, m{ ilde{g}_m}$
- complete radiative corrections up to two-loops

We use the RGE codes Suspect Kneur+Moultaka+AD and Softsusy Allanach which implement the known radiative corrections in the \overline{DR} scheme.

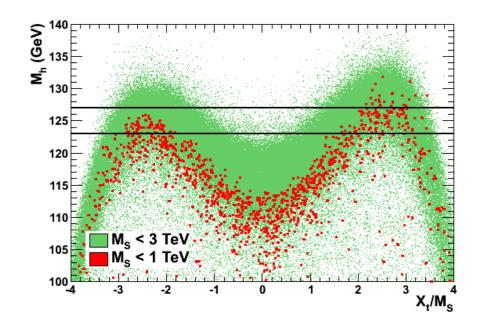
4. Implications of Higgs discovery: pMSSM

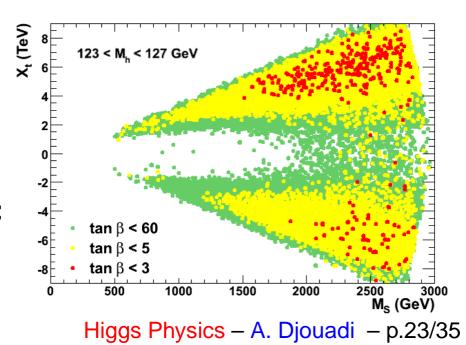
To evaluate M_h , perform a full scan of the MSSM parameter space; too complicated in the general MSSM as there are 105 free parameters \Rightarrow work in the phenomenological MSSM or pMSSM:

- no CP or flavor-violation: no new phase and diagonal $ilde{\mathbf{m}}, \mathbf{A}$ matrices,
- universal first and second generation sfermions to cope with flavor.

Only 22 free parameters: $tan\beta, M_A, \mu, M_{1,2,3}, m_{\tilde{f}_L}, m_{\tilde{f}_R}, A_f$ and only a few of them will play and important role in the Higgs sector..

Perform a full and fine scan of the pMSSM parameter space:


$$\begin{split} \mathbf{1} &\leq \tan\beta \leq \mathbf{60}\,,\; \mathbf{50} \; \mathrm{GeV} \leq \mathbf{M_A} \leq \mathbf{3} \; \mathrm{TeV},\; -\mathbf{9} \; \mathrm{TeV} \leq \mathbf{A_f} \leq \mathbf{9} \; \mathrm{TeV}, \\ \mathbf{50} \; \mathrm{GeV} &\leq \mathbf{m_{\tilde{\mathbf{f}_L}}}, \mathbf{m_{\tilde{\mathbf{f}_R}}}, \mathbf{M_3} \leq \mathbf{3} \; \mathrm{TeV}, \mathbf{50} \; \mathrm{GeV} \leq \mathbf{M_1}, \mathbf{M_2}, |\mu| \leq \mathbf{1.5} \; \mathrm{TeV} \end{split}$$


- ullet determine the regions of parameter space where $123\!\leq\!M_h\leq\!127$ GeV (2 GeV uncertainty includes both "experimental" and "theoretical" error)
- require h to be SM–like: $\sigma(h) \times BR(h \to VV) \gtrsim 0.9 H_{SM}$ (we will also consider the possibility that H is the H_{SM} , see later).

4. Implications of Higgs discovery: pMSSM

Main results:

- ullet Large ${
 m M_S}$ values needed:
- $M_{
 m S}pprox 1$ TeV: only maximal mixing
- ${
 m M_S}pprox 3$ TeV: only typical mixing.
- ullet Large $an\!eta$ values favored but $an\!eta\!pprox\!3$ possible if $extbf{M}_{ extbf{S}}\!pprox\!3$ TeV
- What about other benchmarks?
 Carena+Heinemeyer+Wagner+Weiglein
- small $\alpha_{\rm eff}$ scenario with $g_{\rm hbb} \approx 0$: ruled out by LHC/Tevatron data.
- gluophobic h with $g_{hgg}\ll g_{H_{SM}gg}$ ruled out by $4\ell^+,\gamma\gamma$ signals at LHC (difficult to achieve as \tilde{t}_1 heavy..).
- no SUSY regime with light sparticles: BR(h $\to \chi_1^0 \chi_1^0)$ should be small...
- max and no-mix need to be updated!

Grenoble, 24/05/2012

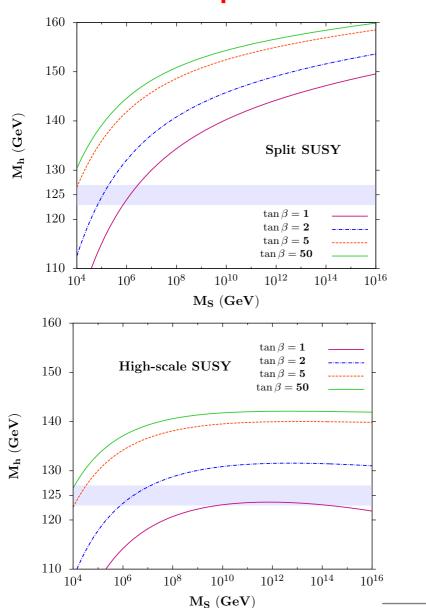
4. Implications of Higgs discovery: high scale SUSY

The scale $m M_{S}$ seems to be large. There are two extreme possibilities

 $\begin{array}{l} \bullet \mbox{ Split SUSY: allow fine-tuning} \\ \mbox{ scalars (including H_2) at high scale} \\ \mbox{ gauginos-higgsinos at weak scale} \\ \mbox{ (unification+DM solutions still OK)} \\ \end{array}$

$$\mathbf{M_h} \propto \log(\mathbf{M_S}/\mathbf{m_t})
ightarrow ext{large}$$

Arkani-Hamed+Dimopoulos Giudice, Romanino


 \bullet SUSY broken at the GUT scale... give up fine-tuning and everything else still, $\lambda\!\propto\! M_H^2$ related to gauge cplgs

$$\lambda(\mathbf{\tilde{m}}) = \frac{\mathbf{g_1^2(\tilde{m})} + \mathbf{g_2^2(\tilde{m})}}{8} (1 + \delta_{\mathbf{\tilde{m}}})$$

... leading to $m M_{H}$ m =120–140 GeV ...

Hall+Nomura, Giudice+Strumia Bernal+Slavich+AD

In both cases small $an\!eta$ needed...

Higgs Physics – A. Djouadi – p.24/35

4. Implications of Higgs discovery: cMSSM

Constrained MSSMs are interesting from model building point of view:

- provide concrete schemes for supersymmetry breaking
- solve some problems of unconstrained MSSM: flavor, CPV, universality,
- reduce number of input parameters and are thus more predictive

Prototype model: the minimal supergravity model (mSUGRA).

- Underlying assumption: SUSY-breaking occurs in a hidden sector communicating with visible sector through gravitational interactions,
- parameters obey a set of boundary conditions at $M_{GUT}\!pprox\!10^{16}\,$ GeV
- universal soft terms emerge if the interactions are "flavor-blind"

 \Rightarrow only 4.5 inputs: $\tan \beta$, $\mathbf{m_{1/2}}$, $\mathbf{m_0}$, $\mathbf{A_0}$, $\operatorname{sign}(\mu)$

In GMSB, SSB transmitted to MSSM fields via SM gauge interactions.

Minimal inputs: $tan\beta$, $sign(\mu)$, M_{mes} , Λ_{SSB} , $N_{mess\ fields}$

In AMSB, SSB in hidden sector transmitted via (super-Weyl) anomalies.

Minimal inputs: $\mathbf{m_0}$, $\mathbf{m_{3/2}}$, $\tan \beta$, $\mathrm{sign}(\mu)$

Using Suspect+Softsusy, perform scans of the models parameter space and confront them with LHC constraint $123~GeV\!\leq\!M_h\!\leq\!127~GeV$

4. Implications of Higgs discovery: cMSSM

The following ranges are considered for the model input parameters besides $1 \leq an eta \leq 60$ and sign(μ) = ± 1 that are common to all:

mSUGRA: 50GeV \leq m $_0$ \leq 2TeV, 50GeV \leq m $_{1/2}$ \leq 3TeV, $|A_0|$ \leq 9TeV;

mGMSB: 10TeV \leq Λ \leq 1000 TeV, 1 \leq $M_{\rm mes}/\Lambda$ \leq 10^{11} , $N_{\rm mess}$ =1;

mAMSB: 1 TeV $\leq m_{\frac{3}{2}} \leq$ 100TeV,50 GeV $\leq m_0 \leq$ 2 TeV.

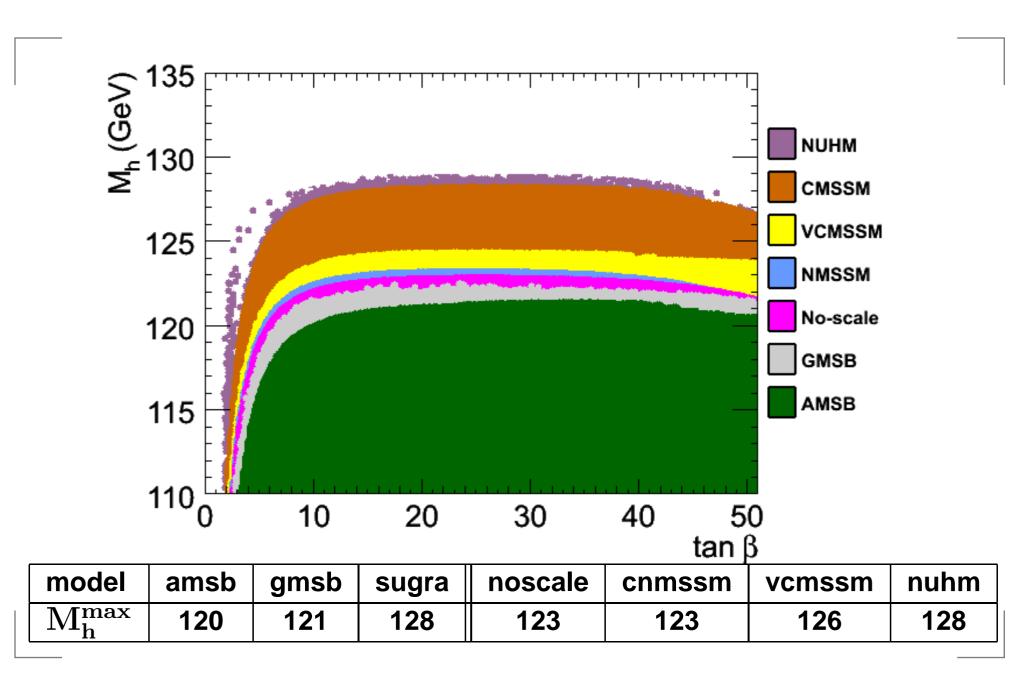
In mSUGRA we further consider the following (over-constrained) cases:

ullet no-scale: $\mathrm{m}_0=\mathrm{A}_0=0$

ullet cNMSSM: $\mathbf{m_0}=\mathbf{0}, \mathbf{A_0}=-rac{1}{4}\mathbf{m_{1/2}}$

ullet vcMSSM: $m_0=A_0$

as well as as the less constrained non-universal Higgs mass model:


 \bullet NUHM: $m_{1/2}, m_0, A_0$ and m_{H_u}, m_{H_d}

In mSUGRA case and its variants, we impose in addition bounds from:

- correct relic density of DM neutralino as measured by WMAP,
- constraints from flavor physics: ${f b}
 ightarrow {f s} \gamma, {f B_s}
 ightarrow \mu \mu$,
- constraints from heavy MSSM Higgs production at the LHC.

Less freedom for $A_t \Rightarrow M_h$ is much more constraining!

4. Implications of Higgs discovery: cMSSM

5. Conclusions

There is a hint of a 125 GeV Higgs but many questions remain:

- is the 125 GeV Higgs really there? any wrong cable connection?
- if yes, is it really SM–like? What about the $\gamma\gamma,4\ell^\pm,bar{b}$ rates?
- if indeed OK, a triumph for the Standard Model: Standarissimo!

A 125 GeV Higgs provides information on BSM and SUSY in particular:

- ullet $M_{H}\!=\!119$ GeV would have been a boring value: everybody OK...
- ullet $M_{H}\!=\!145$ GeV would be a devastating value: mass extinction...
- ullet $M_{
 m H}\!pprox\!125$ GeV is Darwinian: (natural) selection among models...

SUSY spectrum heavy; except maybe for weakly interacting sparticles and also stops \Rightarrow more focus on them in SUSY searches!

Some answers in July or December. More complete picture later!

My personal feeling or bet: maybe the rather optimistic scenario?

- a ($\mathbf{5} \oplus \mathbf{5} \sigma$?...) Higgs in 2012, Higgstoric year!
- a stop and a chargino in 2015: my favorite/best–guess SUSY signal:

$$\mathbf{pp} \to \tilde{\mathbf{t}}_{\mathbf{1}} \tilde{\mathbf{t}}_{\mathbf{1}} \to \mathbf{b} \chi_{\mathbf{1}}^{+} \bar{\mathbf{b}} \chi_{\mathbf{1}}^{-} \to \mathbf{b} \bar{\mathbf{b}} \mathbf{e} \mu + \mathbf{E} /_{\Gamma}$$

– following years, search for $gg \to \tilde{t}_1 \tilde{t}_1 h$ and measurement of $A_t...$