Higgs and Dark Matter in Supersymmetry

Guillaume Drieu La Rochelle

drieu@lapp.in2p3.fr

LAPTh Universite de Savoie

CTPG 2012 Grenoble

• The call for New Physics : Dark Matter and Naturalness. Where do we go?

- Extra dimensions, extra gauge structure, hidden sector ...
- Main focus : Supersymmetry
- Working team for the phenomenology of supersymmetry
 - Permanent : F. Boudjema, G.Belanger, B. Herrmann
 - PhD : GDLR, J. Da Silva
 - Collaborators : A.Pukhov, A. Semenov, J. Harz, M. Heikinheimo ...
- New Physics @ Annecy
 - A multi-observables approach : Higgs searches, direct and indirect detection of Dark. Matter
 - A multi-tool development : micrOmegas, SloopS, DM@NLO.

• The call for New Physics : Dark Matter and Naturalness. Where do we go?

- Extra dimensions, extra gauge structure, hidden sector ...
- Main focus : Supersymmetry
- Working team for the phenomenology of supersymmetry
 - Permanent : F. Boudjema, G.Belanger, B. Herrmann
 - PhD : GDLR, J. Da Silva
 - Collaborators : A.Pukhov, A. Semenov, J. Harz, M. Heikinheimo ...
- New Physics @ Annecy
 - A multi-observables approach : Higgs searches, direct and indirect detection of Dark Matter
 - A multi-tool development : micrOmegas, SloopS, DM@NLO.

• The call for New Physics : Dark Matter and Naturalness. Where do we go?

- Extra dimensions, extra gauge structure, hidden sector ...
- Main focus : Supersymmetry
- Working team for the phenomenology of supersymmetry
 - Permanent : F. Boudjema, G.Belanger, B. Herrmann
 - PhD : GDLR, J. Da Silva
 - Collaborators : A.Pukhov, A. Semenov, J. Harz, M. Heikinheimo ...
- New Physics @ Annecy
 - A multi-observables approach : Higgs searches, direct and indirect detection of Dark Matter
 - A multi-tool development : micrOmegas, SloopS, DM@NLO.

Calculating Dark Matter observable with micrOmegas

- Evidence for a new kind of matter : massive and weakly interacting.
- How can we probe such particles ?
 - Interactions with dense materials : direct detection Experiments XENON 100, CDMS, COGENT,...
 - Annihilation of dark matter particles to standard particle : indirect detection Experiments Fermi, PAMELA, HESS, AMS...

Calculating Dark Matter observable with micrOmegas

- Evidence for a new kind of matter : massive and weakly interacting.
- How can we probe such particles ?
 - Interactions with dense materials : direct detection Experiments XENON 100, CDMS, COGENT,...
 - Annihilation of dark matter particles to standard particle : indirect detection Experiments Fermi, PAMELA, HESS, AMS...

Calculating Dark Matter observable with micrOmegas

- Evidence for a new kind of matter : massive and weakly interacting.
- How can we probe such particles ?
 - Interactions with dense materials : direct detection Experiments XENON 100, CDMS, COGENT,...
 - Annihilation of dark matter particles to standard particle : indirect detection Experiments Fermi, PAMELA, HESS, AMS...

Using micrOmegas

- The need for an generic automated tool :
 - No need to do the computation by hand
 - Applicable to many models (so far supersymmetry, extra dimensions and technicolor).

Using micrOmegas

- The need for an generic automated tool :
 - No need to do the computation by hand
 - Applicable to many models (so far supersymmetry, extra dimensions and technicolor).

From the observation of the CMB (Cosmic Microwave Background) onde deduces

$\Omega_{h}=0.1123\pm0.0036\qquad3\%\ \text{precision!}$

Assuming a standard cosmological model, it yields an impressive accuracy on

$\sigma(\textit{DM},\textit{DM} ightarrow \textit{SM}$ particles)

- Is the precision obtained from micrOmegas sufficient?
 - We expect quantum corrections for most of the processes => those correction can be high
 - Going to the one-loop computation of σ(DM, DM → SMparticles)
- Different tools to be used :
 - SloopS
 - DM@NLO
 - Effective approach

From the observation of the CMB (Cosmic Microwave Background) onde deduces

 $\Omega_h = 0.1123 \pm 0.0036$ 3% precision!

Assuming a standard cosmological model, it yields an impressive accuracy on

 $\sigma(DM, DM \rightarrow SM \text{ particles})$

Is the precision obtained from micrOmegas sufficient?

- We expect quantum corrections for most of the processes ⇒ those correction can be high
- Going to the one-loop computation of $\sigma(DM, DM \rightarrow SM$ particles)
- Different tools to be used :
 - SloopS
 - DM@NLO
 - Effective approach

From the observation of the CMB (Cosmic Microwave Background) onde deduces

 $\Omega_h = 0.1123 \pm 0.0036$ 3% precision!

Assuming a standard cosmological model, it yields an impressive accuracy on

 $\sigma(DM, DM \rightarrow SM \text{ particles})$

- Is the precision obtained from micrOmegas sufficient?
 - We expect quantum corrections for most of the processes \Rightarrow those correction can be high
 - Going to the one-loop computation of $\sigma(DM, DM \rightarrow SM$ particles)
- Different tools to be used :
 - SloopS
 - DM@NLO
 - Effective approach

From the observation of the CMB (Cosmic Microwave Background) onde deduces

 $\Omega_h = 0.1123 \pm 0.0036$ 3% precision!

Assuming a standard cosmological model, it yields an impressive accuracy on

 $\sigma(DM, DM \rightarrow SM \text{ particles})$

- Is the precision obtained from micrOmegas sufficient?
 - We expect quantum corrections for most of the processes ⇒ those correction can be high
 - Going to the one-loop computation of $\sigma(DM, DM \rightarrow SM$ particles)
- Different tools to be used :
 - SloopS
 - DM@NLO
 - Effective approach

The SloopS program : automated full one-loop in Supersymmetry

Strategy: Exploiting and interfacing modules from different codes

definition of renorm. const. in the classes model
 Non-Linear gauge-fixing constraints, gauge parameter dependence checks

G.Drieu La Rochelle (LAPTh)

Higgs and Dark Matter in Supersymmetry

DM@NLO : Features of radiative corrections

- What kind of loop corrections do we expect?
 - Annihilation rate enhanced by up to 50% by QCD corrections
 - Favoured regions of parameter shifted by up to 50 GeV for A_0 or 200 GeV for $\tilde{\chi}_1^0$

DM@NLO : Features of radiative corrections

- What kind of loop corrections do we expect?
 - Annihilation rate enhanced by up to 50% by QCD corrections
 - Favoured regions of parameter shifted by up to 50 GeV for A_0 or 200 GeV for $\tilde{\chi}_1^0$

• Blue : One-loop, Green : Tree-level, Red : Tree-level with effective masses.

The effective approach for Supersymmetry

- One loop computations meet technical issues :
 - Loop integration is CPU time consuming
 - Supersymmetric parameter space can be large (19 parameters)
- Solution : tree-level with effective vertices (ref arXiv:1108.4291)

Effective coupling $g_{\tilde{\chi}_{1}^{0}\tilde{f}f}$

The effective approach for Supersymmetry

- One loop computations meet technical issues :
 - Loop integration is CPU time consuming
 - Supersymmetric parameter space can be large (19 parameters)
- Solution : tree-level with effective vertices (ref arXiv:1108.4291)

The effective approach for Supersymmetry

- One loop computations meet technical issues :
 - Loop integration is CPU time consuming
 - Supersymmetric parameter space can be large (19 parameters)
- Solution : tree-level with effective vertices (ref arXiv:1108.4291)

Exclusion vs Signal

Neutral channels are

• For neutral bosons Φ and each final state XX we define

$$R_{XX \ \Phi} = \frac{\sigma_{pp \to \Phi \to XX}}{\sigma_{pp \to \Phi \to XX}^{\text{SM}}} \qquad \& \qquad R_{XX \ \Phi}^{\text{Exclusion}} = \frac{\sigma_{pp \to \Phi \to XX}}{\sigma_{pp \to \Phi \to XX}^{95\% \ \text{CL}}}$$

- R^{Exclusion} are added in quadrature among all channels to determine whether the point is excluded.
 - R^{Exclusion} shows the sensitivity : e.g.

 $\mathsf{R}^{\mathsf{Exclusion}} = 0.5 \Rightarrow \mathsf{we} \ \mathsf{need} \ \mathcal{L} \sim 4 imes 5 = 20 \mathsf{fb}^{-1}.$

- Issues :
 - $\sigma^{\text{inclusive}} \neq \sigma^{\text{exclusive}} = \epsilon_{gg} \sigma^{\text{inclusive}}_{ag} + \epsilon_{vb} \sigma^{\text{inclusive}}_{VBF} + \epsilon_{vh} \sigma^{\text{inclusive}}_{VH}$
 - No model independent combinations : SM combination does not apply to BSM

Neutral channels are

• For neutral bosons Φ and each final state XX we define

$$R_{XX \ \Phi} = \frac{\sigma_{pp \to \Phi \to XX}}{\sigma_{pp \to \Phi \to XX}^{SM}} \qquad \& \qquad R_{XX \ \Phi}^{\text{Exclusion}} = \frac{\sigma_{pp \to \Phi \to XX}}{\sigma_{pp \to \Phi \to XX}^{95\% \text{ CL}}}$$

- *R*^{Exclusion} are added in quadrature among all channels to determine whether the point is excluded.
 - $R^{\text{Exclusion}}$ shows the sensitivity : e.g. $R^{\text{Exclusion}} = 0.5 \Rightarrow \text{we need } \mathcal{L} \sim 4 \times 5 = 20 \text{fb}^{-1}.$

```
Issues :
```

- $\sigma^{\text{inclusive}} \neq \sigma^{\text{exclusive}} = \epsilon_{gg} \sigma^{\text{inclusive}}_{aa} + \epsilon_{vbf} \sigma^{\text{inclusive}}_{VBF} + \epsilon_{vh} \sigma^{\text{inclusive}}_{VH}$
- No model independent combinations : SM combination does not apply to BSM

Neutral channels are

• For neutral bosons Φ and each final state XX we define

$$R_{XX \ \Phi} = \frac{\sigma_{pp \to \Phi \to XX}}{\sigma_{pp \to \Phi \to XX}^{\text{SM}}} \qquad \& \qquad R_{XX \ \Phi}^{\text{Exclusion}} = \frac{\sigma_{pp \to \Phi \to XX}}{\sigma_{pp \to \Phi \to XX}^{95\% \text{ CL}}}$$

- *R*^{Exclusion} are added in quadrature among all channels to determine whether the point is excluded.
 - $R^{\text{Exclusion}}$ shows the sensitivity : e.g. $R^{\text{Exclusion}} = 0.5 \Rightarrow \text{we need } \mathcal{L} \sim 4 \times 5 = 20 \text{fb}^{-1}.$
- Issues :
 - $\sigma^{\text{inclusive}} \neq \sigma^{\text{exclusive}} = \epsilon_{gg} \sigma_{gg}^{\text{inclusive}} + \epsilon_{vbf} \sigma_{VBF}^{\text{inclusive}} + \epsilon_{vh} \sigma_{VH}^{\text{inclusive}}$
 - No model independent combinations : SM combination does not apply to BSM!

Hints for non-minimal supersymmetry

- The would be signal is somehow hard to reconcile with MSSM :
 - m_h = 125 GeV contradicts Naturalness since it requires heavy stops !
 - The enhancement $R_{\gamma\gamma} \sim$ 2 is quite hard to reproduce (light staus).
- MSSM ruled out ≠ Susy ruled out, but non-minimal realisations
 - Extensions : NMSSM, U(1)'MSSM...
- Effective Field Theory approach

$$M = 1.5 \text{ TeV}$$

$$K = K_{MSSM} + \frac{1}{M}K^{(1)} + \frac{1}{M^2}K^{(2)} + \dots$$

$$W = W_{MSSM} + \frac{1}{M}W^{(1)} + \frac{1}{M^2}W^{(2)} + \dots$$

Hints for non-minimal supersymmetry

• The would be signal is somehow hard to reconcile with MSSM :

- m_h = 125 GeV contradicts Naturalness since it requires heavy stops !
- The enhancement $R_{\gamma\gamma} \sim 2$ is quite hard to reproduce (light staus).
- MSSM ruled out \neq Susy ruled out, but non-minimal realisations
 - Extensions : NMSSM, U(1)'MSSM...
- Effective Field Theory approach

$$M = 1.5 \text{ TeV}$$

$$K = K_{MSSM} + \frac{1}{M}K^{(1)} + \frac{1}{M^2}K^{(2)} + \dots$$

$$W = W_{MSSM} + \frac{1}{M}W^{(1)} + \frac{1}{M^2}W^{(2)} + \dots$$

• The would be signal is somehow hard to reconcile with MSSM :

- m_h = 125 GeV contradicts Naturalness since it requires heavy stops !
- The enhancement $R_{\gamma\gamma}\sim$ 2 is quite hard to reproduce (light staus).
- MSSM ruled out \neq Susy ruled out, but non-minimal realisations
 - Extensions : NMSSM, U(1)'MSSM...
- Effective Field Theory approach

$$M = 1.5 \text{ TeV}$$

$$K = K_{MSSM} + \frac{1}{M}K^{(1)} + \frac{1}{M^2}K^{(2)} + \dots$$

$$W = W_{MSSM} + \frac{1}{M}W^{(1)} + \frac{1}{M^2}W^{(2)} + \dots$$

- The would be signal is somehow hard to reconcile with MSSM :
 - m_h = 125 GeV contradicts Naturalness since it requires heavy stops !
 - The enhancement $R_{\gamma\gamma} \sim$ 2 is quite hard to reproduce (light staus).
- MSSM ruled out \neq Susy ruled out, but non-minimal realisations
 - Extensions : NMSSM, U(1)'MSSM...

 $h/H, A_0, H^+$

Effective Field Theory approach

$$M = 1.5 \text{ TeV}$$

$$K = K_{MSSM} + \frac{1}{M}K^{(1)} + \frac{1}{M^2}K^{(2)} + \dots$$

$$W = W_{MSSM} + \frac{1}{M}W^{(1)} + \frac{1}{M^2}W^{(2)} + \dots$$

Higher dimensionnal operators in the Higgs sector

- Include only operators involving Higgs superfields H₁, H₂
- Effective Field Theory expansion on K and W:

$$\begin{split} & \mathcal{K} \! \rightarrow \! \mathcal{K} + \frac{a_1}{M^2} \left(\mathcal{H}_1^{\dagger} e^{V_1} \mathcal{H}_1 \right)^2 + \frac{a_2}{M^2} \left(\mathcal{H}_2^{\dagger} e^{V_2} \mathcal{H}_1 \right)^2 \\ & + \frac{a_3}{M^2} \left(\mathcal{H}_1^{\dagger} e^{V_1} \mathcal{H}_1 \right) \left(\mathcal{H}_2^{\dagger} e^{V_2} \mathcal{H}_2 \right) + \frac{a_4}{M^2} \left(\mathcal{H}_1 \cdot \mathcal{H}_2 \right)^{\dagger} \left(\mathcal{H}_1 \cdot \mathcal{H}_2 \right) \\ & + \frac{a_5}{M^2} \left(\mathcal{H}_1^{\dagger} e^{V_1} \mathcal{H}_1 \right) \left(\mathcal{H}_1 \cdot \mathcal{H}_2 + h.c. \right) + \frac{a_6}{M^2} \left(\mathcal{H}_2^{\dagger} e^{V_2} \mathcal{H}_2 \right) \left(\mathcal{H}_1 \cdot \mathcal{H}_2 + h.c. \right) \\ & \mathcal{W} \! \rightarrow \! \mathcal{W} + \frac{\zeta_1}{M} \left(\mathcal{H}_1 \cdot \mathcal{H}_2 \right)^2 \end{split}$$

• The effective coefficients can also have susy-breaking parts $a_i \rightarrow a_{i0} + \theta^2 m_s a_{i1} + \overline{\theta}^2 m_s a_{i1}^* + \theta^2 \overline{\theta}^2 m_s^2 a_{i2}$ $\zeta_1 \rightarrow \zeta_{10} + \theta^2 m_s^2 \zeta_{11}$

with $m_s = 300 \text{ GeV}$.

Higher dimensionnal operators in the Higgs sector

- Include only operators involving Higgs superfields H₁, H₂
- Effective Field Theory expansion on K and W:

$$\begin{split} & \mathcal{K} \! \rightarrow \! \mathcal{K} + \frac{a_1}{M^2} \left(\mathcal{H}_1^{\dagger} e^{V_1} \mathcal{H}_1 \right)^2 + \frac{a_2}{M^2} \left(\mathcal{H}_2^{\dagger} e^{V_2} \mathcal{H}_1 \right)^2 \\ & + \frac{a_3}{M^2} \left(\mathcal{H}_1^{\dagger} e^{V_1} \mathcal{H}_1 \right) \left(\mathcal{H}_2^{\dagger} e^{V_2} \mathcal{H}_2 \right) + \frac{a_4}{M^2} \left(\mathcal{H}_1 \cdot \mathcal{H}_2 \right)^{\dagger} \left(\mathcal{H}_1 \cdot \mathcal{H}_2 \right) \\ & + \frac{a_5}{M^2} \left(\mathcal{H}_1^{\dagger} e^{V_1} \mathcal{H}_1 \right) \left(\mathcal{H}_1 \cdot \mathcal{H}_2 + h.c. \right) + \frac{a_6}{M^2} \left(\mathcal{H}_2^{\dagger} e^{V_2} \mathcal{H}_2 \right) \left(\mathcal{H}_1 \cdot \mathcal{H}_2 + h.c. \right) \\ & \mathcal{W} \! \rightarrow \! \mathcal{W} + \frac{\zeta_1}{M} \left(\mathcal{H}_1 \cdot \mathcal{H}_2 \right)^2 \end{split}$$

• The effective coefficients can also have susy-breaking parts $a_i \rightarrow a_{i0} + \theta^2 m_s a_{i1} + \overline{\theta}^2 m_s a_{i1}^* + \theta^2 \overline{\theta}^2 m_s^2 a_{i2}$ $\zeta_1 \rightarrow \zeta_{10} + \theta^2 m_s^2 \zeta_{11}$

with $m_s = 300$ GeV.

Non-minimal Higgs Phenomenology

- Main effect : m_h goes up to 250 GeV.
- Couplings also affected

• But this was soon constrained by LHC searches ($\mathcal{L} = 2.3 \text{fb}^{-1}$)

Non-minimal Higgs Phenomenology

- Main effect : m_h goes up to 250 GeV.
- Couplings also affected

• But this was soon constrained by LHC searches ($\mathcal{L} = 2.3 \text{fb}^{-1}$)

Non-minimal Higgs Phenomenology

- Main effect : m_h goes up to 250 GeV.
- Couplings also affected

• But this was soon constrained by LHC searches ($\mathcal{L} = 2.3 \text{fb}^{-1}$)

F. Boudjema, G. DLR arXiv:1112.1434

BR $h \rightarrow \gamma \gamma$

- Effective operators can turn $g_{h\bar{b}b} = 0$
- Enhance branching ratios in all over channels

• Correlation with the gluon fusion

3 5

Image: A matrix

$\mathsf{BR}\; \textbf{\textit{h}} \to \gamma\gamma$

- Effective operators can turn $g_{h\bar{b}b} = 0$
- Enhance branching ratios in all over channels

• Correlation with the gluon fusion

$$\frac{\sigma_{gg \to h}}{\sigma_{ag \to h}^{\text{SM}}} = \frac{|\mathcal{A}_t + \mathcal{X}_b|^2}{|\mathcal{A}_t + \mathcal{A}_b|^2}$$

Signal features : case of the light h(I)

• Enhancement in the $h \rightarrow \gamma \gamma$ channel

• Blue lines : 1σ error band on ATLAS best fit.

Enhancement driven by the suppression of g_{hbb}.

• Correlations between $ZZ, \gamma\gamma$ (inclusive) and $\gamma\gamma+2$ jets

• Blue : R_{ZZ} , Red : $R_{\gamma\gamma + 2 \text{ jets}}$.

E 900

< □ > < 🗗 >

• Correlations between $ZZ, \gamma\gamma$ (inclusive) and $\gamma\gamma+2$ jets

• Blue : R_{ZZ} , Red : $R_{\gamma\gamma + 2 \text{ jets}}$.

Effect of the light stop loop

- Black : $R_{\gamma\gamma} = 2.0 \pm 1\%$
- Red : $R_{\gamma\gamma} = 2.0 \pm 10\%$

- To lower the supersymmetric contribution, either reduce $s_{2\theta_t}$, or reduce t_{β} .
- This constrain the possibility of a large $R_{\gamma\gamma}$ enhancement.

- To lower the supersymmetric contribution, either reduce $s_{2\theta_t}$, or reduce t_{β} .
- This constrain the possibility of a large $R_{\gamma\gamma}$ enhancement.

- There is more to see in the $\overline{\tau}\tau$ channel
 - Example in the degenerate case $m_{A_0} \simeq m_H$

• t_{β} dependence \Rightarrow low t_{β} means low sensitivity.

Prospect for other signals (I)

- There is more to see in the $\overline{\tau}\tau$ channel
 - Example in the degenerate case $m_{A_0} \simeq m_H$

• t_{β} dependence \Rightarrow low t_{β} means low sensitivity.

- Dark Matter tools :
 - Multi-use tool : micrOmegas(many different models and observables)
 - Precision tool for the Relic Density
 - SloopS
 - DM@NLO
 - micrOmegas with effective couplings
- Higgs searches : the hot spot
 - Recasting exclusion bounds and signal strengths in BSM models
 - Non-minimal susy : what if the Higgs is non-standard like?

G.Drieu La Rochelle (LAPTh)

G.Drieu La Rochelle (LAPTh)

CTPG 2012 @ Grenoble 23 / 20

< ₽

• Relic density with WMAP7 :

$$\Omega_h = 0.1126 \pm 15\%$$

- The LSP is $\tilde{\chi}_1^0$, which is a mixture of bino and higgsino.
- Mostly accounted for by $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \bar{f} f$ by A_0 resonance

Spin-Independent bounds from XENON 100

