Monotop and multitop production at hadron colliders From effective field theory to data

Benjamin Fuks

CERN / IPHC Strasbourg / U. Strasbourg Supported by the French ANR 12 JS05 002 01 BATS@LHC

- J. Andrea, BenjF & F. Maltoni, PRD 84 (2011) 074025
- BenjF + CDF collaboration, PRL 108 (2012) 201802
- BenjF, IJMPA 27 (2012) 1230007
- S. Calvet, BenjF, P. Gris & L. Valéry, arXiv:1212.3360
- J. Andrea, E. Conte & BenjF, in preparation

RPP 2013 meeting @ LPSC Grenoble January 16-18, 2013

Outline.

- 1 The bottom-up approach for new physics at the LHC
- 2 Effective field theories for the top sector and simulation setup
- 3 Monotop production at hadron colliders
- Sgluon-induced multitop production at the LHC
- 5 Summary

The top-down approach.

Motivations.

- * Theoretical ideas.
 - ► e.g., symmetry principles as for Grand Unified Theories.
- * Addresses one or several issues of the Standard Model.
 - ▶ e.g., hierarchy problem as in Universal Extra Dimensional models.
- * Predictions can be made through perturbation theory.
 - ► e.g., test at colliders.

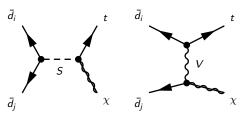
Benchmark scenarios.

- * Many new parameters enter in new theories:
 - ► e.g., hundreds of parameters in supersymmetric models.
- * Experimental data constrains some of them.
 - ► e.g., electroweak precision observables.
- * Viable benchmark scenarios.
- Signatures at colliders.
 - * Driven by the benchmark scenarios.
 - ightharpoonup e.g., same sign leptons \Leftrightarrow new Majorana state.

- Signatures at colliders.
 - Not typical from a given benchmark of a specific model.
 - ► Various benchmarks for gravity-mediated supersymmetry breaking.
 - * Not typical from a specific model.
 - ► Extra Dimensions and supersymmetry imply both cascade decays.
- Theory and data.
 - * How to relate observations to a given model/benchmark?
 - * How to disentangle models and benchmarks?
- Bias in the expectations.
 - Are we missing some signatures in those investigated?
 - ► Phenomenologically and experimentally.

The bottom-up approach: we start from a signature.

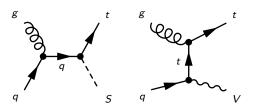
Outline.


- 1 The bottom-up approach for new physics at the LHC
- 2 Effective field theories for the top sector and simulation setup
- 3 Monotop production at hadron colliders
- 4 Sgluon-induced multitop production at the LHC
- 5 Summary

Monotop production at the LHC: general features.

- Bottom-up approach: we propose a final state signature.
 - ▶ One top quark in association with missing energy.
- Monotop production in the Standard Model.
 - * Loop-suppressed and CKM-suppressed.
 - \Rightarrow Observing monotops at the LHC \Rightarrow new physics.
- Main features of monotop signatures.
 - Final state flavor is fixed.
 - One top quark.
 - Missing energy.
 - ▶ Bosonic or fermionic state
 - ▶One particle or *n*-particle state.
 - ► Neutral, weakly-interacting, long-lived/stable/invisible.
 - * Initial state possibilities are then reduced.
 - ► Down-type antiquark pair ⇒ baryon-number-violating process.
 - ► Up-type quark/gluon ⇒ flavor-changing process.
 - Enhanced coupling between the 3rd generation and the others.

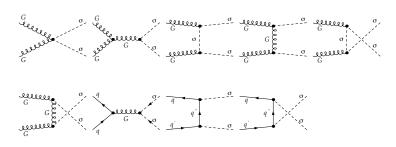
Classes of models yielding monotop signatures (1).


- Fermionic missing energy state χ (initial antiquark pairs).
 - s-, t- and u-channel exchanges of a new state.
 - \diamond Scalar or vector, in the fundamental representation of $SU(3)_c$.

- Concrete examples.
 - \diamond R-parity-violating supersymmetry $(S \equiv \tilde{t}/\tilde{q} \text{ and } \chi \equiv \tilde{\chi}^0)$.
 - \diamond *SU*(5) theories ($V \equiv \text{leptoquark and } \chi \equiv \nu$).
 - $\diamond \quad \chi \equiv \text{composite state (e.g., scalar + fermion)}.$
 - $\diamond \quad \chi \equiv \text{spin-3/2 particle.}$
 - ♦ etc (including four-fermion interactions)...

Classes of models yielding monotop signatures (2).

- Bosonic missing energy state (initial quark/gluon pairs).
 - Flavor-changing interactions of the top quark.
 - ♦ With a charm or up quark.
 - With a new neutral scalar, vector or tensor field.


- Concrete examples.
 - \diamond *R*-parity-conserving supersymmetry $(pp \to \tilde{q}\tilde{\chi}^0 \to t\tilde{\chi}^0\tilde{\chi}^0)$.
 - Flavor-violating graviton couplings.
 - ♦ etc...

- Production of four top guarks in the Standard Model.
 - Phase-space suppressed.
 - * Inclusive cross sections: @ 7 TeV: 0.3 fb; @ 8 TeV: 0.7 fb.
 - \Rightarrow Multitop events (at a large rate) \Rightarrow new physics.
- Theoretical framework inspired by R-symmetric supersymmetry.
 - * Predict a scalar color-octet field, the sgluon.
 - * QCD couplings to gluons.
 - Effective couplings to quarks and gluons through supersymmetric loops.
 - \diamond Quark antiquark sgluon $\Rightarrow \mathcal{O}\left(\frac{m_q}{M_{\text{SUGY}}}\right)$.
 - \diamond Gauge boson pair sgluon $\Rightarrow \mathcal{O}\left(\frac{1}{M_{\text{CUCY}}}\right)$.
 - ⇒ Important for the top quark.
- Sgluon fields also appear in:
 - * N=1/N=2 hybrid supersymmetric theories.
 - * Vector-like confining theories (colorons).
 - * Extra-dimensional theories (with $D \ge 6$).

Simplified model for sgluon production and decay

Signatures.

* Sgluon pair-production.

* Decays to 2, 3 or 4 top quarks.

Simulation setup.

Based on [Christensen, de Aguino, Degrande, Duhr, BeniF, Herquet, Maltoni, Schumann (EPJC '11)].

- Implementation of the simplified models in FEYNRULES. [Christensen, Duhr (CPC '09); Alloul, Christensen, Degrande, Duhr, BenjF (in prep)]
- UFO files. [Degrande, Duhr, BenjF, Grellscheid, Mattelaer, Reiter (CPC '11)]
- S Event generation with MADGRAPH 5. [Alwall, Herquet, Mattelaer, Stelzer (JHEP '11)]
- Parton showering and hadronization with PYTHIA. [Sjostrand, Mrenna, Skands (JHEP '06; CPC '08)]
- 5 Fast detector simulation with DELPHES. [Ovyn, Rouby, Lemaitre ('09)]
- 6 Phenomenological analysis.
 - * Monotops: relying on MADANALYSIS 5. [Conte. BeniF. Serret (CPC '13)]
 - Multitops: home-made program using the MCLIMIT package. [http://www-cdf.fnal.gov/~trj/mclimit/production/mclimit.html]

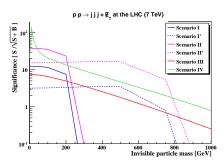
Outline

- 1 The bottom-up approach for new physics at the LHC
- 2 Effective field theories for the top sector and simulation setup
- 3 Monotop production at hadron colliders
- 4 Sgluon-induced multitop production at the LHC
- 5 Summary

Signal and background descriptions.

Signal.

- Leptonic top decay.
 - ♦ Signature: 1 lepton + 1 b jet + missing energy.


Monotops •000

- ♦ No top mass reconstruction.
- ♦ More challenging ⇒ not considered.
- * Hadronic top decay.
 - ♦ Signature: 2 light iets + 1 b iet + missing energy.
 - ♦ The top is fully reconstructed.

Sources of background.

- * $Z \rightarrow \nu \bar{\nu} + 3$ jets.
 - ▶Irreducible background.
- * QCD multijet.
 - ightharpoonup Misreconstructed jet ightharpoonup fake missing energy.
- * W + jets, $t\bar{t}$ and diboson.
 - ► Missing energy: leptonic W decay with nonreconstructed lepton.
- * Single top.
 - ►Non- or misreconstructed leptons.

Prospective parton-level analysis at 1 fb^{-1} .

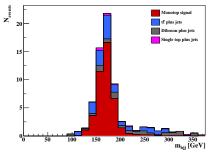
[Andrea, BeniF, Maltoni (PRD '11)]

Basic selection cuts.

- ► Exactly 3 parton-level jets.
- $p_T > 50 \text{ GeV}; |\eta| < 2.5.$
- $ightharpoonup \Delta R(\text{jet,jet}) > 0.5.$

Exploiting the reconstructed top.

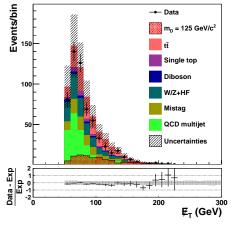
- $ightharpoonup p_{\tau}$ > 150 GeV.
- ►One b-tag; no isolated leptons.
- $ightharpoonup M_{jj} \in [m_w 20, m_w + 20] \text{ GeV}.$
- $ightharpoonup M_{bjj} \in [m_t 30, m_t + 30] \text{ GeV}.$


Efficiencies.

► b-tag: 60%; c/j-mistag: 10/1%.

Results.

- ► Flavor-changing modes more optimistic (cf. parton densities).
- ▶ Resonant modes depend on the resonance mass.
- ► Fairly large invisible mass reachable


Complete Monte Carlo study including detector simulation.

[BeniF (IJMPA '12)]

- *R*-parity violating SUSY.
- Basic cuts.
 - ► #_T > 200 **GeV**.
 - ►Lepton veto.
- Exploiting the reconstructed top.
 - ► Exactly one *b*-jet.
 - ► Exactly two light jets.
 - $ightharpoonup M_{jj} \in [m_w 15, m_w + 15]$ GeV.
- Results at 4 fb⁻¹.
 - ►TeV scale squarks
 - ► Moderate RPV couplings
 - ► Possible discovery.

From theory to data: CDF exclusions.

[BeniF + CDF collaboration (PRL '12)]

- Flavor changing monotop events.
 - $\triangleright Z'$ with a mass of 125 GeV.
- Basic set of cuts.
 - ► £ _T > 50 GeV.
 - ► Exactly three jets with one *b*-jet.
 - ► $E_T^{j_1} > 35$ **GeV**.
 - ► $E_T^{j_2,j_3} > 25$ GeV.
 - ▶One jet with $|\eta| < 0.9$.
 - ▶Other jets with $|\eta|$ < 2.4.
 - ►Lepton veto.
- Exploiting the top quark.
 - $\blacktriangleright \Delta \phi(\not\!\!E_T, j_2) > 0.7.$
 - $ightharpoonup m_{bij}$ compatible with m_t .
 - ► Large \not E_T significance.
- Results with 7.7 fb⁻¹ of data.
 - **►** Compatible with the SM.

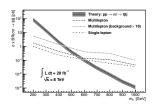
Outline

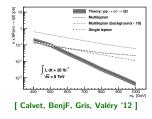
- 1 The bottom-up approach for new physics at the LHC
- 2 Effective field theories for the top sector and simulation setup
- 3 Monotop production at hadron colliders
- Sgluon-induced multitop production at the LHC
- 5 Summary

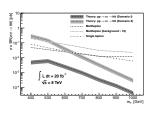
Single lepton analysis.

Object selection.

- * **Jets**: $E_T^{\text{(cal.)}} > 20 \text{ GeV}; \ \eta < 2.5.$
- * b-tagging: efficiency: 60%; mistag: 10% (charm) and 1% (light).
- * Jet removal: if $\Delta R(j, e^{\pm}) < 0.1$.
- * Lepton removal: if $\Delta R(\ell^{\pm}, j) \leq 0.4$.


Selection cuts.


- * One single lepton: $p_T \ge 25$ GeV.
- * Missing energy: ∉_T ≥ 40 GeV.
- * W transverse mass: $M_T^W \ge 25$ GeV. \Rightarrow good control of multijet backgrounds (ATLAS: EPJC **72** (2012) 2083).
- * Jet multiplicity cuts.
 - ▶ tjtj: $N_j \ge 5$; $N_b \ge 1$; $p_T^j \ge 25$ GeV \Rightarrow Main bgd $\equiv t\bar{t} + \text{jets}$.
 - ▶ tjtt: $N_j \ge 7$; $N_b \ge 2$; $p_T^j \ge 25$ GeV \Rightarrow Main bgd $\equiv t\bar{t} + \text{jets}$.
 - ▶ tttt: $N_j \ge 8$; $N_b \ge 2$; $p_T^j \ge 25$ GeV \Rightarrow Main bgd $\equiv t\bar{t} + V(V') + jets$.
- Large hadronic activity for the signal: use H_T as a discriminating variable.
- The ditop case: the sgluon mass can be reconstructed.


Multitops

- Object selection: same as before.
- Selection cuts.
 - * $N_{\ell} \geq 2$ leptons with $p_{\tau}^{\ell} > 20$ GeV.
 - * $m_{\ell\ell} > 50 \text{ GeV} \Rightarrow \text{rejection of hadronic resonances}.$
 - * Missing energy: $\not E_T \ge 40 \text{ GeV} \Rightarrow \text{good rejection of the } Z \text{ backgrounds}.$
 - * Jet multiplicity cuts.
 - ▶ tjtj: $N_i \ge 3$; $N_b \ge 1$; $p_T^I \ge 25$ GeV \Rightarrow Main bgd $\equiv t\bar{t} + \text{jets}$.
 - ▶ tjtt: $N_i \ge 4$; $N_b \ge 2$; $p_T^j \ge 25$ GeV \Rightarrow Main bgd $\equiv t\bar{t} + \text{jets}$.
 - ▶ tttt: $N_i \ge 5$; $N_b \ge 3$; $p_T^j \ge 25$ GeV \Rightarrow Main bgd $\equiv t\bar{t} + V(V') + \text{jets}$.
- Multijet background + fakes.
 - * If $N_{\ell} = 2$: we ask for same sign leptons.
 - * After cuts, mulitiet is 10 x larger than the rest (ATLAS-CONF-2012-130).
 - * Two considered cases (the truth should be in between).
 - ▶ Without multijet + fakes .
 - ▶ Without multijet + fakes but after multiplying the bgd by 10.
- Large hadronic activity for the signal: use H_T as a discriminating variable.

Extracting the LHC sensitivity.

- Signatures: tjtj (left) tjtt (middle) and tttt (right); LHC @ 8 TeV; 20 fb⁻¹.
- Gray bands: theory curves for all our scenarios (with scale uncertainties).
- Expectations for 8 fb⁻¹ (using MCLIMIT).
- LHC sensitivity.

	Cinale lenten englygie	Multilantan analysis	Multilepton analysis
	Single lepton analysis	Multilepton analysis	(background $ imes 10$)
tjtj	590 ⁺⁴⁰ ₋₃₀ GeV	570 ⁺³⁰ ₋₅₀ GeV	440 ⁺⁴⁰ ₋₁₅ GeV
tjtt	590 ⁺⁴⁰ ₋₃₀ GeV 480 ⁺⁷⁰ ₋₈₀ GeV	570 ⁺³⁰ ₋₅₀ GeV 520 ⁺³⁵ ₋₉₀ GeV	-
tttt (S-I)	-	-	-
tttt (S-II)	640 ⁺⁴⁰ ₋₃₀ GeV	650 $^{+30}_{-40}$ GeV	520 $^{+50}_{-110}$ GeV

Outline

- 1 The bottom-up approach for new physics at the LHC
- 2 Effective field theories for the top sector and simulation setup
- 3 Monotop production at hadron colliders
- 4 Sgluon-induced multitop production at the LHC
- 5 Summary

Summary.

- We exploit the FeynRules UFO MadGraph Pythia Delphes chain.
 - * We develop simplified models.
 - Monotop signatures.
 - Multitop signatures.
 - * Investigate their phenomenology at the LHC (7 TeV and 8 TeV).

Monotops.

- * One hadronic top quark and missing energy.
- * The LHC can probe fairly large missing mass.
- * The LHC can constrain the coupling strengths.

Sgluon-induced multitops.

* tjtj, tjtt and tttt topologies with at least one lepton after top decays.

Benjamin Fuks - RPP 2013 - 17.01.2013 - 22

- * Large final state hadronic activity \Rightarrow discriminating variable: H_T .
- * Single lepton and tjtj: the sgluon mass can be reconstructed.
- * Sgluons up to 700 GeV can be probed.