

FLAVOUR PHYSICS

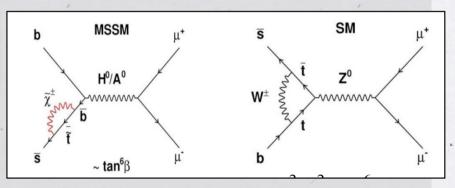
Emi Kou (LAL/In2p3)

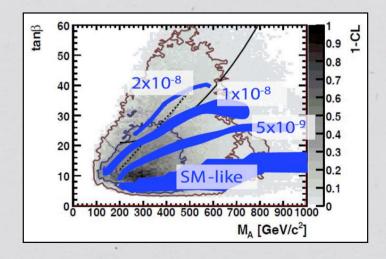
* * * *

Outline

- * Highlights of last year
- * The status of the determination of the CKM unitarity triangle
- * Prospect of the photon polarization determination of $b \rightarrow s\gamma$

LHCb revealing $B_s: B_{s/d} \rightarrow \mu^+ \mu^-$


LHC search of signal BSM with $B_s \rightarrow \mu^+ \mu^-$


* $B_{s/d} \rightarrow \mu^+ \mu^-$ is an extremely rare process in SM. ArXive: 1208.0934 Buras et al.

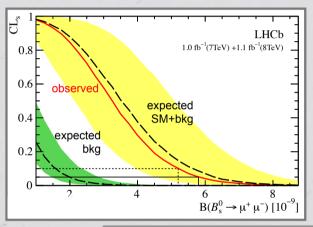
$$Br_{B_s \to \mu^+ \mu^-} = (3.54 \pm 0.30) \times 10^{-9} \text{ SM}$$

 $Br_{B_d \to \mu^+ \mu^-} = (0.107 \pm 0.01) \times 10^{-9} \text{ SM}$

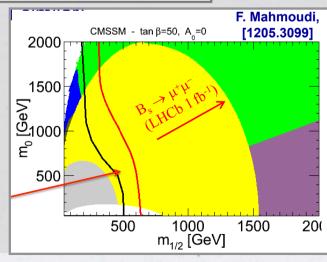
* In certain BSM model, it can be enhanced largely.

$$Br_{B_s \to \mu^+ \mu^-} = \frac{m_b^2 m_\mu^2 \tan^6 \beta}{m_{A_0}^4}$$

LHCb revealing $B_s: B_{s/d} \rightarrow \mu^+ \mu^-$


First observation of $B_s \rightarrow \mu^+ \mu^-$ turned out to be close to SM...

* LHCb found excess of $B_s \rightarrow \mu^+ \mu^-$ candidate with signal significance of 3.5σ SD. ArXive:1211.2674


$$Br_{B_s \to \mu^+ \mu^-} = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$$

- * Searches continue:
 - 6 fb⁻¹ data required for 5σ discovery.
 - What about B_d → $\mu^+\mu^-$?

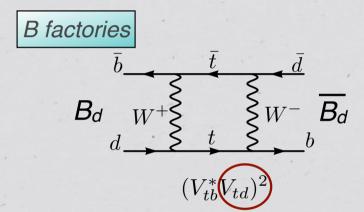
$$Br_{B_s \to \mu^+ \mu^-} = (3.54 \pm 0.30) \times 10^{-9} \text{ SM}$$

 $Br_{B_d \to \mu^+ \mu^-} = (0.107 \pm 0.01) \times 10^{-9} \text{ SM}$

Talk by Albrecht at HCP '12

LHCb revealing B_s : B_s oscillation

LHC search of signal BSM with $B_s = \overline{B}_s$ oscillation measurement


* In SM, there is only one complex phase which induces CP violation.

$$\sin 2\beta = 0.679 \pm 0.020$$

$$\sin 2\beta_s = 0.0363^{+0.0015}_{-0.0016} \text{ SM}$$

CKM fitter PRD84

- * Many BSM predict more than one source of CP violation.
 - There are models which predict a large effect in the B_s sector.

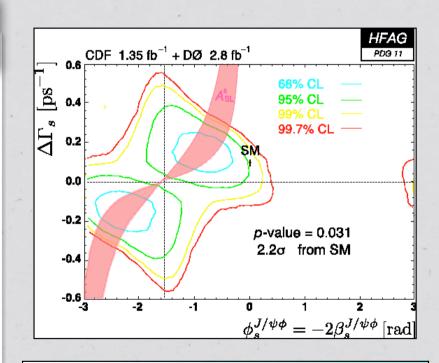
$$B_{s} \underbrace{W^{+}}_{b} \underbrace{E_{w}^{-}}_{b} B_{s}$$

$$(V_{tb}^{*}V_{ts})$$

LHCb revealing B_s : B_s oscillation

LHC search of signal BSM with $B_s = \overline{B}_s$ oscillation measurement

* In SM, there is only one complex phase which induces CP violation.


$$\sin 2\beta = 0.679 \pm 0.020$$

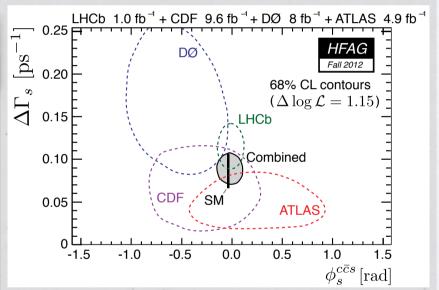
$$\cos 2\beta = 0.0262 \pm 0.0015 \text{ CM}$$

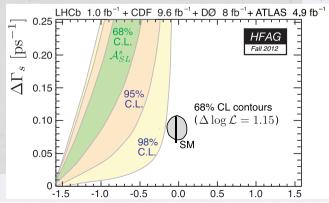
 $\sin 2\beta_s = 0.0363^{+0.0015}_{-0.0016} \text{ SM}$

CKM fitter PRD84

- * Many BSM predict more than one source of CP violation.
 - There are models which predict a large effect in the B_s sector.

Tevatron results (both Φ_s and A_{SL}) have been slightly off from the SM values


LHCb revealing B_s : B_s oscillation


A higher precision achieved by LHCb on the B_s – \overline{B}_s oscill. phase

* The latest combined value is:

$$\sin 2\beta_s = 0.013^{+0.083}_{-0.090}$$

- * Order one deviation is excluded.
 - Impact on the BSM parameters are to be studied.
 - LHCb has an ability to reach to the SM value. Still some hope...

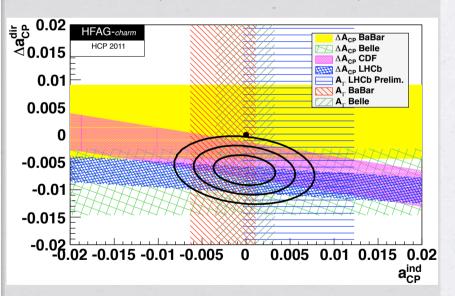
 $\sin 2\beta_s = 0.0363^{+0.0015}_{-0.0016} \text{ SM}$

Hint of new physics?: Direct CPV in D meson

Charm direct CP violation at LHCb: is it BSM or SM?

* The charm direct CP asymmetry:

$$A_{\rm CP}^{D^0 \to h^+ h^-} = \frac{\Gamma_{\overline{D}^0 \to h^+ h^-} - \Gamma_{D^0 \to h^+ h^-}}{\Gamma_{\overline{D}^0 \to h^+ h^-} + \Gamma_{D^0 \to h^+ h^-}}$$


$$\Delta A_{\rm CP} = A_{\rm CP}^{D^0 \to K^+ K^-} - A_{\rm CP}^{D^0 \to \pi^+ \pi^-}$$

* In SM, the direct CP asymmetry was predicted to be of O(10⁻⁵--³).

LHCb 2011

LHCb ArXive: 1112.0938

$$\Delta A_{CP} = (-0.82 \pm 0.21 \pm 0.11)\%$$

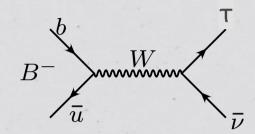
World Average (HFAG)

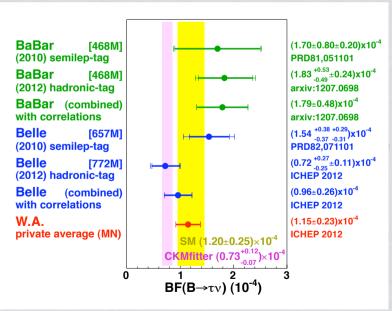
 $\Delta A_{\rm CP} \simeq (-0.645 \pm 0.180)\%$

Hint of new physics?: Anomaly in $B_u \rightarrow \tau \nu$ (diminished...)

Branching ratio of B→tv

* Excess of events has been seen (charged Higgs contribution?):


$$Br(B \to \tau \nu)_{SM}$$


$$= \frac{G_F^2 m_B m_{\tau}}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

$$Br(B \to \tau \nu)_{2HDM}$$

$$= Br(B \to \tau \nu)_{SM} \left(1 - \tan^2 \beta \frac{M_B^2}{m_{H^+}^2} \right)^2$$

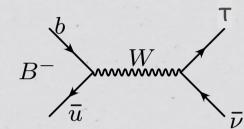
* Latest Belle data has shifted to lower value...

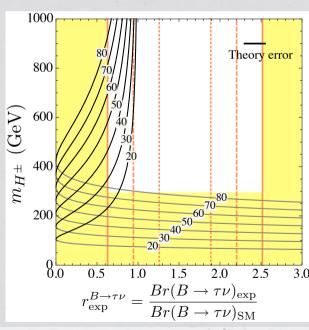
Talk by Nakao at ICHEP'12

Hint of new physics?: Anomaly in $B_u \rightarrow \tau \nu$ (diminished...)

Branching ratio of B→tv

* Excess of events has been seen (charged Higgs contribution?):


$$Br(B \to \tau \nu)_{SM}$$


$$= \frac{G_F^2 m_B m_{\tau}}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

$$Br(B \to \tau \nu)_{2HDM}$$

$$= Br(B \to \tau \nu)_{\rm SM} \left(1 - \tan^2 \beta \frac{M_B^2}{m_{H^{\pm}}^2} \right)^2$$

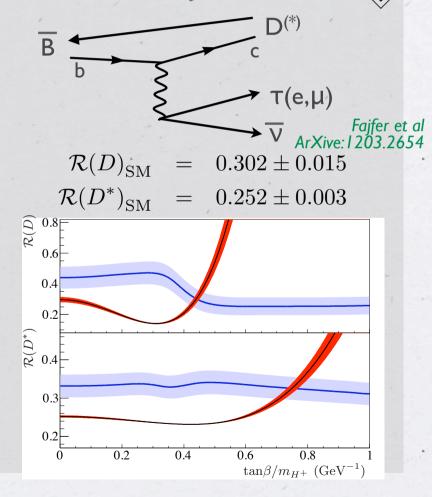
* Latest Belle data has shifted to lower value...

Hint of new physics?: $B \rightarrow D(*)\tau \nu$ decay rates

The ratio of $B \rightarrow D^{(*)}\tau v$ and $B \rightarrow D^{(*)}lv$ branching ratios

* The latest Babar measurements of:

$$\mathcal{R}(D^{(*)}) = \frac{Br(\overline{B} \to D^{(*)}\tau\overline{\nu})}{Br(\overline{B} \to D^{(*)}l\overline{\nu})}$$


$$\mathcal{R}(D) = 0.440 \pm 0.058 \pm 0.042$$

$$\mathcal{R}(D^*) = 0.332 \pm 0.024 \pm 0.018$$
.

Babar ArXive: 1205.5442

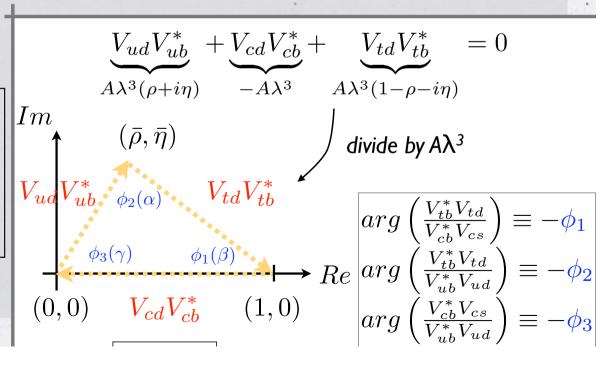
* Possible charged Higgs contribution? But it conflicts to Type II 2HDM... Or SM?

Becirevic et al. ArXive: 1206.4977

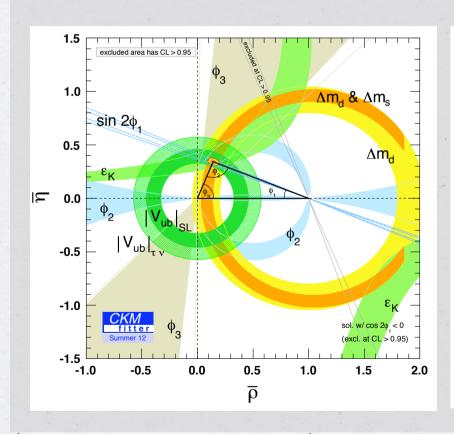
What's new?

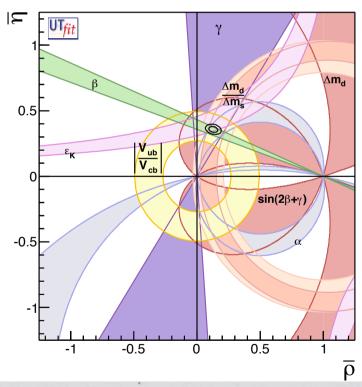
- SM is a very concise and extremely successful model:
 - ✓ Natural suppression of FCNC (i.e. GIM mechanism)
 - \checkmark Only source of flavor and CP violation in the V_{CKM} matrix

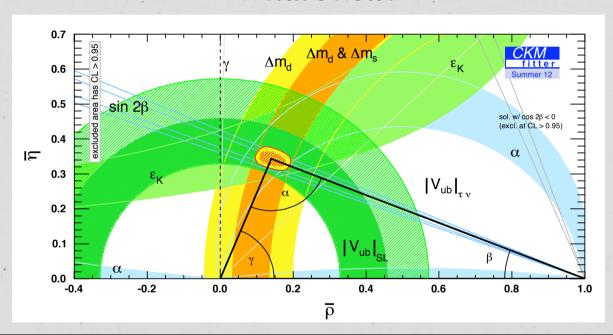
What's new?


$$V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) + A\lambda^4(1/2 - \rho - i\eta)$$

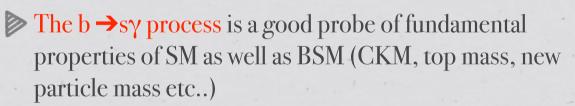
Test of Unitarity:


 \Diamond


Verifying if the triangle closes at the apex by independently measuring the three sides and three angles!!



What's new?


What's new?

- ▶ The B factories measured β at a very high precision (21.7±0.64)°.
- ▶ The *main* source of CP violation comes from KM phase.
- ▶ For the side determination, the lattice input is crucial!
- ▶Improvement in γ measurement important (LHCb, Belle II -> a few % in the future).

Prospect of y polarization measurement

a future possibility for new physics search

Especially, the b→sγ process has a particular structure in SM:

$$\bar{b}A_{\mu}s = -iV_{tb}V_{ts}^* \frac{G_F}{\sqrt{2}} \frac{e}{8\pi^2} \left[\underbrace{E_0(x_t)\bar{s}_L(q^2\gamma_{\mu} - q_{\mu}q)b_L}_{O_{9\sim 10}: \text{ penguin operator}} - \underbrace{m_bE_0'(x_t)\bar{s}_L\sigma_{\mu\nu}q^{\nu}b_R}_{O_{7\gamma}: \text{ magnetic operator}} \right]$$

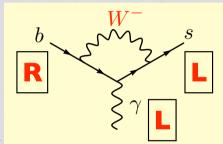
$$photon off\text{-shell}$$

$$(e.g. semi-leptonic)$$

$$photon on\text{-shell}$$

$$b_R \rightarrow s_L \gamma_L,$$

W-boson couples only left-handedly



 \triangleright B →s γ_R (right-handed polarization)

Prospect of y polarization measurement

a future possibility for new physics search

ightharpoonup The b ightharpoonup process is a good probe of fundamental properties of SM as well as BSM (CKM, top mass, new particle mass etc..)

 $^{
u}b_{R}$

itor

ell

 \triangleright Especially, the b \rightarrow s γ process has a particular structure in

SM:

However, this left-handedness of the polarization of b →s y has never been confirmed experimentally at a high precision yet!!

(e.g. semi-teptonic)

W-boson couples only left-handedly

 $B \rightarrow s \gamma_L$ (left-handed polarization)

B \rightarrow s γ_R (right-handed polarization)

Current constraints on C77'

The constraint from $B \rightarrow Xs \gamma$ measurement?

We can write the amplitude including RH contribution as:

$$\mathcal{M}(b \to s\gamma) \simeq -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left[\underbrace{(C_{2/7\gamma/8g}^{\mathrm{SM}} + C_{7\gamma}^{\mathrm{NP}}) \langle \mathcal{O}_{7\gamma} \rangle}_{\propto \mathcal{M}_L} + \underbrace{C_{7\gamma}^{\prime \mathrm{NP}} \langle \mathcal{O}_{7\gamma}^{\prime} \rangle}_{\propto \mathcal{M}_R} \right]$$

We have a constraint from inclusive branching ratio measurement

We have a constraint from inclusive branching ratio measurement
$$Br(B \to X_S \gamma) \propto |C_{2/7\gamma/8g}^{\rm SM} + C_{7\gamma}^{\rm NP}|^2 + |C_{7\gamma}^{\prime \rm NP}|^2 \\ HFAG (3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$$

$$\frac{M_R}{M_L} \simeq \frac{C_{7\gamma}^{\prime \rm NP}}{C_{7\gamma}^{\rm SM} + C_{7\gamma}^{\rm NP}}$$

$$\frac{M_R}{M_L} \simeq \frac{C_{7\gamma}^{\prime \rm NP}}{C_{7\gamma}^{\rm SM} + C_{7\gamma}^{\rm NP}}$$

$$\frac{M_R}{M_L} \simeq \frac{C_{7\gamma}^{\prime \rm NP}}{C_{7\gamma}^{\rm SM} + C_{7\gamma}^{\rm NP}}$$

$$\frac{M_R}{M_L} \simeq \frac{C_{7\gamma}^{\prime \rm NP}}{C_{7\gamma}^{\rm SM} + C_{7\gamma}^{\rm NP}}$$

$$\frac{M_R}{M_L} \simeq \frac{C_{7\gamma}^{\prime \rm NP}}{C_{7\gamma}^{\rm SM} + C_{7\gamma}^{\rm NP}}$$

$$\frac{M_R}{M_L} \simeq \frac{C_{7\gamma}^{\prime \rm NP}}{C_{7\gamma}^{\rm NP} + C_{7\gamma}^{\rm NP}}$$

How do we measure the polarization?!

proposed methods

- ► Method 1: Time dependent CP asymmetry in $B_d \rightarrow K_S \pi^0 \gamma B_s \rightarrow K^+ K^- \gamma$ (called $S_{KS\pi0\gamma}$, $S_{K^+K^-\gamma}$)
- ► Method II: Transverse asymmetry in $B_d \rightarrow K^*l^+l^-$ (called $A_T^{(2)}$, $A_T^{(im)}$)
- ► Method III: $B\rightarrow K_1(\rightarrow K\pi\pi)\gamma$ (called λ_{γ})
- ► Method IV: $\Lambda_b \rightarrow \Lambda^{(*)} \gamma$, $\Xi_b \rightarrow \Xi^* \gamma$...

Atwood et.al. PRL79

Kruger, Matias PRD7 I Becirevic, Schneider, NPB854

Gronau et al PRL88 E.K. Le Yaouanc, Tayduganov PRD83

Gremm et al.'95, Mannel et al '97, Legger et al '07,
Oliver et al '10

Comparison of the three methods

Becirevic, EK, Le Yaouanc, Tayduganov arXive: 1206.1502

proposed methods

► Method 1: Time dependent CP asymmetry in $B_d \rightarrow K_S \pi^0 \gamma B_s \rightarrow K^+ K^- \gamma$ (called $S_{KS\pi0\gamma}$, $S_{K^+K^-\gamma}$)

$$S_{K_S \pi^0 \gamma} = \frac{2|C_{7\gamma}^{\text{SM}} C_{7\gamma}^{\prime \text{NP}}|}{|C_{7\gamma}^{\text{SM}}|^2 + |C_{7\gamma}^{\prime \text{NP}}|^2} \sin(2\phi_1 - \phi_R) \qquad \phi_R = \arg\left[\frac{C_{7\gamma}^{\prime \text{NP}}}{C_{7\gamma}^{\text{SM}}}\right]$$

► Method II: Transverse asymmetry in B_d → $K^*l^+l^-$ (called $A_T^{(2)}$, $A_T^{(im)}$)

$$\mathcal{A}_{T}^{(2)}(q^{2}=0) = \frac{2Re[C_{7\gamma}^{\text{SM}}C_{7\gamma}^{'\text{NP*}}]}{|C_{7\gamma}^{\text{SM}}|^{2} + |C_{7\gamma}^{'\text{NP}}|^{2}} \quad \mathcal{A}_{T}^{(im)}(q^{2}=0) = \frac{2Im[C_{7\gamma}^{\text{SM}}C_{7\gamma}^{'\text{NP*}}]}{|C_{7\gamma}^{\text{SM}}|^{2} + |C_{7\gamma}^{'\text{NP}}|^{2}}$$

► Method III: $B \rightarrow K_1^{1270} (\rightarrow K\pi\pi) \gamma$ (called λ_{γ})

 \Diamond

EK, Le Yaouanc, A. Tayduganov, PRD83 ('11)

$$\lambda = \frac{|C_{7\gamma}^{'\text{NP}}|^2 - |C_{7\gamma}^{\text{SM}}|^2}{|C_{7\gamma}^{'\text{NP}}|^2 + |C_{7\gamma}^{\text{SM}}|^2}$$

Comparison of the three methods

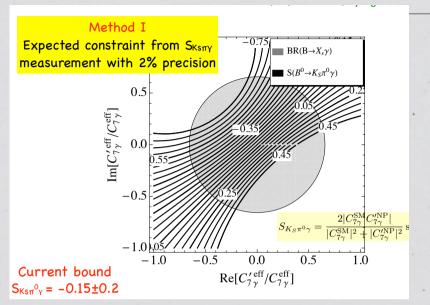
Becirevic, EK, Le Yaouanc, Tayduganov arXive: 1206.1502

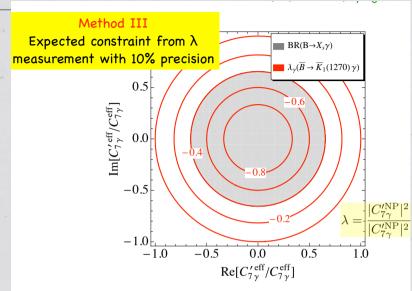
proposed methods

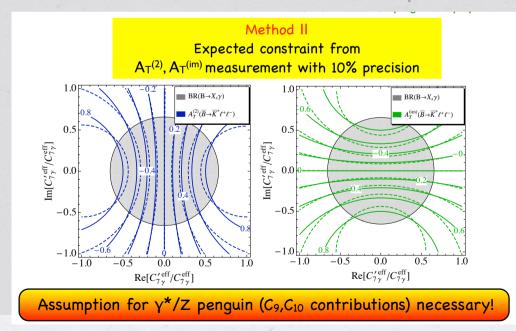
► Method 1: Time dependent CP asymmetry in $B_d \rightarrow K_S \pi^0 \gamma B_s \rightarrow K^+ K^- \gamma$ (called $S_{KS\pi0\gamma}$, $S_{K^+K^-\gamma}$)

$$S_{K_S\pi^0\gamma} = rac{2|C_{7\gamma}^{ ext{SM}}C_{7\gamma}^{\prime ext{NP}}|}{|C_{7\gamma}^{ ext{SM}}|^2 + |C_{7\gamma}^{\prime ext{NP}}|^2}$$
 $S_{K_S\pi^0} = \frac{2|C_{7\gamma}^{ ext{SM}}C_{7\gamma}^{\prime ext{NP}}|}{|C_{7\gamma}^{ ext{SM}}|^2 + |C_{7\gamma}^{\prime ext{NP}}|^2}$
 $S_{C_{7\gamma}} = \frac{2|C_{7\gamma}^{ ext{SM}}C_{7\gamma}^{\prime ext{NP}}|}{|C_{7\gamma}^{ ext{SM}}|^2 + |C_{7\gamma}^{\prime ext{NP}}|^2}$

► Method II: Transverse asymmetry in B_d → $K^*l^+l^-$ (called $A_T^{(2)}$, $A_T^{(im)}$)


$$\mathcal{A}_{T}^{(2)}(q^{2}=0) = \frac{2Re[C_{7\gamma}^{\text{SM}}C_{7\gamma}^{\prime N}]}{|C_{7\gamma}^{\text{SM}}|^{2} + |C_{7\gamma}^{\prime N}|} \underbrace{\text{LHCb}}_{\text{OAT}^{2(\text{im})}(\textbf{O.2)}}^{2} = 0) = \frac{2Im[C_{7\gamma}^{\text{SM}}C_{7\gamma}^{\prime \text{NP*}}]}{|C_{7\gamma}^{\text{SM}}|^{2} + |C_{7\gamma}^{\prime \text{NP}}|^{2}}$$


► Method III: $B \rightarrow K_1^{1270} (\rightarrow K\pi\pi) \gamma$ (called λ)


 \Diamond

Le Yaouanc, A. Tayduganov, PRD83 ('11)

Super B Factory/LHCb $\sigma_{\lambda}(0.1-0.2)$

Becirevic, EK, Le Yaouanc, Tayduganov arXive: 1206.1502

Why right-handed contribution?

What types of new physics models?

For example, models with right-handed neutrino, or custodial symmetry in general induces the right handed current.

Left-Right symmetric model (W_R)

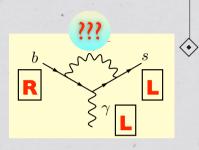
Blanke et al. JHEP1203

SUSY GUT model δ_{RR} mass insertion

Girrbach et al. JHEP1106

Which flavour structure?

The models that contain new particles which change the chirality inside of the b→sγ loop can induce a large


chiral enhancement!

Left-Right symmetric model: mt/mb

Cho, Misiak, PRD49, '94'
Babu et al PLB333 '94
EK, Lu and Yu, in preparation

SUSY with δ_{RL} mass insertions: m_{SUSY}/mb

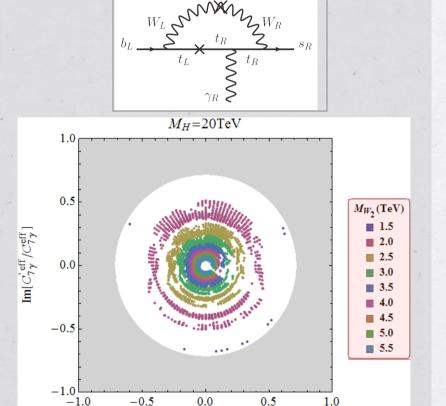
Gabbiani, et al. NPB477 '96 Ball, EK, Khalil, PRD69 '04

NP signal beyond the constraints from Bs oscillation parameters possible.

Why right-handed contribution?

Left-right symmetric model

Left-Right symmetric model

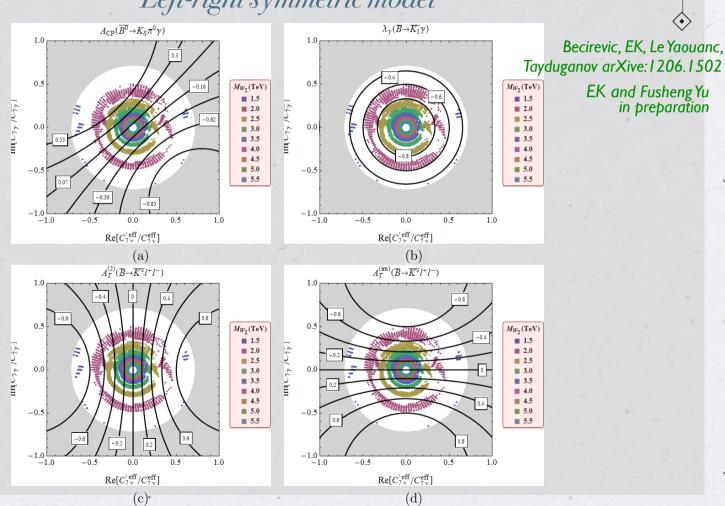

* Left-right symmetric model with general V_{CKM}^R:

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

* Chiral enhancement for $C_{7\gamma}$ ' occurs with an enhancement factor:

$$(m_t/m_s) \times (V_{ts}^R/V_{ts}^L)$$

* Constrained by various flavour phenomena and new LHC data.



 $\text{Re}[C_{7\gamma}^{'\,\text{eff}}/C_{7\gamma}^{\text{eff}}]$

EK and Fusheng Yu in preparation

Why right-handed contribution?

Left-right symmetric model

Conclusions

- * Highlights of last year: The results on the LHCb benchmark channels are SM-like so far. But future measurements can achieve a higher precision, which may reveal BSM.
- * A very high precision in β measurement was achieved by the B factories. LHCb has an ability to significantly improve the precision in γ . For the side determination, progresses in the lattice QCD is essential.
- * The photon polarization determination of b→sγ is a new observable which is sensitive to right-handed coupling. Investigation at LHCb has just started! Stay tuned!