Heavy vector-like quarks

Constraints and phenomenology at the LHC

Luca Panizzi

Outline

Motivations and Current Status

Couplings and constraints

Signatures at LHC

Outline

Motivations and Current Status

Couplings and constraints

Signatures at LHC

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

 $\mathcal{L}_{M}=-Mar{\psi}\psi$ Gauge invariant

Gauge invariant mass term without the Higgs

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

 $\mathcal{L}_{M}=-Mar{\psi}\psi$ Gauge invariant mass term without the Higgs

Why are they called "vector-like"?

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

$${\cal L}_M = - M \bar{\psi} \psi$$
 Gauge invariant mass term without the Higgs

Why are they called "vector-like"?

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \left(J^{\mu +} W^+_{\mu} + J^{\mu -} W^-_{\mu} \right)$$
 Charged current Lagrangian

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

$$\mathcal{L}_{M}=-Mar{\psi}\psi$$
 Gauge invariant mass term without the Higgs

Why are they called "vector-like"?

$$\mathcal{L}_W = rac{g}{\sqrt{2}} \left(J^{\mu+} W^+_\mu + J^{\mu-} W^-_\mu
ight)$$
 Charged current Lagrangian

SM chiral quarks: ONLY left-handed charged currents

$$J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} \qquad \text{with} \qquad \left\{ \begin{array}{l} J_L^{\mu+} = \bar{u}_L \gamma^\mu d_L = \bar{u} \gamma^\mu (1 - \gamma^5) d = \textit{V} - \textit{A} \\ J_R^{\mu+} = 0 \end{array} \right.$$

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

 $\mathcal{L}_{M}=-Mar{\psi}\psi$ Gauge invariant mass term without the Higgs

Why are they called "vector-like"?

$$\mathcal{L}_W = rac{g}{\sqrt{2}} \left(J^{\mu+} W^+_\mu + J^{\mu-} W^-_\mu
ight)$$
 Charged current Lagrangian

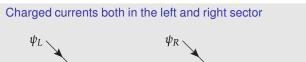
SM chiral quarks: ONLY left-handed charged currents

$$J^{\mu+} = J_L^{\mu+} + J_R^{\mu+} \qquad \text{with} \qquad \left\{ \begin{array}{l} J_L^{\mu+} = \bar{u}_L \gamma^\mu d_L = \bar{u} \gamma^\mu (1 - \gamma^5) d = \textit{V} - \textit{A} \\ J_R^{\mu+} = 0 \end{array} \right.$$

• vector-like quarks: BOTH left-handed and right-handed charged currents

$$J^{\mu +} = J_L^{\mu +} + J_R^{\mu +} = \bar{u}_L \gamma^{\mu} d_L + \bar{u}_R \gamma^{\mu} d_R = \bar{u} \gamma^{\mu} d = V$$

and where do they appear?

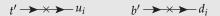

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$

 $\mathcal{L}_{M}=-Mar{\psi}\psi$ Gauge invariant mass term without the Higgs

Vector-like quarks in many models of New Physics

- Warped or universal extra-dimensions
- Composite Higgs models
- Little Higgs models
- Gauged flavour group with low scale gauge flavour bosons
- Non-minimal SUSY extensions

SM and a vector-like quark



SM and a vector-like quark

Charged currents both in the left and right sector

They can mix with SM quarks

Dangerous FCNCs \longrightarrow strong bounds on mixing parameters BUT

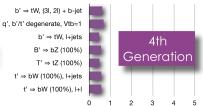
Many open channels for **production** and **decay** of heavy fermions

Rich phenomenology to explore at LHC

Searches of new quarks at the LHC

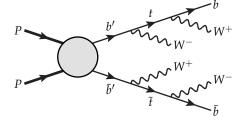
not necessarily vector-like

Overview of ATLAS searches from ATLAS Twiki page


https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots

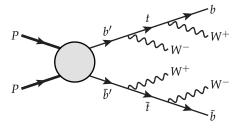
	•
8	$\begin{array}{c} \textbf{4}^{\text{th}} \text{ generation}: \textbf{t't'} \rightarrow \textbf{WbWb} \\ \textbf{4}^{\text{th}} \text{ generation}: \textbf{b'b'} (\textbf{T}_{5:3} \textbf{T}_{5:3}) \rightarrow \textbf{WtWt} \\ \textbf{New quark b'}: \textbf{b'b'} \rightarrow \textbf{Zb+X}, \textit{M}_{Z_b} \\ \textbf{Top partner}: \textbf{TT} \rightarrow \textbf{tt} + \textbf{A}_0 \textbf{A}_0 \text{ (dilepton, M}_{72}) \end{array}$
A.	4 th generation : b'b'(T _{5.75} T _{5/3})→ WtWt
quarks	New quark b' : b'b°→ Zb+X, m _{zb}
6	Top partner: $TT \rightarrow tt + A_0A_0$ (dilepton, M_{T0}^{2})
lew	Vector-like quark : CC, m
>	Vector-like quark : NC, m

L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	656 GeV t' mass
L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130]	670 GeV b' (T _{s/3}) mass
	400 GeV b' mass
L=4.7 fb ⁻¹ , 7 TeV [1209.4186]	483 GeV T mass (m(A ₀) < 100 GeV)
L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass (charge -1/3, coupling $\kappa_{qQ} = v/m_Q$)
L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.08 TeV VLQ mass (charge 2/3, coupling $\kappa_{qQ} = v/m_Q$)


Overview of CMS searches from CMS Twiki page

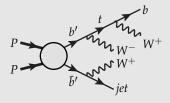
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

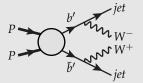
But look at the hypotheses ...


Example: b' pair production

Common assumption $BR(b' \rightarrow tW) = 100\%$

Searches in the same-sign dilepton channel (possibly with b-tagging)


Example: b' pair production



Common assumption $BR(b' \rightarrow tW) = 100\%$

Searches in the same-sign dilepton channel (possibly with b-tagging)

If the b' decays both into Wt and Wq

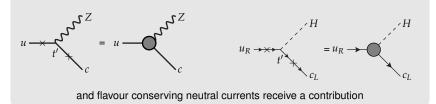
There can be less events in the same-sign dilepton channel!

	SM	Singlets	Doublets	Triplets
	$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$	(U) (D)	$\begin{pmatrix} X \\ U \end{pmatrix} \begin{pmatrix} U \\ D \end{pmatrix} \begin{pmatrix} D \\ Y \end{pmatrix}$	$\begin{pmatrix} X \\ U \\ D \end{pmatrix} \begin{pmatrix} U \\ D \\ Y \end{pmatrix}$
$SU(2)_L$	2 and 1	1	2	3
$U(1)_Y$	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3 -1/3	7/6 1/6 -5/6	2/3 -1/3
\mathcal{L}_{Y}	$-y_u^iar{q}_L^iH^cu_R^i \ -y_d^iar{q}_L^iV_{CKM}^{ij}Hd_R^j$	$-\lambda_{u}^{i}ar{q}_{L}^{i}H^{c}U_{R} \ -\lambda_{d}^{i}ar{q}_{L}^{i}HD_{R}$	$ \begin{vmatrix} -\lambda_u^i \psi_L H^{(c)} u_R^i \\ -\lambda_d^i \psi_L H^{(c)} d_R^i \end{vmatrix} $	$-\lambda_i \bar{q}_L^i \tau^a H^{(c)} \psi_R^a$

	SM	Singlets	Doublets	Triplets
	$\left(\begin{smallmatrix} u\\d \end{smallmatrix}\right)\left(\begin{smallmatrix} c\\s \end{smallmatrix}\right)\left(\begin{smallmatrix} t\\b \end{smallmatrix}\right)$	(t') (b')	$\begin{pmatrix} X \\ t' \end{pmatrix} \begin{pmatrix} t' \\ b' \end{pmatrix} \begin{pmatrix} b' \\ Y \end{pmatrix}$	$\begin{pmatrix} X \\ t' \\ b' \end{pmatrix} \qquad \begin{pmatrix} t' \\ b' \\ Y \end{pmatrix}$
$SU(2)_L$	2 and 1	1	2	3
$U(1)_{Y}$	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3 -1/3	7/6 1/6 -5/6	2/3 -1/3
\mathcal{L}_{Y}	$-\frac{\underline{y}_{u}^{i}v}{\sqrt{2}}\bar{u}_{L}^{i}u_{R}^{i}\\-\frac{\underline{y}_{d}^{i}v}{\sqrt{2}}\bar{d}_{L}^{i}V_{CKM}^{i,j}d_{R}^{j}$	$-\frac{\lambda_u^i v}{\sqrt{2}} \bar{u}_L^i U_R$ $-\frac{\lambda_d^i v}{\sqrt{2}} \bar{d}_L^i D_R$	$-\frac{\lambda_u^i v}{\sqrt{2}} U_L u_R^i \\ -\frac{\lambda_d^i v}{\sqrt{2}} D_L d_R^i$	$\begin{array}{l} -\frac{\lambda_i v}{\sqrt{2}} \bar{u}_L^i U_R \\ -\lambda_i v \bar{d}_L^i D_R \end{array}$

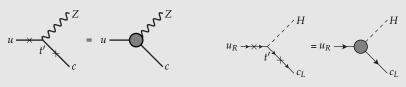
	SM	Singlets	Doublets	Triplets
	$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$	(t') (b')	$\begin{pmatrix} X \\ t' \end{pmatrix} \begin{pmatrix} t' \\ b' \end{pmatrix} \begin{pmatrix} b' \\ Y \end{pmatrix}$	$\begin{pmatrix} X \\ t' \\ b' \end{pmatrix} \qquad \begin{pmatrix} t' \\ b' \\ Y \end{pmatrix}$
$SU(2)_L$	2 and 1	1	2	3
$U(1)_Y$	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3 -1/3	7/6 1/6 -5/6	2/3 -1/3
$\mathcal{L}_{ m Y}$	$-\frac{y_u^i v}{\sqrt{2}} \bar{u}_L^i u_R^i \\ -\frac{y_d^i v}{\sqrt{2}} \bar{d}_L^i V_{CKM}^{i,j} d_R^j$	$-\frac{\lambda_u^i v}{\sqrt{2}} \bar{u}_L^i \frac{U_R}{U_R} \\ -\frac{\lambda_d^i v}{\sqrt{2}} \bar{d}_L^i D_R$	$-\frac{\lambda_u^i v}{\sqrt{2}} U_L u_R^i \\ -\frac{\lambda_d^i v}{\sqrt{2}} D_L d_R^i$	$-rac{\lambda_i v}{\sqrt{2}}ar{u}_L^i U_R \ -\lambda_i v ar{d}_L^i D_R$
\mathcal{L}_m		$-Mar{\psi}\psi$	(gauge invariant sind	ce vector-like)
Free parameters		$\begin{array}{ c c c }\hline & 4 \\ M+3 \times \lambda^i \end{array}$	$\begin{array}{ c c c }\hline 4 \text{ or } 7\\ M + 3\lambda_u^i + 3\lambda_d^i \end{array}$	$M + 3 \times \lambda^i$

Outline

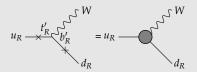

Motivations and Current Status

Couplings and constraints

Signatures at LHC

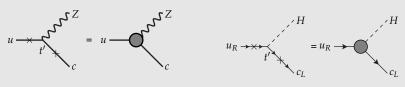

Couplings Major consequences

Flavour changing neutral currents

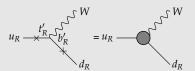


Flavour changing neutral currents

and flavour conserving neutral currents receive a contribution


Charged currents between right-handed SM quarks

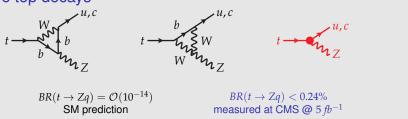
and charged currents between left-handed SM quarks receive a contribution



Flavour changing neutral currents

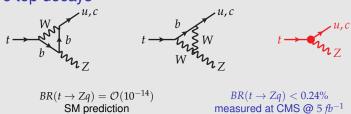
and flavour conserving neutral currents receive a contribution

Charged currents between right-handed SM quarks

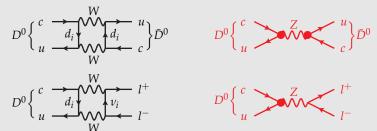


and charged currents between left-handed SM quarks receive a contribution

All proportional to combinations of mixing parameters


FCNC constraints

Rare top decays

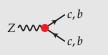


FCNC constraints

Rare top decays

Meson mixing and decay

Flavour conserving NC constraints


$Zc\bar{c}$ and $Zb\bar{b}$ couplings

- Direct coupling measurements: $g_{ZL,ZR}^q = (g_{ZL,ZR}^q)^{SM} (1 + \delta g_{ZL,ZR}^q)$
- $\bullet \ \ \text{Asymmetry parameters: } A_q = \frac{(g_{ZL}^g)^2 (g_{ZR}^g)^2}{(g_{ZL}^g)^2 + (g_{ZR}^g)^2} = A_q^{SM} (1 + \frac{\delta A_q}{q})$
- Decay ratios: $R_q = \frac{\Gamma(Z \to q\bar{q})}{\Gamma(Z \to hadrons)} = R_q^{SM} (1 + \delta R_q)$

Flavour conserving NC constraints

$Zc\bar{c}$ and $Zb\bar{b}$ couplings

- Direct coupling measurements: $g_{ZL,ZR}^q = (g_{ZL,ZR}^q)^{SM} (1 + \delta g_{ZL,ZR}^q)$
- Asymmetry parameters: $A_q = \frac{(g_{ZL}^q)^2 (g_{ZR}^q)^2}{(g_{TL}^q)^2 + (g_{TR}^q)^2} = A_q^{SM} (1 + \delta A_q)$
- Decay ratios: $R_q = \frac{\Gamma(Z \to q\bar{q})}{\Gamma(Z \to hadrons)} = R_q^{SM} (1 + \delta R_q)$

Atomic parity violation

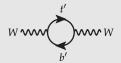
Weak charge of the nucleus

$$Q_{W} = \frac{2c_{W}}{\sigma} \left[(2Z + N)(g_{ZL}^{u} + g_{ZR}^{u}) + (Z + 2N)(g_{ZL}^{d} + g_{ZR}^{d}) \right] = Q_{W}^{SM} + \delta Q_{W}^{VL}$$

Most precise test in Cesium ¹³³Cs:

$$Q_W(^{133}\text{Cs})|_{exp} = -73.20 \pm 0.35$$
 $Q_W(^{133}\text{Cs})|_{SM} = -73.15 \pm 0.02$

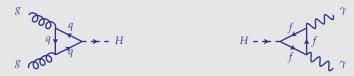
Constraints from EWPT and CKM


EW precision tests

Contributions of new fermions to S,T,U parameters

Constraints from EWPT and CKM

EW precision tests

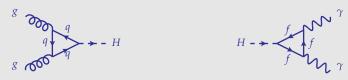

Contributions of new fermions to S,T,U parameters

CKM measurements

- Modifications to CKM relevant for singlets and triplets because mixing in the left sector is NOT suppressed
- The CKM matrix is not unitary anymore
- If BOTH t' and b' are present, a CKM for the right sector emerges

Higgs coupling with gluons/photons

Production and decay of Higgs at the LHC



New physics contributions mostly affect loops of heavy quarks t and q^\prime :

$$\kappa_{gg} = \kappa_{\gamma\gamma} = \frac{v}{m_t} g_{ht\bar{t}} + \frac{v}{m_{q'}} g_{hq'\bar{q}'} - 1$$

Higgs coupling with gluons/photons

Production and decay of Higgs at the LHC

New physics contributions mostly affect loops of heavy quarks t and q':

$$\kappa_{gg} = \kappa_{\gamma\gamma} = \frac{v}{m_t} g_{ht\bar{t}} + \frac{v}{m_{q'}} g_{hq'\bar{q}'} - 1$$

The couplings of t and q' to the higgs boson are:

$$g_{hff}=rac{m_t}{v}+\delta g_{hff}$$
 $g_{hq'q'}=rac{m_{q'}}{v}+\delta g_{hq'q'}$
In the SM: $\kappa_{gg}=\kappa_{\gamma\gamma}=0$

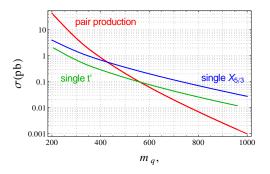
The contribution of just one VL quark to the loops turns out to be negligibly small Result confirmed by studies at NNLO

Outline

Motivations and Current Status

Couplings and constraints

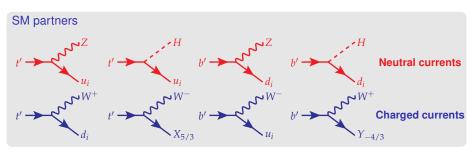
Signatures at LHC

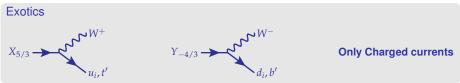

Production channels

Vector-like quarks can be produced in the same way as SM quarks **plus** FCNCs channels

- Pair production, dominated by QCD and sentitive to the q' mass independently of the representation the q' belongs to
- Single production, only EW contributions and sensitive to both the q' mass and its mixing parameters

Production channels

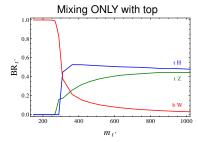

Pair vs single production, example with non-SM doublet $(X_{5/3} t')$



pair production depends only on the mass of the new particle and decreases faster than single production due to different PDF scaling

current **bounds from LHC** are around the region where (model dependent) **single production dominates**

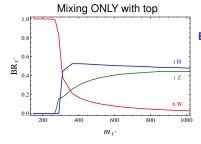
Decays



Not all decays may be kinematically allowed it depends on representations and mass differences

Decays of t'

Examples with non-SM doublet $(X_{5/3} t')$

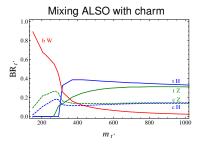


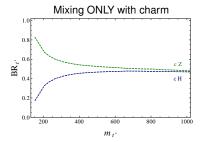
Bounds at ${\sim}600~\text{GeV}$ assuming

$$BR(t' \rightarrow bW) = 100\%$$
 or $BR(t' \rightarrow tZ) = 100\%$

Decays of t'

Examples with non-SM doublet $(X_{5/3} t')$

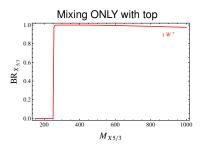



Bounds at \sim 600 GeV assuming

$$BR(t' \rightarrow bW) = 100\%$$

or

$$BR(t' \rightarrow tZ) = 100\%$$

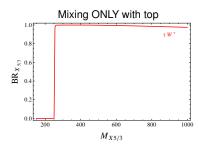

Charge	Resonant state	After t' decay
0	t'Ŧ'	$t\bar{t} + \{ZZ, ZH, HH\}$ $tj + \{ZZ, ZH, HH\}$ $jj + \{ZZ, ZH, HH\}$ $tW^- + \{b,j\} + \{Z, H\}$ $W^+W^- + \{bb, b_j, j_j\}$
	$t'\bar{u}_{ar{l}}$ $t'ar{t}$	$\begin{array}{l} t\bar{t} + \{Z, H\} \\ tj + \{Z, H\} \\ jj + \{Z, H\} \\ tW^- + \{b, j\} \\ W^{\pm} + \{bj, jj\} \end{array}$
1/3	$t'd_i$ $t'b$	$t + \{b, j\} + \{Z, H\}$ $\{bj, jj\} + \{Z, H\}$ $W^{\pm} + \{bb, bj, jj\}$
	$W^{+}\bar{t}'$	$tW^{-} + \{Z, H\}$ $jW^{-} + \{Z, H\}$ $W^{+}W^{-} + \{b, j\}$
2/3	t'Z t'H	$t + \{ZZ, ZH, HH\}$ $W^{\pm} + \{b, j\} + \{Z, H\}$
1	$t'\bar{d}_i$ $t'\bar{b}$	$t + \{b, j\} + \{Z, H\}$ $\{bj, jj\} + \{Z, H\}$ $W^{\pm} + \{bb, bj, jj\}$
4/3	t't'	$\begin{array}{l} tt + \{ZZ, ZH, HH\} \\ tj + \{ZZ, ZH, HH\} \\ jj + \{ZZ, ZH, HH\} \\ tW^+ + \{b,j\} + \{Z, H\} \\ W^\pm W^\pm + \{bb, bj, jj\} \end{array}$
	$t'u_i$ $t't$	$tt + \{Z, H\}$ $tW^{+} + \{b, j\}$ $tj + \{Z, H\}$ $W^{\pm} + \{bj, jj\}$

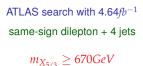
Possible final states from pair and single production of t' in general mixing scenario

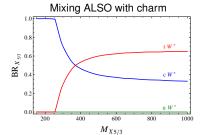
only 2 effectively tested since now

Decays of $X_{5/3}$

Examples with non-SM doublet $(X_{5/3} t')$




ATLAS search with $4.64 fb^{-1}$ same-sign dilepton + 4 jets


$$m_{X_{5/3}} \geq 670 GeV$$

Decays of $X_{5/3}$

Examples with non-SM doublet $(X_{5/3} t')$

Bounds estimated using an optimized set of cuts in arXiv:1211.4034 same-sign dilepton + 2 jets

Evidence: $m_{X_{5/3}} \ge 609 GeV$ Observation: $m_{X_{5/3}} \ge 561 GeV$

Conclusions and Outlook

- Vector-like quarks are a very promising playground for searches of new physics
- Fairly rich phenomenology at the LHC and many possibile channels to explore
 - → Signatures of single and pair production of VL quarks are accessible at current CM energy and luminosity and have been explored to some extent
 - → Current bounds on masses around 600 GeV, but searches are not fully optimized for general scenarios.