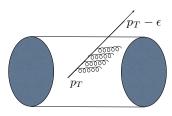
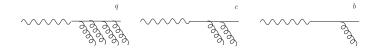
Probing heavy quark energy loss through photon + Q production

RPP 2013


Tzvetalina Stavreva

January 16, 2013


$\gamma + Q$ in A - A Collisions

- arXiv:1211.6744 [I. Schienbein, F. Arleo, TS]
- Hard Probes excellent tools for testing properties of QGP
- Compare to pp observables for estimate of parton energy loss
- Can have
 - Medium sensitive processes Jets, hadrons, ...
 - Medium insensitive processes photons, Z bosons, ...
- Combine both types of observables in one process
- γ medium insensitive \to E^γ not modified a gauge for initial energy of jet
- (heavy) jet probes (massive) parton energy loss

$\gamma + Q$ in A - A Collisions [arXiv:1211.6744]

- Concentrate on heavy quarks Q (charm/bottom)
- Help clarify energy loss in the heavy quark sector and the expected hierarchy $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b$ [Dokshitzer Kharzeev 2001]

how are they produced?

ullet LO - $\mathcal{O}(lphalpha_s)$ Compton Subprocess $g+Q o Q+\gamma$

• NLO -
$$\mathcal{O}(\alpha \alpha_s^2)$$

$$g + g \rightarrow Q + \bar{Q} + \gamma$$

$$g + Q \rightarrow g + Q + \gamma$$

$$Q + q \rightarrow q + Q + \gamma$$

$$Q + \bar{q} \rightarrow Q + \bar{q} + \gamma$$

$$Q + Q \rightarrow Q + Q + \gamma$$

$$Q + \bar{Q} \rightarrow Q + \bar{Q} + \gamma$$

$$q + \bar{q} \rightarrow Q + \bar{Q} + \gamma$$

Energy Loss Implementation

- **1** obtain a $\gamma + Q$ event in vacuum with a given p_Q^{vac} , p_{γ}^{vac}
- ② sample the energy loss ϵ according to a probability distribution quenching weight $\mathcal{P}_i(\epsilon)$
- onstruct medium modified four-momenta according to:

$$\begin{array}{ll} p_Q &=& p_{TQ}(\cosh y_Q, \vec{e}_{TQ}, \sinh y_Q) \\ &=& [p_{TQ}^{vac} - \epsilon/\cosh y_Q^{vac}](\cosh y_Q^{vac}, \vec{e}_{TQ}, \sinh y_Q^{vac}) \end{array}$$

• Use the modified four-vectors to evaluate observables $(p_{TQ}, p_{T\gamma}, q_T, ...)$

Quenching Weights

- ullet Modify E_Q^{vac} so that $E_Q^{med}=E_Q^{vac}-\epsilon_Q$
- \bullet ϵ_Q obtained through rejection-acceptance method from quenching weight distribution
 - Armesto et al. Phys.Rev.D71:054027 2005
 - through multiple soft scattering BDMPS-Z
 - $P(\epsilon) = p_0 \delta(\epsilon) + p(\epsilon)$
 - Mass dependence enters as m_Q/E_Q
 - ullet when m_Q/E_Q large energy loss substantially reduced
 - hierarchy $\epsilon_q > \epsilon_c > \epsilon_b$

2 particle final state observables

- p_{TQ} , $p_{T\gamma}$
- The two-particle final state a range of observables
- Photon-jet pair momentum:

$$q_{\perp} = p_{T\gamma} - p_{TQ}$$

Photon-jet energy asymmetry:

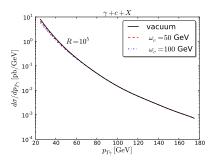
$$A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$$

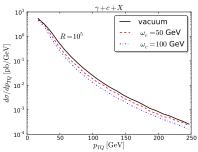
• Momentum imbalance:

$$z_{34} = -\frac{\vec{p}_{T\gamma}.\vec{p}_{TQ}}{p_{T\gamma}^2}$$

• 2 particle observables require NLO kinematics

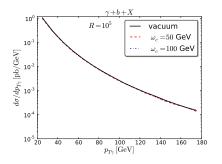
Experimental Cuts & Event Rates

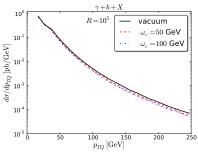

Cuts used for predictions


	pτ	Rapidity	Isolation/Jet radius	$\Delta\phi_{\gamma Q}$
Photon	$p_{T,\gamma}^{min} = 20 \text{ GeV}$	$ y_{\gamma} < 0.2$	$R=$ 0.4, $\epsilon<$ 0.1 E_{γ}	$> 3\pi/4$
Heavy quark jet	$p_{T,Q}^{min} = 12 \text{ GeV}$	$ y_Q < 0.2$	R = 0.4	—

Total cross-section and event numbers

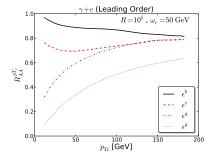
	$\sigma^{pp}_{\gamma+Q}$ [pb]	$\sigma^{PbPb}_{\gamma+Q}$ [nb]	$N_{\gamma+Q}^{Pb\ Pb}$
$\gamma + c \; (\omega_c = 50 \; \mathrm{GeV})$	98	4200	2100
$\gamma + c \; (\omega_c = 100 \; \mathrm{GeV})$	83	3556	1778
$\gamma + b \; (\omega_c = 50 \; \mathrm{GeV})$	14.7	630	315
$\gamma + b \; (\omega_c = 100 \; { m GeV}) \; \; \;$	14.4	617	308

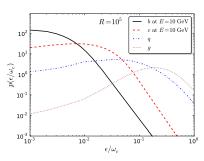

$\overline{\gamma + c}$: $d\sigma/dp_T$



- γ unaffected by medium, but $p_{T\gamma}$ spectra in medium reduced at low $p_{T\gamma} \to$ experimental cuts
- ullet Q loses energy : p_{TQ} spectra reduced in medium
 - At small p_{TQ} : m_Q mildens energy loss
 - \bullet At larger p_{TQ} : suppression increases mass effects not as relevant

$\gamma + b : d\sigma/dp_T$

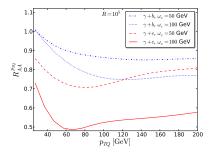


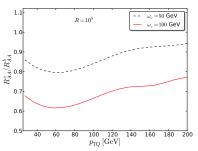


• Same effects as $\gamma + c$, but clearly reduced : $m_b > m_c$

Quenching factors & weights

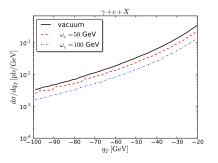
$$R_{AA}^{p_{TQ}} = \frac{d\sigma^{AA}/dp_{TQ}}{d\sigma^{pp}/dp_{TQ}}$$

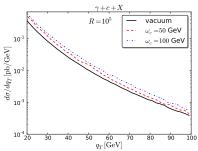




- $\gamma + c R_{AA}$ at LO using energy loss for b, c, q, g
- Quenching factors follow closely hierarchy of energy loss in BDMPS-Z quenching weights
 - $R_{AA}^b > R_{AA}^c > R_{AA}^q > R_{AA}^g$
 - Differences for quarks disappear at large p_T

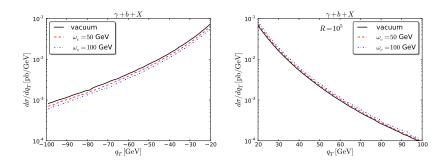
RAA NLO



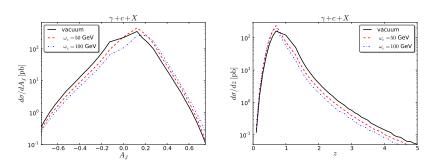


- Quenching factors at NLO similar to R_{AA} at LO
- Sensitivity to ω_c value 50, 100 ${
 m GeV}$

$q_T: \gamma + c$

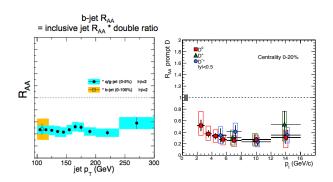


- medium spectra are right-shifted with respect to vacuum spectrum
- ullet larger shift in energy for -ve q_T : $q_T \simeq p_{T\gamma}^{\min} p_{TQ}$
- p_{TQ} grows for decreasing q_T mass effects less pronounced larger energy loss
- converse for $q_T > 0$



$q_T: \gamma + b$

• Same effects as $\gamma + c$, but clearly reduced : $m_b > m_c$


A J & z

- A_J very similar to q_T : in-medium curves shifted to the right; shift larger for $A_J < 0$
- The z<1 region corresponds to $p_{TQ}< p_{T\gamma}$ and z>1 to $p_{TQ}>p_{T\gamma}$ medium spectra left-shifted

Some Recent Measurements

- CMS preliminary b-jet RAA
- arXiv:1203.2160v4 ALICE D-meson suppression factor
- Indicate similar light and heavy particle suppression

Summary

- $\gamma + Q$ production in A-A collisions excellent probe for heavy quark energy loss
- Access to hierarchy of energy loss
- Need constrained nPDFs to disentangle the energy loss