Higgs and Dark Matter in Supersymmetry

Guillaume Drieu La Rochelle
drieu@lapp.in2p3.fr

LAPTh
Université de Savoie

CTPG 2012 Grenoble
The call for New Physics: Dark Matter and Naturalness. Where do we go?
- Extra dimensions, extra gauge structure, hidden sector ...
- Main focus: Supersymmetry

Working team for the phenomenology of supersymmetry
- Permanent: F. Boudjema, G. Belanger, B. Herrmann
- PhD: GDLR, J. Da Silva
- Collaborators: A. Pukhov, A. Semenov, J. Harz, M. Heikinheimo ...

New Physics @ Annecy
- A multi-observables approach: Higgs searches, direct and indirect detection of Dark Matter
- A multi-tool development: micrOmegas, SloopS, DM@NLO.
Introduction

- The call for New Physics: Dark Matter and Naturalness. Where do we go?
 - Extra dimensions, extra gauge structure, hidden sector ...
 - Main focus: Supersymmetry

- Working team for the phenomenology of supersymmetry
 - Permanent: F. Boudjema, G. Belanger, B. Herrmann
 - PhD: GDLR, J. Da Silva
 - Collaborators: A. Pukhov, A. Semenov, J. Harz, M. Heikinheimo ...

- New Physics @ Annecy
 - A multi-observables approach: Higgs searches, direct and indirect detection of Dark Matter
 - A multi-tool development: micrOmegas, SloopS, DM@NLO.
The call for New Physics: Dark Matter and Naturalness. Where do we go?
- Extra dimensions, extra gauge structure, hidden sector...
- Main focus: Supersymmetry

Working team for the phenomenology of supersymmetry
- Permanent: F. Boudjema, G. Belanger, B. Herrmann
- PhD: GDLR, J. Da Silva
- Collaborators: A. Pukhov, A. Semenov, J. Harz, M. Heikinheimo...

New Physics @ Annecy
- A multi-observables approach: Higgs searches, direct and indirect detection of Dark Matter
- A multi-tool development: micrOmegas, SloopS, DM@NLO.
Calculating Dark Matter observable with \textit{micrOmegas}

- Evidence for a new kind of matter: massive and weakly interacting.
- How can we probe such particles?
 - Interactions with dense materials: direct detection
 Experiments XENON 100, CDMS, COGENT, ...
 - Annihilation of dark matter particles to standard particle: indirect detection
 Experiments Fermi, PAMELA, HESS, AMS, ...
Calculating Dark Matter observable with micrOmegas

- Evidence for a new kind of matter: massive and weakly interacting.
- How can we probe such particles?
 - Interactions with dense materials: direct detection
 Experiments XENON 100, CDMS, COGENT,...
 - Annihilation of dark matter particles to standard particle: indirect detection
 Experiments Fermi, PAMELA, HESS, AMS...
Evidence for a new kind of matter: massive and weakly interacting.

How can we probe such particles?

- Interactions with dense materials: direct detection
 Experiments XENON 100, CDMS, COGENT, ...
- Annihilation of dark matter particles to standard particle: indirect detection
 Experiments Fermi, PAMELA, HESS, AMS, ...
Using micrOmegas

- The need for a generic automated tool:
 - No need to do the computation by hand
 - Applicable to many models (so far supersymmetry, extra dimensions and technicolor).
Using micrOmegas

- The need for a generic automated tool:
 - No need to do the computation by hand
 - Applicable to many models (so far supersymmetry, extra dimensions and technicolor).

micrOMEGAs

- Lagrangian
 - LANHEP...

CalcHEP

- Model File
 - Particles
 - Vertices
 - Parameters

- Generate tree-level cross sections

Auxilliary Routines

- (Effective couplings,
 - Flavour: \(b \rightarrow s\gamma, (g - 2),\)
 - Collider constraints...)

Relic Density

- Annihilation/co-annihilations

Indirect detection

- \(\sigma v, v = 0\)

Direct Detection

- Wimp-Nucleon/q

Collider Observables

- Cross sections
 - Decays

G.Drieu La Rochelle (LAPTh)

Higgs and Dark Matter in Supersymmetry

CTPG 2012 @ Grenoble
The relic density: a precision observable

- From the observation of the CMB (Cosmic Microwave Background) one deduces

\[\Omega_h = 0.1123 \pm 0.0036 \quad 3\% \text{ precision!} \]

- Assuming a standard cosmological model, it yields an impressive accuracy on

\[\sigma(DM, DM \rightarrow SM \text{ particles}) \]

- Is the precision obtained from micrOMegas sufficient?
 - We expect quantum corrections for most of the processes \(\Rightarrow \) those correction can be high
 - Going to the one-loop computation of \(\sigma(DM, DM \rightarrow SM \text{ particles}) \)

- Different tools to be used:
 - SloopS
 - DM@NLO
 - Effective approach
The relic density: a precision observable

- From the observation of the CMB (Cosmic Microwave Background) one deduces

 \[\Omega_h = 0.1123 \pm 0.0036 \] 3% precision!

- Assuming a standard cosmological model, it yields an impressive accuracy on

 \[\sigma(DM, DM \rightarrow SM \text{ particles}) \]

- Is the precision obtained from micrOmegas sufficient?
 - We expect quantum corrections for most of the processes ⇒ those correction can be high
 - Going to the one-loop computation of \(\sigma(DM, DM \rightarrow SM \text{ particles}) \)

- Different tools to be used:
 - SloopS
 - DM@NLO
 - Effective approach
The relic density: a precision observable

- From the observation of the CMB (Cosmic Microwave Background) one deduces
 \[\Omega_h = 0.1123 \pm 0.0036 \quad \text{3\% precision!} \]

- Assuming a standard cosmological model, it yields an impressive accuracy on
 \[\sigma(DM, DM \rightarrow SM \text{ particles}) \]

- Is the precision obtained from **micrOmegas** sufficient?
 - We expect quantum corrections for most of the processes \(\Rightarrow \) those correction can be high
 - Going to the one-loop computation of \(\sigma(DM, DM \rightarrow SM \text{ particles}) \)

Different tools to be used:
- SloopS
- DM@NLO
- Effective approach
The relic density: a precision observable

- From the observation of the CMB (Cosmic Microwave Background) one deduces
 \[\Omega_h = 0.1123 \pm 0.0036 \quad \text{3\% precision!} \]

- Assuming a standard cosmological model, it yields an impressive accuracy on
 \[\sigma(DM, DM \rightarrow SM \text{ particles}) \]

- Is the precision obtained from micrOmegas sufficient?
 - We expect quantum corrections for most of the processes \(\Rightarrow \) those correction can be high
 - Going to the one-loop computation of \(\sigma(DM, DM \rightarrow SM \text{ particles}) \)

- Different tools to be used:
 - SloopS
 - DM@NLO
 - Effective approach
The **SloopS** program: automated full one-loop in Supersymmetry

Strategy: Exploiting and interfacing modules from different codes

Lagrangian of the model defined in LanHEP
- particle content
- interaction terms
- shifts in fields and parameters
- ghost terms constructed by BRST

↓

Generic Model
- kinematical structures

↓

Classes Model
- Feynman rules, including CT

↓

Evaluation via FeynArts-FormCalc
LoopTools modified!!
tensor reduction inappropriate for small relative velocities
(Zero Gram determinants)

↑

Renormalisation scheme
- definition of renorm. const. in the classes model
- Non-Linear gauge-fixing constraints, gauge parameter dependence checks
The **DM@NLO** program: automated QCD one-loop in Supersymmetry

SPheno

SUSY Parameters

W. Porod (2003-2012)

SPheno

SParticle masses, mixings, precision observables

INPUT

SUSY Parameters

(CMSSM/mSUGRA, ...)

SPheno

SParticle masses, mixings, precision observables

W. Porod (2003-2012)

micrOMEGAs

Integration of Boltzmann Equation (and more...)

G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov (2003-2012)

CalcHEP

(Co)Annihilation Processes Tree-Level

CalcHEP

Cross-Sections replaced by DM@NLO calculation

DM@NLO

Relevant Processes including full one-loop SUSY-QCD Corrections

J. Harz, B. Herrmann, M. Klasen, K. Kovarik, Q. Le Boulc’h, M. Meinecke, P. Steppeler (2008-2012)

OUTPUT

Neutralino Relic Rensity

G.Drieu La Rochelle (LAPTh)

Higgs and Dark Matter in Supersymmetry

CTPG 2012 @ Grenoble
What kind of loop corrections do we expect?

- Annihilation rate enhanced by up to 50% by QCD corrections
- Favoured regions of parameter shifted by up to 50 GeV for A_0 or 200 GeV for $\tilde{\chi}_1^0$
What kind of loop corrections do we expect?

- Annihilation rate enhanced by up to 50% by QCD corrections
- Favoured regions of parameter shifted by up to 50 GeV for A_0 or 200 GeV for $\tilde{\chi}_1^0$

Blue: One-loop, Green: Tree-level, Red: Tree-level with effective masses.
The effective approach for Supersymmetry

- One loop computations meet technical issues:
 - Loop integration is CPU time consuming
 - Supersymmetric parameter space can be large (19 parameters)
- Solution: tree-level with effective vertices (ref arXiv:1108.4291)

\[
g_{\chi_1^0 \bar{f}}
\]
The effective approach for Supersymmetry

- One loop computations meet technical issues:
 - Loop integration is CPU time consuming
 - Supersymmetric parameter space can be large (19 parameters)
- Solution: tree-level with effective vertices (ref arXiv:1108.4291)

\[
\chi^0 \rightarrow \bar{\mu} \rightarrow \mu^+ \mu^- \quad \rightarrow \quad \chi^0 \rightarrow \bar{\mu} \rightarrow \mu
\]

Effective coupling \(g_{\tilde{\chi}^0 \tilde{\mu} \tilde{f}} \)
The effective approach for Supersymmetry

- One loop computations meet technical issues:
 - Loop integration is CPU time consuming
 - Supersymmetric parameter space can be large (19 parameters)
- Solution: tree-level with effective vertices (ref arXiv:1108.4291)

\begin{equation}
\tilde{g}_{\tilde{\chi}_1^0\tilde{f}}
\end{equation}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{Bino-like case}
\end{figure}
Higgs searches

- Exclusion vs Signal

ATLAS Preliminary

95% CL Limit on σ/σ_{SM}

- Obs.
- Exp.

$\pm 1 \sigma$

$\pm 2 \sigma$

2011 Data

$\int L dt = 4.6-4.9$ fb$^{-1}$

$\sqrt{s} = 7$ TeV

ATLAS Preliminary

$H \rightarrow \gamma\gamma$

- Best fit
- $-2 \ln \lambda(\mu) < 1$

$\int L dt = 4.9$ fb$^{-1}$

$\sqrt{s} = 7$ TeV
Recasting Standard Model searches (I)

- Neutral channels are

\[
\begin{align*}
VH & \to Vbb & H & \to \tau\tau \\
H & \to ZZ & H & \to WW \\
& & (H \to \gamma\gamma + 2\text{ jets})
\end{align*}
\]

- For neutral bosons Φ and each final state XX we define

\[
R_{XX} \Phi = \frac{\sigma_{pp \to \Phi \to XX}}{\sigma_{SM pp \to \Phi \to XX}} \quad \& \quad R_{XX}^{\text{Exclusion}} = \frac{\sigma_{pp \to \Phi \to XX}}{\sigma_{95\% \, CL \, pp \to \Phi \to XX}}
\]

- $R_{XX}^{\text{Exclusion}}$ are added in quadrature among all channels to determine whether the point is excluded.

- $R_{XX}^{\text{Exclusion}}$ shows the sensitivity: e.g. $R_{XX}^{\text{Exclusion}} = 0.5 \implies \text{we need } \mathcal{L} \sim 4 \times 5 = 20\text{fb}^{-1}$.

- Issues:
 - $\sigma_{\text{inclusive}} \neq \sigma_{\text{exclusive}} = \epsilon_{gg}\sigma_{gg}^{\text{inclusive}} + \epsilon_{VBF}\sigma_{VBF}^{\text{inclusive}} + \epsilon_{VH}\sigma_{VH}^{\text{inclusive}}$
 - No model independent combinations: SM combination does not apply to BSM!
Neutral channels are

<table>
<thead>
<tr>
<th>$VH \rightarrow V\bar{b}b$</th>
<th>$H \rightarrow \tau\tau$</th>
<th>$H \rightarrow WW$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow ZZ$</td>
<td>$H \rightarrow \gamma\gamma$</td>
<td>$(H \rightarrow \gamma\gamma + 2\text{ jets})$</td>
</tr>
</tbody>
</table>

For neutral bosons Φ and each final state XX we define

$$R_{XX} \Phi = \frac{\sigma_{pp \rightarrow \Phi \rightarrow XX}}{\sigma_{SM_{pp \rightarrow \Phi \rightarrow XX}}}$$

and

$$R_{\text{Exclusion}}^{XX} \Phi = \frac{\sigma_{95\% \text{ CL}_{pp \rightarrow \Phi \rightarrow XX}}}{\sigma_{pp \rightarrow \Phi \rightarrow XX}}$$

$R_{\text{Exclusion}}$ are added in quadrature among all channels to determine whether the point is excluded.

- $R_{\text{Exclusion}}$ shows the sensitivity: e.g.
 - $R_{\text{Exclusion}} = 0.5 \Rightarrow$ we need $\mathcal{L} \sim 4 \times 5 = 20\text{fb}^{-1}$.

Issues:

- $\sigma_{\text{inclusive}} \neq \sigma_{\text{exclusive}} = \epsilon_{gg}\sigma_{\text{inclusive}}^{gg} + \epsilon_{VBF}\sigma_{\text{inclusive}}^{VBF} + \epsilon_{VH}\sigma_{\text{inclusive}}^{VH}$
- No model independent combinations: SM combination does not apply to BSM!
Recasting Standard Model searches (I)

- Neutral channels are

\[
\begin{align*}
VH & \rightarrow V\bar{b}b \\
H & \rightarrow \tau\tau \\
H & \rightarrow WW \\
H & \rightarrow ZZ \\
H & \rightarrow \gamma\gamma \quad (H \rightarrow \gamma\gamma + 2 \text{ jets})
\end{align*}
\]

- For neutral bosons Φ and each final state XX we define

\[
R_{XX} \Phi = \frac{\sigma_{pp \rightarrow \Phi \rightarrow XX}}{\sigma_{SM_{pp \rightarrow \Phi \rightarrow XX}}} \quad \& \quad R_{\text{Exclusion}}^{XX} \Phi = \frac{\sigma_{pp \rightarrow \Phi \rightarrow XX}}{\sigma_{95\text{% CL}_{pp \rightarrow \Phi \rightarrow XX}}}
\]

- $R_{\text{Exclusion}}$ are added in quadrature among all channels to determine whether the point is excluded.

 - $R_{\text{Exclusion}}$ shows the sensitivity: e.g. $R_{\text{Exclusion}} = 0.5 \Rightarrow$ we need $L \sim 4 \times 5 = 20 \text{fb}^{-1}$.

- Issues:
 - $\sigma_{\text{inclusive}} \neq \sigma_{\text{exclusive}} = \epsilon_{gg}\sigma_{gg}^{\text{inclusive}} + \epsilon_{vbf}\sigma_{\text{VBF}}^{\text{inclusive}} + \epsilon_{vh}\sigma_{\text{VH}}^{\text{inclusive}}$
 - No model independent combinations: SM combination does not apply to BSM!
Hints for non-minimal supersymmetry

- The would be signal is somehow hard to reconcile with MSSM:
 - $m_h = 125$ GeV contradicts Naturalness since it requires heavy stops!
 - The enhancement $R_{\gamma\gamma} \sim 2$ is quite hard to reproduce (light staus).

- MSSM ruled out $\not\Rightarrow$ Susy ruled out, but non-minimal realisations
 - Extensions: NMSSM, U(1)'MSSM...

- Effective Field Theory approach

\[
\begin{align*}
M &= 1.5 \text{ TeV} \\
K &= K_{\text{MSSM}} + \frac{1}{M} K^{(1)} + \frac{1}{M^2} K^{(2)} + \ldots \\
W &= W_{\text{MSSM}} + \frac{1}{M} W^{(1)} + \frac{1}{M^2} W^{(2)} + \ldots
\end{align*}
\]
Hints for non-minimal supersymmetry

- The would be signal is somehow hard to reconcile with MSSM:
 - $m_h = 125$ GeV contradicts Naturalness since it requires heavy stops!
 - The enhancement $R_{\gamma\gamma} \sim 2$ is quite hard to reproduce (light staus).

- MSSM ruled out $\not= Susy$ ruled out, but non-minimal realisations
 - Extensions: NMSSM, U(1)'MSSM...

- Effective Field Theory approach

\[
\begin{aligned}
M &= 1.5 \text{ TeV} \\
K &= K_{\text{MSSM}} + \frac{1}{M} K^{(1)} + \frac{1}{M^2} K^{(2)} + \ldots \\
W &= W_{\text{MSSM}} + \frac{1}{M} W^{(1)} + \frac{1}{M^2} W^{(2)} + \ldots
\end{aligned}
\]
Hints for non-minimal supersymmetry

- The would be signal is somehow hard to reconcile with MSSM:
 - \(m_h = 125 \ \text{GeV} \) contradicts Naturalness since it requires heavy stops!
 - The enhancement \(R_{\gamma\gamma} \sim 2 \) is quite hard to reproduce (light staus).

- MSSM ruled out \(\neq \) Susy ruled out, but non-minimal realisations
 - Extensions: NMSSM, U(1)’MSSM...

- Effective Field Theory approach

\[
M = 1.5 \ \text{TeV} \\
k = K_{\text{MSSM}} + \frac{1}{M} K^{(1)} + \frac{1}{M^2} K^{(2)} + \ldots \\
w = W_{\text{MSSM}} + \frac{1}{M} W^{(1)} + \frac{1}{M^2} W^{(2)} + \ldots
\]
Hints for non-minimal supersymmetry

- The would be signal is somehow hard to reconcile with MSSM:
 - $m_h = 125$ GeV contradicts Naturalness since it requires heavy stops!
 - The enhancement $R_{\gamma\gamma} \sim 2$ is quite hard to reproduce (light staus).

- MSSM ruled out \neq Susy ruled out, but non-minimal realisations
 - Extensions: NMSSM, $U(1)^{\prime}$MSSM...

- Effective Field Theory approach

\[
M = 1.5 \text{ TeV}
\]
\[
K = K_{MSSM} + \frac{1}{M} K^{(1)} + \frac{1}{M^2} K^{(2)} + \ldots
\]
\[
W = W_{MSSM} + \frac{1}{M} W^{(1)} + \frac{1}{M^2} W^{(2)} + \ldots
\]
Higher dimensionnal operators in the Higgs sector

- Include only operators involving Higgs superfields H_1, H_2
- Effective Field Theory expansion on K and W:

$$K \rightarrow K + \frac{a_1}{M^2} \left(H_1^\dagger e^{v_1} H_1 \right)^2 + \frac{a_2}{M^2} \left(H_2^\dagger e^{v_2} H_1 \right)^2 + \frac{a_3}{M^2} \left(H_1^\dagger e^{v_1} H_1 \right) \left(H_2^\dagger e^{v_2} H_2 \right) + \frac{a_4}{M^2} \left(H_1 \cdot H_2 \right)^\dagger \left(H_1 \cdot H_2 \right) + \frac{a_5}{M^2} \left(H_1^\dagger e^{v_1} H_1 \right) \left(H_1 \cdot H_2 + h.c. \right) + \frac{a_6}{M^2} \left(H_2^\dagger e^{v_2} H_2 \right) \left(H_1 \cdot H_2 + h.c. \right)$$

$$W \rightarrow W + \frac{\zeta_1}{M} \left(H_1 \cdot H_2 \right)^2$$

- The effective coefficients can also have susy-breaking parts

$$a_i \rightarrow a_{i0} + \theta^2 m_s a_{i1} + \theta^2 m_s a_{i1}^* + \theta^2 \bar{\theta}^2 m_s^2 a_{i2}$$

$$\zeta_1 \rightarrow \zeta_{10} + \theta^2 m_s^2 \zeta_{11}$$

with $m_s = 300$ GeV.
Higher dimensionnal operators in the Higgs sector

- Include only operators involving Higgs superfields H_1, H_2

- Effective Field Theory expansion on K and W:

$$
K \rightarrow K + \frac{a_1}{M^2} \left(H_1^\dagger e^{v_1} H_1 \right)^2 + \frac{a_2}{M^2} \left(H_2^\dagger e^{v_2} H_1 \right)^2 \\
+ \frac{a_3}{M^2} \left(H_1^\dagger e^{v_1} H_1 \right) \left(H_2^\dagger e^{v_2} H_2 \right) + \frac{a_4}{M^2} \left(H_1 \cdot H_2 \right)^\dagger \left(H_1 \cdot H_2 \right) \\
+ \frac{a_5}{M^2} \left(H_1^\dagger e^{v_1} H_1 \right) (H_1 \cdot H_2 + h.c.) + \frac{a_6}{M^2} \left(H_2^\dagger e^{v_2} H_2 \right) (H_1 \cdot H_2 + h.c.)
$$

$$
W \rightarrow W + \frac{\zeta_1}{M} (H_1 \cdot H_2)^2
$$

- The effective coefficients can also have susy-breaking parts

$$
a_i \rightarrow a_{i0} + \theta^2 m_s a_{i1} + \bar{\theta}^2 m_s a_{i1}^* + \theta^2 \bar{\theta}^2 m_s^2 a_{i2}
$$

$$
\zeta_1 \rightarrow \zeta_{10} + \theta^2 m_s^2 \zeta_{11}
$$

with $m_s = 300$ GeV.
Non-minimal Higgs Phenomenology

- Main effect: m_h goes up to 250 GeV.
- Couplings also affected

But this was soon constrained by LHC searches ($\mathcal{L} = 2.3 fb^{-1}$)
Non-minimal Higgs Phenomenology

- **Main effect**: m_h goes up to 250 GeV.
- **Couplings also affected**

\[
\frac{\sigma_{gg\rightarrow h}}{\sigma_{gg\rightarrow h}^{SM}} \quad \frac{\sigma_{VBF}}{\sigma_{VBF}^{SM}} \quad \frac{\sigma_{bb\rightarrow h}}{\sigma_{gg\rightarrow h}^{SM}}
\]

- But this was soon constrained by LHC searches ($\mathcal{L} = 2.3\text{fb}^{-1}$)
Non-minimal Higgs Phenomenology

- Main effect: m_h goes up to 250 GeV.
- Couplings also affected

$$\frac{\sigma_{gg\to h}}{\sigma_{gg\to h}^{SM}}$$

$$\frac{\sigma_{VBF}}{\sigma_{VBF}^{SM}}$$

$$\frac{\sigma_{bb\to h}}{\sigma_{gg\to h}^{SM}}$$

But this was soon constrained by LHC searches ($\mathcal{L} = 2.3\text{fb}^{-1}$)

F. Boudjema, G. DLR
arXiv:1112.1434
BR $h \rightarrow \gamma \gamma$

- Effective operators can turn $g_{hbb} = 0$
- Enhance branching ratios in all over channels

- Correlation with the gluon fusion
Effective operators can turn $g_{hbb} = 0$

Enhance branching ratios in all over channels

Correlation with the gluon fusion

$$\frac{\sigma_{gg \rightarrow h}}{\sigma_{gg \rightarrow h}^{SM}} = \frac{|A_t + x A_b|^2}{|A_t + A_b|^2}$$
Signal features : case of the light h (I)

- **Enhancement in the $h \rightarrow \gamma\gamma$ channel**

 ![Graph A) and B) showing enhancement](image)

 - **Blue lines**: 1σ error band on ATLAS best fit.
 - **Enhancement driven by the suppression of g_{hbb}**.
Signal features : case of the light h (II)

- Correlations between $ZZ, \gamma\gamma$ (inclusive) and $\gamma\gamma + 2$ jets

- Blue : R_{ZZ}, Red : $R_{\gamma\gamma + 2 \text{ jets}}$
Signal features: case of the light h (II)

- Correlations between $ZZ, \gamma\gamma$ (inclusive) and $\gamma\gamma+2$ jets

\[m_{\tilde{t}_1} \simeq m_{\tilde{t}_1} \simeq 400 \text{ GeV} \]

\[m_{\tilde{t}_1} = 200 \text{ GeV} \]
\[m_{\tilde{t}_2} = 600 \text{ GeV} \]

- Blue: R_{ZZ}, Red: $R_{\gamma\gamma} + 2$ jets.
Signal features: stop effects

- Effect of the light stop loop

\[m_{t_2} \in [300 - 1000] \text{ GeV} \]

- **Black**: \(R_{\gamma\gamma} = 2.0 \pm 1\% \)
- **Red**: \(R_{\gamma\gamma} = 2.0 \pm 10\% \)
$B \to X_S \gamma^* $ in model B:

- To lower the supersymmetric contribution, either reduce $s_{2\theta_t}$, or reduce t_β.
- This constrain the possibility of a large $R_{\gamma\gamma}$ enhancement.
$B \rightarrow X_s\gamma^*$ in model B:

- To lower the supersymmetric contribution, either reduce $s_{2\theta_t}$, or reduce t_β.
- This constrain the possibility of a large $R_{\gamma\gamma}$ enhancement.
Prospect for other signals (I)

- There is more to see in the $\bar{t}t$ channel
 - Example in the degenerate case $m_{A_0} \simeq m_H$

- t_β dependence \Rightarrow low t_β means low sensitivity.
Prospect for other signals (I)

- There is more to see in the $\bar{\tau}\tau$ channel
 - Example in the degenerate case $m_{A_0} \simeq m_H$

- t_β dependence \Rightarrow low t_β means low sensitivity.
Conclusions

- Dark Matter tools :
 - Multi-use tool : **micrOmegas** (many different models and observables)
 - Precision tool for the Relic Density
 - SloopS
 - DM@NLO
 - **micrOmegas** with effective couplings

- Higgs searches : the hot spot
 - Recasting exclusion bounds and signal strengths in BSM models
 - Non-minimal susy : what if the Higgs is non-standard like?
$VH \rightarrow V\bar{b}b$
Dark Matter observables: Relic density

- Relic density with WMAP7:

\[\Omega_h = 0.1126 \pm 15\% \]

- The LSP is \(\tilde{\chi}_1^0 \), which is a mixture of bino and higgsino.

- Mostly accounted for by \(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \bar{t}t \) by \(A_0 \) resonance
Spin-Independent bounds from XENON 100