Parton Distribution Functions

Tzvetalina Stavreva Journées de Physique Théorique 24.May.12

Outline

- QCD & Proton Structure
- Factorization
- Parton Distributions & Global Analysis
- Strange & Charm PDF
- nuclear PDFs

QCD in a Nutshell

Quantum Chromodynamics - The field theory of the strong interactions

The Actors: The quarks & gluons

The Lagrangian:

$$\mathcal{L}_{QCD} = \bar{\psi}(\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}G_{\mu\nu}G^{\mu\nu}$$

The parameters:

 $m_{u}, m_{d}, m_{s}, \Lambda, m_{c}, m_{b}, m_{t}, \Theta \ll 1$

Proton Structure

The particle zoo-Too many hadrons discovered in '50's & 60's to make sense of without further structure

Hadrons -> composed of quarks

QFT: gluons keep quarks together The gluons in turn can split in pairs of quarks - sea quarks

р	P ₁₁	****	△(1232)	P33	****	Σ^+	P ₁₁	***						
n	P ₁₁	****	$\Delta(1600)$	P ₃₃	***	Σ^0	P ₁₁	***						
N(1440)	P ₁₁	****	$\Delta(1620)$	S31	****	Σ-	P ₁₁	***						
N(1520)	D ₁₃	****	$\Delta(1700)$	D33	****	Σ(1385)	P ₁₃	***						
N(1535)	S ₁₁	****	$\Delta(1750)$	P31	*	$\Sigma(1480)$		*	_					
N(1650)	S ₁₁	****	$\Delta(1900)$	S31	**	$\Sigma(1560)$		** • π [±]	$1^{-}(0^{-}) \bullet \pi_2(1670)$	$1^{-}(2^{-+})$	• K [±]	$1/2(0^{-})$	 D[±]_s 	0(0-)
N(1675)	D_{15}	****	∆(1905)	F35	****	$\Sigma(1580)$	D ₁₃	* • π ⁰	$1^{-}(0^{-+}) \bullet \phi(1680)$	$0^{-}(1^{-})$	• K ⁰	$1/2(0^{-})$	• D _c ^{*±}	0(??)
N(1680)	F ₁₅	****	$\Delta(1910)$	P31	****	$\Sigma(1620)$	S ₁₁	** • η	$0^+(0^{-+}) \bullet \rho_3(1690)$	$1^{+}(3^{-})$	• K ⁰ _S	$1/2(0^{-})$	• $D_{co}^{*}(2317)^{\pm}$	$0(0^{+})$
N(1700)	D ₁₃	***	$\Delta(1920)$	P33	***	$\Sigma(1660)$	P_{11}	*** • f ₀ (600)	$0^+(0^{++}) \bullet \rho(1700)$	$1^{+}(1^{-})$	• KŸ	$1/2(0^{-})$	• De1(2460)±	0(1+)
N(1710)	P ₁₁	***	<i>∆</i> (1930)	D35	***	$\Sigma(1670)$	D ₁₃	*** • p(770)	$1^+(1^{})$ $a_2(1700)$	$1^{-(2^{++})}$	K*(800)	$1/2(0^+)$	• $D_{c1}(2536)^{\pm}$	$0(1^+)$
N(1720)	P ₁₃	****	$\Delta(1940)$	D33	*	$\Sigma(1690)$		** • ω(782)	$0^{-}(1^{-}) \bullet f_{0}(1710)$	$0^{+}(0^{+}+)$	• K*(892)	$1/2(1^{-1})$	• D _{c2} (2573)	0(??)
N(1900)	P ₁₃	**	$\Delta(1950)$	F37	****	$\Sigma(1750)$	S_{11}	*** • η′(958)	$0^+(0^{-+})$ $\eta(1760)$	$0^{+}(0^{-}+)$	• K1(1270)	1/2(1+)	$D^{*}(2700)^{\pm}$	$0(1^{-})$
N(1900)	F ₁₅	***	<u>∆(2000)</u>	F35	**	$\Sigma(1770)$	P ₁₁	* • f ₀ (980)	$0^+(0^{++}) \bullet \pi(1800)$	$1^{-(0^{-}+)}$	• $K_1(1400)$	$1/2(1^+)$	$D_{S1}^{*}(2860)^{\pm}$	0(7?)
N(1990)	F ₁₇	**	$\Delta(2150)$	S ₃₁	*	Σ(1775)	D_{15}	*** • a ₀ (980)	$1^{-}(0^{+}+)$ f(1810)	$0^{+}(2^{++})$	• K*(1410)	$1/2(1^{-})$	$D_{s}(2000)^{\pm}$	0(7?)
N(2080)	D ₁₃	**	$\Delta(2200)$	Ga	*	Σ(1840)	P ₁₃	* • \(020)	$0^{-}(1^{-}) \bullet X(1835)$	$?^{?}(\dot{r} - +)$	• K*(1430)	$1/2(0^+)$	$D_{8,1}(30,0)$	0(:)
N(2090)	S ₁₁	*	<i>∆</i> (2300)	H ₃₉	**	$\Sigma(1880)$	P ₁₁	** • h (1170)	$0^{-}(1^{+}-) \bullet \phi_{3}(1850)$	$0^{-}(3^{-}-)$	• K*(1430)	$\frac{1}{2}(0^{+})$	BOTTO	MC
N(2100)	P ₁₁	*	$\Delta(2350)$	D35	*	Σ(1915)	F ₁₅	*** • b1(1235)	$1^{+}(1^{+}-)$ m(1870)	$0^{+}(2^{-}+)$	K(1460)	$\frac{1}{2}(2^{-})$	$(B = \pm$	1)
N(2190)	G17	****	<i>∆</i> (2390)	F37	*	$\Sigma(1940)$	D ₁₃	*** • a1(1260)	$1^{-}(1^{+}+) \bullet \pi_{2}(1880)$	1-i(2-+i)	K-(1590)	$\frac{1}{2}(0)$	 B[±] 	$1/2(0^{-})$
N(2200)	D_{15}	**	$\Delta(2400)$	G39	**	Σ(2000)	S ₁₁	* • 5(1270)	$0^+(2^{++}) = \rho(1900)$	1+(1-i)	K(1620)	$\frac{1}{2}(2)$	• B ⁰	$1/2(0^{-})$
N(2220)	H_{19}	****	$\Delta(2420)$	H3.11	****	Σ(2030)	F ₁₇	*** • fi(1285)	$0^{+}(1^{++})$ $f_{0}(1910)$	$0^{+}(2^{+}+)$	K (1050)	$\frac{1}{2}(1+)$	 B[±]/B⁰ ADM 	/IXTURE
N(2250)	G19	****	△(2750)	13.13	**	$\Sigma(2070)$	F ₁₅	* • n(1295)	$0^+(0^{-+}) \bullet f_{0}(1950)$	$0^{+}(2^{+}+)$	$K_1(1000)$	$\frac{1}{2}(1^{-1})$	• B [±] /B ⁰ /B ⁰ /	b-barvon
N(2600)	I _{1,11}	***	$\Delta(2950)$	K3 15	**	$\Sigma(2080)$	P ₁₃	** • π(1300)	$1^{-}(0^{-}+)$ $\rho_2(1990)$	1+(3)	• K (1000)	1/2(1)	ADMIXTUŘ	Ē
N(2700)	$K_{1,13}$	**	. ,	0,20		Σ(2100)	G17	* • a (1320)	$1^{-}(2^{+}+) \bullet f_{2}(2010)$	$0^{+}(2^{++})$	 K*(1790) 	$\frac{1}{2(2)}$	V_{cb} and V_{ub}	CKM Ma-
			Λ	P_{01}	****	$\Sigma(2250)$		*** • fo(1370)	$0^+(0^{++})$ for $f_0(2020)$	$0^{+}(0^{+}+)$	• N ₃ (1700)	1/2(3)	trix Elements	1/0(1-)
			A(1405)	S ₀₁	****	Σ(2455)		** h(1390)	$7^{-}(1^{+}-)$ • $a_{1}(2040)$	$1^{-}(4^{+}+)$	• K ₂ (1820)	1/2(2)	• B*	1/2(1)
			A(1520)	D ₀₃	****	$\Sigma(2620)$		** • T1(1500)	$1^{-}(1^{-}+) \bullet f_{1}(2050)$	$0^{+}(4^{+}+)$	N(1830)	1/2(0)	D (5732)	·(:')
			A(1600)	P ₀₁	***	Σ(3000)		* • n(1405)	$0^+(0^-+)$ $\pi_2(2100)$	$1^{-}(2^{-}+)$	K ₀ (1950)	1/2(0+)	• B ₁ (5/21) ⁰	$1/2(1^+)$
			A(1670)	Sm	****	$\Sigma(3170)$		* (1400)	0+(1++) f (0100)	0+(0++)	K ₂ (1980)	1/2(27)	• B ₂ (5747) ⁰	1/2(2+)

The valence quarks -> charge

$$e_{up} = \frac{2}{3} \& e_{down} = -\frac{1}{3}$$

$$e_{proton} = 2 \times \frac{2}{3} - \frac{1}{3} = +1$$

$$e_{neutron} = \frac{2}{3} - 2 \times \frac{1}{3} = 0$$

QCD in a Nutshell

Nobel Prize 2004: $G_{m_u}, m_d, m_s, \mathcal{K}, m_c, m_b, m_t, \Theta \ll$

Confinement: No free quarks & gluons in nature

QCD in a Nutshell

Nobel Prize 2004: $G_{m_u}^{ross} M_{d}^{ross} M_{s}^{ross} M_{c}^{ross} M_{b}^{ross} M_{b}^{ro$

Confinement: No free quarks & gluons in nature

Factorization

From Theory to Measurement

$\sigma_{AB\to C} = PDF_{a/A} \otimes PDF_{b/B} \otimes \hat{\sigma}_{ab\to c} \otimes FF_{C/c}$

The partonic cross-section:

- Calculable in perturbation theory (very time consuming!)
- Depends on the process

$$\hat{\sigma} = \sum_{n=0}^{\infty} \alpha_s^{n+1} \hat{\sigma}^{(n)}$$

Look, I finished it in 6 months and the box says 3 to 5 yrs.

The PDFs & FFs:

- NOT calculable via PT -> extracted via Global Fits
- + Universal

PDFs

The PDFs provide the distributions of the partons in the proton

* x-dependence:
$$x = \frac{p_z}{P_z}$$

fraction of proton's momentum carried by parton

* (so far) not computable from first principles

*****Q-dependence:

- Q is the so-called factorization scale
- Q dependence governed by RGE's (DGLAP evolution equations)

Parton Distributions

Parton Distributions

Gluons carry about 40% of the momentum!

Parton Distributions

- * RGE's (DGLAP)
- integro-differential
 equations
- known to NNLO

- * RGE's (DGLAP)
- integro-differential
 equations
- known to NNLO

- RGE's (DGLAP)
- integro-differential
 equations
- known to NNLO

- RGE's (DGLAP)
- integro-differential equations
- known to NNLO

+So how does one obtain the PDFs?

*So how does one obtain the PDFs?

Parameter Dependent Functional Form

 $x f_k^{p/A}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}, \quad k = u_v, d_v, g, \bar{u} + \bar{d}, s, \bar{s},$ $\bar{d}(x, Q_0)/\bar{u}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x) (1-x)^{c_4} \qquad \text{CTEQ}$

*So how does one obtain the PDFs?

DGLAP Evolution Equations $\frac{\partial r_{2}(r_{1}, Q^{2})}{\partial r_{2}(r_{1}, Q^{2})} \int f^{1}(r_{1}, Q^{2}) \int f^{1}(r_{2}, Q^{2}) \int f^{1}(r_{2$

$$\frac{\partial q_S(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[\int_x^x \left(P_{qq}(\frac{x}{x_1}) q_s(x_1,Q^2) + P_{qg}(\frac{x}{x_1}) g(x,Q^2) \right) \right], \quad (6)$$

$$\frac{\partial g(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[\int_x^1 \left(P_{gq}(\frac{x}{x_1}) q_s(x_1,Q^2) + P_{gg}(\frac{x}{x_1}) g(x,Q^2) \right) \right]. \quad (7)$$

*So how does one obtain the PDFs?

Data

Data sets fitted in MSTW 2008 NLO analysis [arXiv:0901.00

Data set	χ^2 / $N_{\rm pts.}$	Data set	χ^2 / $N_{\rm pts.}$
H1 MB 99 e ⁺ p NC	9 / 8	BCDMS $\mu p F_2$	182 / 163
H1 MB 97 e ⁺ p NC	42 / 64	BCDMS $\mu d F_2$	190 / 151
H1 low Q^2 96–97 e^+p NC	44 / 80	NMC $\mu p F_2$	121 / 123
H1 high Q ² 98–99 e ⁻ p NC	122 / 126	NMC $\mu d F_2$	102 / 123
H1 high <i>Q</i> ² 99–00 e ⁺ p NC	131 / 147	NMC $\mu n/\mu p$	130 / 148
ZEUS SVX 95 e ⁺ p NC	35 / 30	E665 $\mu p F_2$	57 / 53
ZEUS 96–97 e ⁺ p NC	86 / 144	E665 $\mu d F_2$	53 / 53
ZEUS 98–99 e ⁻ p NC	54 / 92	SLAC ep F2	30 / 37
ZEUS 99–00 e ⁺ p NC	63 / 90	SLAC ed F_2	30 / 38
H1 99–00 e ⁺ p CC	29 / 28	NMC/BCDMS/SLAC F	38 / 31
ZEUS 99–00 e ⁺ p CC	38 / 30	E866/NuSea pp DY	228 / 184
H1/ZEUS e $^\pm$ p F $_2^{ m charm}$	107 / 83	E866/NuSea pd/pp DY	14 / 15
H1 99–00 e ⁺ p incl. jets	19 / 24	NuTeV $\nu N F_2$	49 / 53
ZEUS 96–97 e ⁺ p incl. jets	30 / 30	CHORUS $\nu N F_2$	26 / 42
ZEUS 98–00 $e^{\pm}p$ incl. jets	17 / 30	NuTeV $\nu N \times F_3$	40 / 45
DØ II pp̄ incl. jets	114 / 110	CHORUS $\nu N xF_3$	31 / 33
CDF II <i>p</i> p̄ incl. jets	56 / 76	CCFR $\nu N \rightarrow \mu \mu X$	66 / 86
CDF II $W ightarrow l u$ asym.	29 / 22	NuTeV $\nu N \rightarrow \mu \mu X$	39 / 40
DØ II $W ightarrow l u$ asym.	25 / 10		25/13 / 2600
DØ II Z rap.	19 / 28		2373 / 2099
CDF II Z rap.	49 / 29	Pod – Now wrth MP	ST 2006 fit

• Red = New w.r.t. MRST 2006 fit.

*So how does one obtain the PDFs?

minimize χ^2 function

weights: default=1, allows to emphasize certain data sets

+So how does one obtain the PDFs?

minimize χ^2 function

weights: default=1, allows to emphasize certain data sets

Parameter Dependent Functional Form $x f_k^{p/A}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}, \quad k = u_v, d_v, g, \bar{u} + \bar{d}, s, \bar{s},$

 $\bar{d}(x, Q_0)/\bar{u}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x)(1-x)^{c_4}$

CTEQ

DGLAP Evolution Equations

$$\frac{\partial q_S(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[\int_x^1 \left(P_{qq}(\frac{x}{x_1}) q_s(x_1,Q^2) + P_{qg}(\frac{x}{x_1}) g(x,Q^2) \right) \right], \quad (6)$$

$$\frac{\partial g(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[\int_x^1 \left(P_{gq}(\frac{x}{x_1}) q_s(x_1,Q^2) - \frac{\alpha_s(Q^2)}{2\pi} \right) \right], \quad (6)$$

Data sets fitted in MSTW 2008 NLO analysis [arXiv:0901.00

Data	set	χ^2 / $N_{\rm pts.}$	Data set	$\chi^2 / N_{\rm pts.}$
H1 M	1B 99 e ⁺ p NC	9 / 8	BCDMS $\mu p F_2$	182 / 163
H1 M	1B 97 e ⁺ p NC	42 / 64	BCDMS $\mu d F_2$	190 / 151
H1 lo	w Q ² 96–97 e ⁺ p NC	44 / 80	NMC $\mu p F_2$	121 / 123
H1 hi	igh <i>Q</i> ² 98−99 <i>e</i> − <i>p</i> NC	122 / 126	NMC $\mu d F_2$	102 / 123
H1 hi	igh <i>Q</i> ² 99–00 <i>e</i> + <i>p</i> NC	131 / 147	NMC $\mu n/\mu p$	130 / 148
ZEUS	5 SVX 95 e ⁺ p NC	35 / 30	E665 $\mu p F_2$	57 / 53
ZEUS	5 96–97 e ⁺ p NC	86 / 144	E665 $\mu d F_2$	53 / 53
ZEUS	598-99 e⁻p NC	54 / 92	SLAC ep F_2	30 / 37
ZEUS	5 99–00 e ⁺ p NC	63 / 90	SLAC ed F_2	30 / 38
H1 9	9–00 e ⁺ p CC	29 / 28	NMC/BCDMS/SLAC F_L	38 / 31
ZEUS	5 99–00 e ⁺ p CC	38 / 30	E866/NuSea pp DY	228 / 184
H1/Z	EUS $e^{\pm}p F_2^{\rm charm}$	107 / 83	E866/NuSea <i>pd/pp</i> DY	14 / 15
H1 9	9–00 e ⁺ p incl. jets	19 / 24	NuTeV $\nu N F_2$	49 / 53
ZEUS	5 96–97 e^+p incl. jets	30 / 30	CHORUS $\nu N F_2$	26 / 42
ZEUS	5 98–00 $e^{\pm}p$ incl. jets	17 / 30	NuTeV $\nu N x F_3$	40 / 45
DØ I	l pp̄ incl. jets	114 / 110	CHORUS $\nu N xF_3$	31 / 33
CDF	II <i>p</i> p̄ incl. jets	56 / 76	CCFR $\nu N \rightarrow \mu \mu X$	66 / 86
CDF	If $W ightarrow l u$ asym.	29 / 22	NuTeV $ u N ightarrow \mu \mu X$	39 / 40
DØI	I $W ightarrow l u$ asym.	25 / 10	All data sets	2543 / 2699
DØ I	I Z rap.	19 / 28		
CDF	II Z rap.	49 / 29	Red — New wrt MR	95T 2006 fit

PDFs

Many Different groups fitting PDFs in last 2-3 decades

- + CTEQ,MSTW,GRV,ABSM,HERAPDF, ZEUS,NNPDFs ...
- Differ in functional forms, data used, etc.

PDF Uncertainty

Decreasing PDF Uncertainty:

- + More data with reduced error
- Improved theory precision -> higher orders calculations

Structure Functions

DIS deep inelastic scattering

DY Drell-Yan

Structure Functions

Striving toward increased precision in both data and theory!

*F₂ - the higher order corrections converge quickly
*F_L - difference noticeable at each order - obvious need for higher order corrections

Precision PDFs → BSM Searches

 $\sigma_{AB\to C} = PDF_{a/A} \otimes PDF_{b/B} \otimes \hat{\sigma}_{ab\to c} \otimes FF_{C/c}$

Precision PDFs → BSM Searches

$$\sigma_{AB\to C} = PDF_{a/A} \otimes PDF_{b/B} \otimes \hat{\sigma}_{ab\to c} \otimes FF_{C/c}$$

Precision PDFs → BSM Searches

 $\sigma_{AB \to C} = PDF_{a/A} \otimes PDF_{b/B} \otimes \hat{\sigma}_{ab \to c} \otimes FF_{C/c}$

PDF Expectations

Early parametrizations by Duke-Owens

 $x\overline{u} = x\overline{d} = x\overline{s} = A_S(1-x)^{\eta_S}S/6$

PDF Expectations

Early parametrizations by Duke-Owens

bands ^xCTEQ6.6

PDF Expectations

The Strange PDF

+Very Important for W&Z benchmark LHC processes

The Strange PDF

The Strange PDF

Intrinsic Charm

Possible intrinsic contribution to the charm pdf, just like s, \overline{d} , \overline{u}

 $c(x,\mu) \neq 0$ at $\mu = m_c$

Intrinsic Charm

Possible intrinsic contribution to the charm pdf, just like s, d, ū

 $c(x,\mu) \neq 0$ at $\mu = m_c$

This idea incorporated in global fit -> IC PDFs

Intrinsic Charm

Possible intrinsic contribution to the charm pdf, just like s, d, \overline{u}

 $c(x,\mu) \neq 0$ at $\mu = m_c$

This idea incorporated in global fit -> IC PDFs

Processes sensitive to IC $pp \to D + X \ pp \to \gamma + Q$

(00000)

Compton Subprocess $g + Q \rightarrow Q + \gamma$	$g + g \rightarrow Q + \bar{Q} + \gamma$	$Q + Q \rightarrow Q + Q + \gamma$
	$g + Q \rightarrow g + Q + \gamma$	$ar{Q}+ar{Q} ightarrow Q+ar{Q}+ar{Q}+\gamma$
	$Q + q ightarrow q + Q + \gamma$	$m{q}+ar{m{q}} ightarrowm{Q}+ar{m{Q}}+\gamma$
00000	$Q + ar{q} ightarrow Q + ar{q} + \gamma$	

D Meson Production

Friday, May 11, 12

LHCb measurements extremely sensitive to IC

Photon + Q Production

Rapic

 $|y_{Y}| < 0$

|y_Q|<

nuclear PDFs

*Needed in ion collisions and for global fits of proton PDFs

+Can constrain them with various processes sensitive to g in pA collisions, end of 2012 at LHC

+Cannot be obtained from free PDFs

nuclear PDFs

Different nPDF groups, different analysis

Functional Form

• Convolution Relation - DS'04:

$$f_{i}^{p/A}(x_{N}, Q_{0}^{2}) = \int_{x_{N}}^{A} \frac{dy}{y} W_{i}(y, A, Z) f_{i}^{p}(x_{N}/y, Q_{0}^{2})$$

$$W_{v}(y, A, Z) = A[a_{v}\delta(1 - \epsilon_{v} - y) + (1 - a_{v})\delta(1 - \epsilon_{v'} - y)] + n_{v}(y/A)^{\alpha_{v}}(1 - y/A)^{\beta_{v}} + n_{s}(y/A)^{\alpha_{s}}(1 - y/A)^{\beta_{s}}$$
• Multiplicative Factor - EPS'09, HKN'07:

$$f_{i}^{p/A}(x_{N}, Q_{0}^{2}) = R_{i}(x_{N}, Q_{0}, A, Z) f_{i}^{p}(x_{N}, Q_{0}^{2}) R_{i}^{HKN}(x, A, Z) = 1 + (1 - \frac{1}{A^{\alpha}}) \frac{a_{i} + b_{i}x + c_{i}x^{2} + d_{i}x^{3}}{(1 - x)^{\beta_{i}}} \quad (i = u_{v}, d_{v}, \bar{q}, g)$$

$$R_{i}^{EPS}(x, A, Z) = \begin{cases} a_{0} + (a_{1} + a_{2}x)(e^{-x} - e^{-x_{a}}) & x \leq x_{a} \\ b_{0} + b_{1}x + b_{2}x^{2} + b_{3}x^{3} & x_{a} \leq x \leq x_{e} \\ c_{0} + (c_{1} - c_{2}x)(1 - x)^{-\beta} & x_{e} \leq x \leq 1 \end{cases}$$

A-Dependant Functional Form - nCTEQ:

Data

	R	Nucleus	Experiment	EPS09	HKN07	DS04
	-	D/p	NMC		0	
		411-	SLAC E139	0	0	0
		4He	NMC95	0 (5)	0	0
		Li	NMC95	0	0	
		Be	SLAC E139	0	0	0
			EMC-88, 90		0	
			NMC 95	0	0	0
		C	SLAC E139	0	0	0
			FNAL-E665		0	
			BCDMS 85		0	
		N	HERMES 03		0	
			SLAC E49		0	
		AI	SLAC E139	0	0	0
			EMC 90		0	
	A/D	_	NMC 95	0	0	0
		Ca	SLAC E139	0	0	Ő
			FNAL-E665		0	
		<u> </u>	SLAC F87		0	
DIS		_	SLAC F139	0 (15)	0	0
0.0		Fe	SLAC E140	• (,	0	
			BCDMS 87		Ő	
		Cu	EMC 93	0	õ	
		Kr	HERMES 03		õ	
		Δσ	SLAC E139	0	0	0
		Sn	EMC 88		0	
		011	SLAC E139	0	õ	0
		Au	SLAC E140		Ő	
		Ph	ENAL-E665		Ő	
		Be	NMC 96	0	0	0
		AI	NMC 96	õ	0	Õ
		74	NMC 95		Ő	-
	A/C	Ca	NMC 96	0	õ	0
	100	Fe	NMC 96	0	Ő	õ
		Sn	NMC 96	0 (10)	0	õ
		Ph	NMC 96	0	õ	õ
		C	NMC 95	0	Ő	-
	A/Li	Ca	NMC 95	õ	õ	
DY		C		õ	õ	0
		Ca		0 (15)	õ	õ
	A/D	Fe	FNAL-E772	0 (15)	õ	õ
		Ŵ	1	0 (10)	ő	0
		Fe		0	õ	- V
	A/Be	Ŵ	FNAL E866	0	0	
	d A / ==	A.,		0 (20)		

gluon nPDF

F.Arleo F. Olness J.Owens I.Schienbein K.Kovarik J.Yu TS arXiv:1012.1178 gluon nPDF largely unconstrained 2.5 Nuclear Modifications for $g^{p/Pb}(x,Q_{o}=1.3 \text{ GeV})$ Nuclear Modifications for $g^{p/Pb}(x,Q=50 \text{ GeV})$ -- EPS09 — nCTEQ decut3 --- HKN07 - nCTEQ decut3g3 — nCTEQ nCTEQ decut3g9 1.5 Pb Рb \mathbf{x}_{ω} $\mathbf{R}_{\mathbf{w}}$ THE REPORT 0.5 0.01 0.1 0.0001 0.001 0.01 0.1 X X

Processes helpful for constraining g nPDF

- Inclusive jet data (like Tevatron for free gluon)
- Inclusive hadron production
- Heavy quark ; Quarkonium production
- Isolated direct photons
- Direct Photons + jet
- Direct Photon + Heavy Quark Jet

gluon nPDF

F.Arleo F. Olness J.Owens I.Schienbein K.Kovarik J.Yu TS arXiv:1203.0282

The cross-section ratio follows the gluon ratio

Conclusions

- + PDFs an indispensable part of hadronic cross-section calculations
- + Universal -> obtained through global analysis
- + Reduced PDF error -> controlled SM background for BSM searches
- + Focus on strange quark PDF and Intrinsic Charm existence
- * nPDFs -> need to have own global analysis
- + gluon nPDF -> constrain through γ +Q in our case

neutrino DIS fits

VAUdid

	$\mathbf{d}\sigma^{\mathbf{ u}\mathbf{A}}/\mathbf{d}\mathbf{x}\mathbf{d}\mathbf{y}:$		
ID	Observable	Experiment	# data
33	Pb	CHORUS ν	607 (412)
34	Pb	CHORUS $\bar{\nu}$	607~(412)
35	Fe	NuTeV ν	1423 (1170)
36	Fe	NuTeV $\bar{\nu}$	1195 (966)
37	Fe	CCFR ν di-muon	44 (44)
38	Fe	NuTeV ν di-muon	44 (44)
39	Fe	CCFR $\bar{\nu}$ di-muon	44 (44)
40	Fe	NuTeV $\bar{\nu}$ di-muon	42 (42)
	Total:		4006 (3134)

- Left: Fit to only νFe data (arXiv:0710.4897)
- Right: New fit to all vA data in A-dependent nPDF framework (arXiv:0907.2357)
- These fits describe $R[F_2^{\nu A}]$ very well

- The neutrino fit does not describe the DY and $I^{\pm}A$ data
- Can a global fit combining the two data sets help?
- DY, $I^{\pm}A$ (708 data points) with νA (3134 data points)
- Use different weights to make up for data imbalance

Friday, April 6, 12

- No single compromise fit between charged lepton and neutrino data [PRL106(2011)122301]
- Different nuclear correction factors preferred
- Implications for free and bound PDFs extraction
- Further experimental measurements and theoretical study needed to explain this behavior