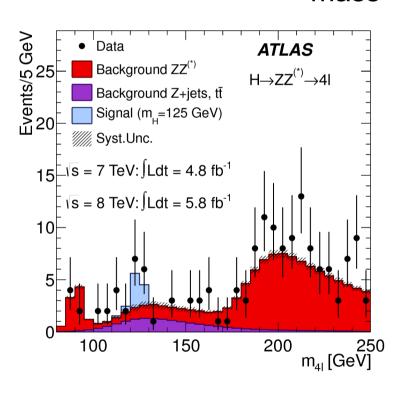
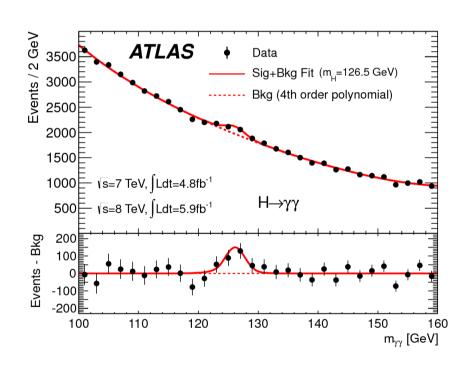
What does the Higgs boson tell us about New Physics?


Béranger Dumont



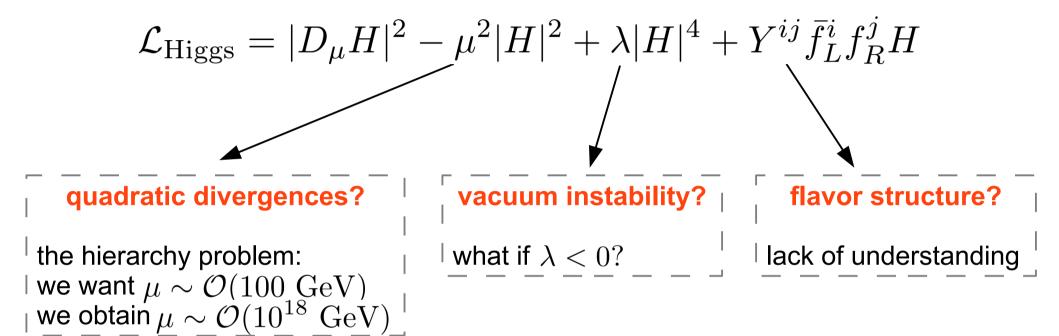
Séminaire des doctorants May 28, 2013

Discovery of a new particle

on July 4th:
discovery of a new particle "consistent with the Higgs boson" at the LHC
mass ≈ 125 GeV

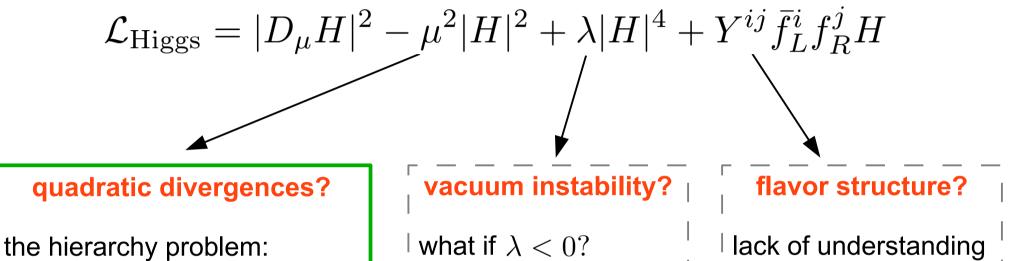
the Higgs boson has been theorized in 1964 long-awaited discovery after 30 years of search!

Standard Model Lagrangian


$$\mathcal{L}_{\mathrm{SM}} = \mathcal{L}_{\mathrm{gauge}} + \mathcal{L}_{\mathrm{Higgs}}$$

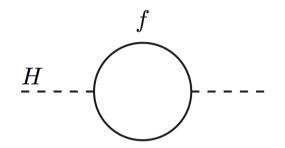
- Follows from the local SU(3)_C x SU(2)_L x U(1)_Y symmetry

 QCD electroweak
- interaction between fermions and gauge bosons (g, W, Z, γ)
- nice & simple, experimentally tested with high accuracy


- we need to break the electroweak symmetry!
 - → gives mass to the W and Z bosons
 - → gives masses to the fermions (for free)
- but ad hoc and not so well-known...

Standard Model Higgs

most of the problems of the Standard Model come from the Higgs sector!


Standard Model Higgs

most of the problems of the Standard Model come from the Higgs sector!

we want $\mu \sim \mathcal{O}(100~{\rm GeV})$ we obtain $\mu \sim \mathcal{O}(10^{18}~{\rm GeV})$

The hierarchy problem

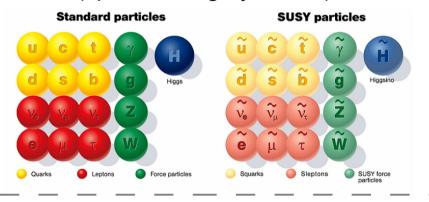
quantum corrections to the Higgs mass parameter from New Physics arising at the scale $\Lambda_{\mu\nu}$

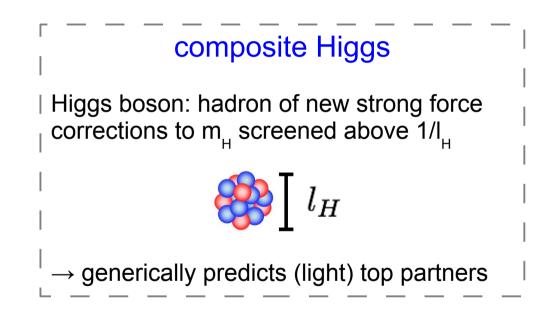
$$\hookrightarrow \Delta \mu^2 \propto \Lambda_{\rm UV}^2 \sim \mathcal{O}(M_{\rm Pl}^2)$$

remain true if the new particles are only indirectly coupled to the Higgs

The Higgs mass parameter is naturally pushed to M_{Pl} ...but we know that $m_{H} \approx 125 \text{ GeV}!$

 \rightarrow we **need** New Physics to explain the smallness of $m_{_{\!\!\!Pl}}$ compared to $M_{_{\!\!\!Pl}}$


Possible solutions to the hierarchy problem


two popular solutions to the hierarchy problem

supersymmetry

additional symmetry relating fermions and bosons

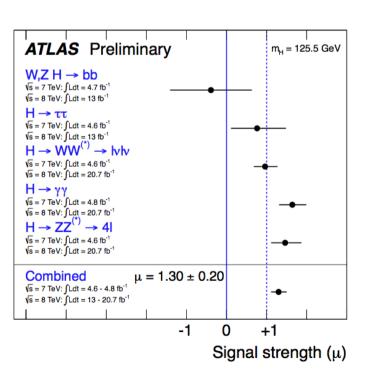
→ predicts "superpartners" of the existing particles (spin differing by ½ unit)

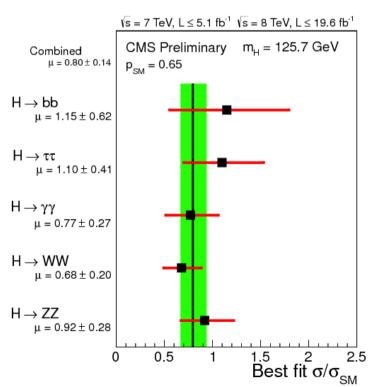


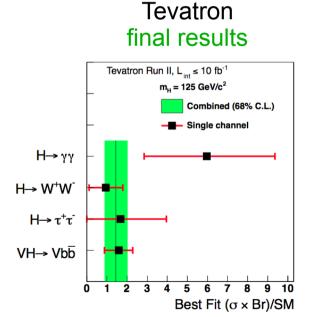
in both cases:

- natural to expect new particles at the TeV scale, i.e. accessible at the LHC!
- sizeable modifications of the properties of the Higgs are possible: probed at the LHC!

Standard Model Higgs... or New Physics? ₹ Vladstudio taken from Alexey Drozdetskiy's talk at HCP2012

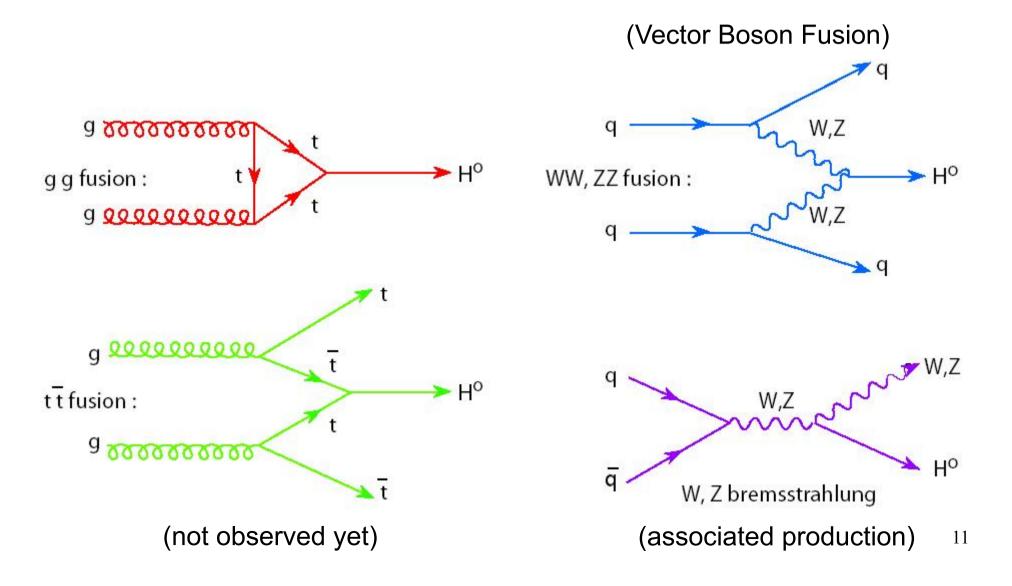

Accessible decays of the Higgs boson

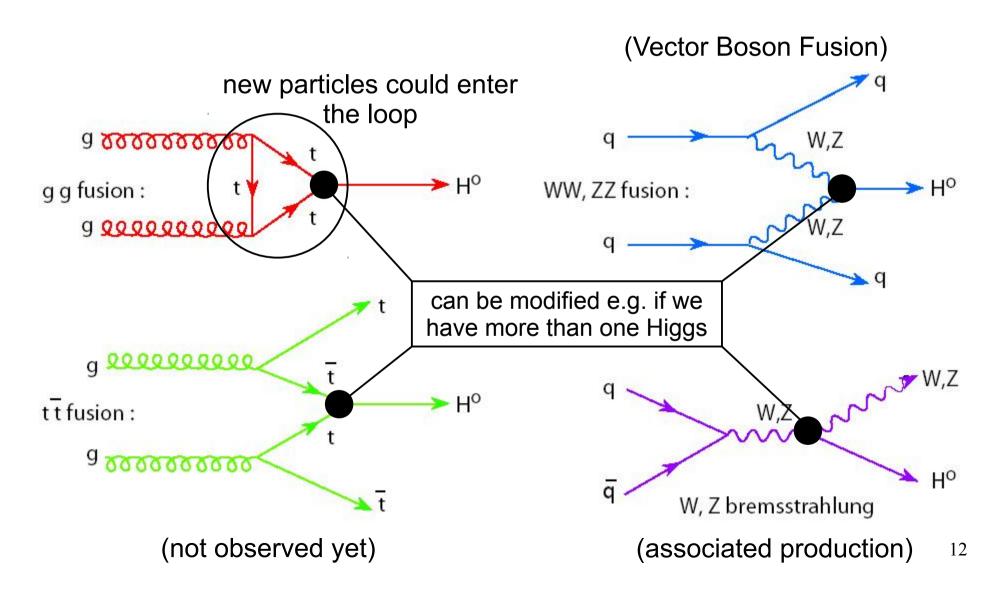



- m_H ~ 125 GeV is interesting:
 many channels are accessible!
- the mass of the new particle is inferred from the $\gamma\gamma$ and ZZ channels
- H → gg and H → cc channels: not accessible at the LHC (QCD background)

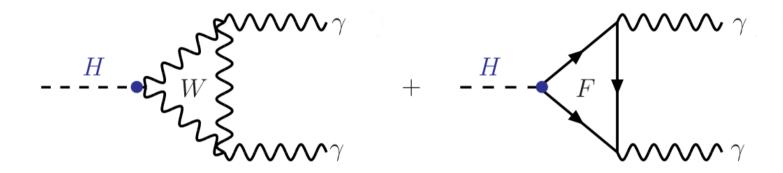
Searches for the Higgs boson

- new particle at observed 125.5 GeV with > 7σ significance by ATLAS and CMS!
 almost all bosonic searches have been updated with full luminosity
- results summarized in terms of signal strengths: $\mu_i = \frac{\left[\sum_j \sigma_{j o h} imes \mathcal{B}(h o i)\right]_{\mathrm{observed}}}{\left[\sum_j \sigma_{j o h} imes \mathcal{B}(h o i)\right]_{\mathrm{SM}}}$



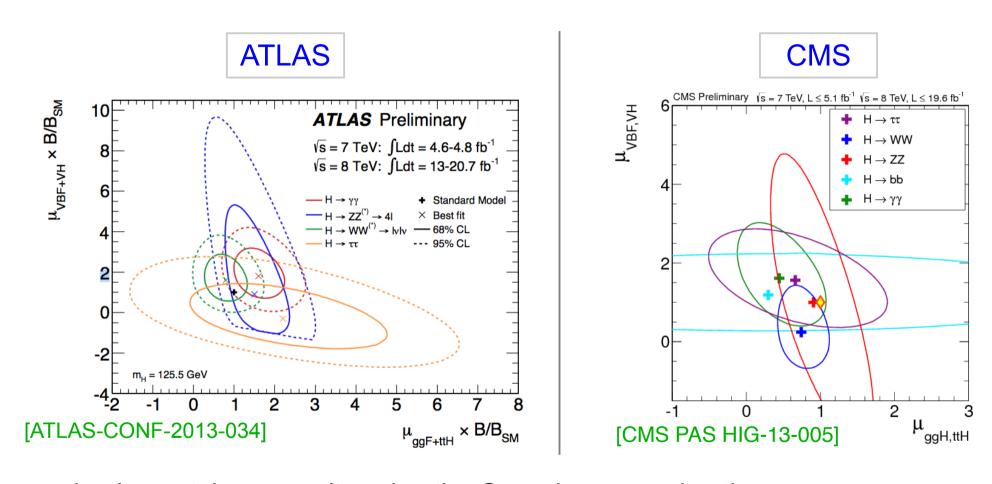

Production of a Higgs boson

...but New Physics modifies not only the Higgs decays but also its production!



Production of a Higgs boson

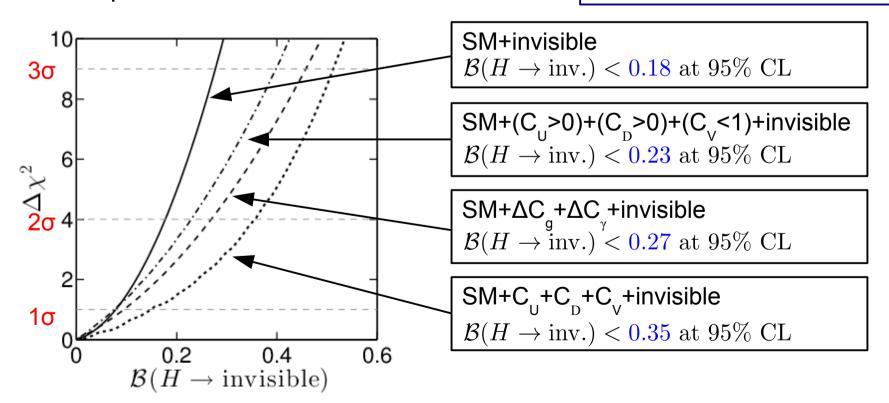
...but New Physics modifies not only the Higgs decays but also its production!



A word on $H \rightarrow \gamma \gamma$

- contribution from the W is 5 times larger than from the top quark
- small contributions from bottom and lighter quarks
- new particles in the loop could change the $H\gamma\gamma$ rate! (e.g. charged Higgses, charginos, staus, ...)

2D μ plots from ATLAS and CMS


we implement these results using the Gaussian approximation (validity checked ✓)

Understanding what we observe

The Higgs is Standard Model-like so far

- → provides constraints on theories Beyond the Standard Model
- we have performed various couplings fits of the observed new particle
 example of result:

G. Belanger, BD, U. Ellwanger, J. F. Gunion, and S. Kraml, [arXiv:1212.5244] and [arXiv:1302.569]

Philosophy of our EFT approach

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{\alpha_i}{\Lambda^{n_i}} \mathcal{O}_i$$

we consider dimension-6 operators only

BD, S. Fichet, G. von Gersdorff [arXiv:1304.3369]

underlying assumptions

- the observed state at ~125 GeV is
 - CP-evenspin 0

 - and belongs to a SU(2), doublet
- there is a mass gap between the SM and New Physics (arising at the scale Λ)

complementarity with the "anomalous couplings" approach

less general but...

- clear ordering between operators
- fully consistent theoretical framework

$$\begin{array}{c} \mathcal{O}_D = J_{H\;\mu}^a J_\mu^a \,, \quad \mathcal{O}_{D^2} = |H|^2 |D_\mu H|^2 \\ | \mathcal{O}_{WW} = H^\dagger H \left(W_{\mu\nu}^a\right)^2 \,, \quad \mathcal{O}_{BB} = H^\dagger H \left(B_{\mu\nu}\right)^2 \\ | \mathcal{O}_{WB} = H^\dagger W_{\mu\nu} H \, B_{\mu\nu} \,, \quad \mathcal{O}_{GG} = H^\dagger H \left(G_{\mu\nu}^a\right)^2 \\ | \mathcal{O}_{t} = 2 y_t \, |H|^2 \, H \bar{t}_L t_R \,, \quad \mathcal{O}_b = 2 y_b \, |H|^2 \, H \bar{b}_L b_R \,, \quad \mathcal{O}_\tau = 2 y_\tau \, |H|^2 \, H \bar{\tau}_L \tau_R | \\ | \mathcal{L}_{v,f}^{\rm tree} = \lambda_Z \, h \, (Z_\mu)^2 + \lambda_W \, h \, W_\mu^+ W_\mu^- + \sum_f \lambda_f \, h \, \bar{f}_L f_R \\ | \mathcal{L}_t^{\rm tree} = \zeta_\gamma \, h \, (F_{\mu\nu})^2 + \zeta_g \, h \, (G_{\mu\nu})^2 + \zeta_{Z\gamma} \, h \, F_{\mu\nu} Z_{\mu\nu} \\ | + \zeta_Z \, h \, (Z_{\mu\nu})^2 + \zeta_W \, h \, W_{\mu\nu}^+ W_{\mu\nu}^- \end{array} \right\} \begin{array}{c} \text{couplings to gauge bosons and fermions} \\ \mathcal{L}_t^{\rm tree} = \lambda_\gamma \, h \, (F_{\mu\nu})^2 + \zeta_G \, h \, (G_{\mu\nu})^2 + \zeta_{Z\gamma} \, h \, F_{\mu\nu} Z_{\mu\nu} \\ | + \zeta_Z \, h \, (Z_{\mu\nu})^2 + \lambda_g \, h \, (G_{\mu\nu})^2 + \lambda_{Z\gamma} \, h \, F_{\mu\nu} Z_{\mu\nu} \end{array} \right\} \begin{array}{c} \text{couplings of the loop-induced processes} \\ \text{coop-induced processes} \end{array}$$

$$\begin{array}{c} \mathcal{O}_D = J_{H\;\mu}^a \, J_\mu^a \,, \quad \mathcal{O}_{D^2} = |H|^2 |D_\mu H|^2 \\ \mathcal{O}_{WW} = H^\dagger H \, (W_{\mu\nu}^a)^2 \,, \quad \mathcal{O}_{BB} = H^\dagger H \, (B_{\mu\nu})^2 \\ \mathcal{O}_{WB} = H^\dagger W_{\mu\nu} H \, B_{\mu\nu} \,, \quad \mathcal{O}_{GG} = H^\dagger H \, (G_{\mu\nu}^a)^2 \\ \mathcal{O}_{V} = 2y_t \, |H|^2 \, H \bar{t}_L t_R \,, \quad \mathcal{O}_b = 2y_b \, |H|^2 \, H \bar{b}_L b_R \,, \quad \mathcal{O}_\tau = 2y_\tau \, |H|^2 \, H \bar{\tau}_L \tau_R | \\ \mathcal{L}_{v,f}^{\rm tree} = \lambda_Z \, h \, (Z_\mu)^2 + \lambda_W \, h \, W_\mu^+ W_\mu^- + \sum_f \lambda_f \, h \, \bar{f}_L f_R \\ \mathcal{L}_t^{\rm tree} = \zeta_\gamma \, h \, (F_{\mu\nu})^2 + \zeta_g \, h \, (G_{\mu\nu})^2 + \zeta_{Z\gamma} \, h \, F_{\mu\nu} Z_{\mu\nu} \\ + \zeta_Z \, h \, (Z_{\mu\nu})^2 + \zeta_W \, h \, W_{\mu\nu}^+ W_{\mu\nu} \\ \mathcal{L}^{1-\rm loop} = \lambda_\gamma \, h \, (F_{\mu\nu})^2 + \lambda_g \, h \, (G_{\mu\nu})^2 + \lambda_{Z\gamma} \, h \, F_{\mu\nu} Z_{\mu\nu} \\ \end{array} \right\} \begin{array}{c} {\rm couplings \ to \ gauge \ bosons \ and \ fermions} \\ {\rm couplings \ of \ the \ loop-induced \ processes} \\ \mathcal{L}^{1-\rm loop} = \lambda_\gamma \, h \, (F_{\mu\nu})^2 + \lambda_g \, h \, (G_{\mu\nu})^2 + \lambda_{Z\gamma} \, h \, F_{\mu\nu} Z_{\mu\nu} \\ \end{array} \right\} \begin{array}{c} {\rm couplings \ of \ the \ loop-induced \ processes} \\ {\rm couplings \ of \ the \ loop-induced \ processes} \\ \end{array}$$

$$\begin{array}{c} \mathcal{O}_D = J_{H\;\mu}^a \, J_\mu^a \,, \quad \mathcal{O}_{D^2} = |H|^2 |D_\mu H|^2 \\ \mathcal{O}_{WW} = H^\dagger H \, (W_{\mu\nu}^a)^2 \,, \quad \mathcal{O}_{BB} = H^\dagger H \, (B_{\mu\nu})^2 \\ \mathcal{O}_{WB} = H^\dagger W_{\mu\nu} H \, B_{\mu\nu} \,, \quad \mathcal{O}_{GG} = H^\dagger H \, (G_{\mu\nu}^a)^2 \\ \mathcal{O}_{WB} = 2y_t \, |H|^2 \, H \bar{t}_L t_R \,, \quad \mathcal{O}_b = 2y_b \, |H|^2 \, H \bar{b}_L b_R \,, \quad \mathcal{O}_\tau = 2y_\tau \, |H|^2 \, H \bar{\tau}_L \tau_R | \\ \mathcal{L}_{v,f}^{\rm tree} = \lambda_Z \, h \, (Z_\mu)^2 + \lambda_W \, h \, W_\mu^+ W_\mu^- + \sum_f \lambda_f \, h \, \bar{f}_L f_R \\ \mathcal{L}_t^{\rm tree} = \zeta_\gamma \, h \, (F_{\mu\nu})^2 + \zeta_\sigma \, h \, (G_{\mu\nu})^2 + \zeta_Z \gamma \, h \, F_{\mu\nu} Z_{\mu\nu} \\ + \zeta_Z \, h \, (Z_{\mu\nu})^2 + \zeta_W \, h \, W_{\mu\nu}^+ W_{\mu\nu}^- \\ \mathcal{L}_{t}^{\rm 1-loop} = \lambda_\gamma \, h \, (F_{\mu\nu})^2 + \lambda_g^\dagger \, h \, (G_{\mu\nu})^2 + \lambda_{Z\gamma} \, h \, F_{\mu\nu} Z_{\mu\nu} \end{array} \right] \, \begin{array}{c} {\rm couplings \; to \; gauge \; bosons \; and \; fermions} \\ {\rm tree-level \; contribution \; to \; the \; tensor \; couplings} \\ {\rm couplings \; of \; the \; loop-induced \; processes} \end{array}$$

$$\mathcal{O}_{D} = J_{H \, \mu}^{a} \, J_{\mu}^{a} \,, \quad \mathcal{O}_{D^{2}} = |H|^{2} |D_{\mu}H|^{2}$$

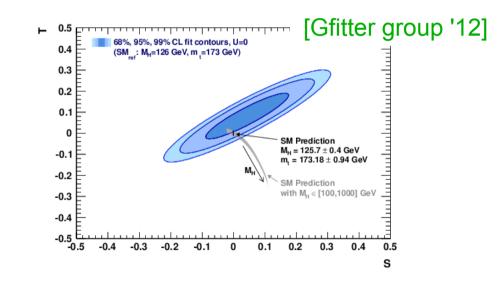
$$\mathcal{O}_{WW} = H^{\dagger} H \, (W_{\mu\nu}^{a})^{2} \,, \quad \mathcal{O}_{BB} = H^{\dagger} H \, (B_{\mu\nu})^{2}$$

$$\mathcal{O}_{WB} = H^{\dagger} \, W_{\mu\nu} H \, B_{\mu\nu} \,, \quad \mathcal{O}_{GG} = H^{\dagger} H \, (G_{\mu\nu}^{a})^{2}$$

$$\mathcal{O}_{WB} = 2y_{t} \, |H|^{2} \, H \bar{t}_{L} t_{R} \,, \quad \mathcal{O}_{b} = 2y_{b} \, |H|^{2} \, H \bar{b}_{L} b_{R} \,, \quad \mathcal{O}_{\tau} = 2y_{\tau} \, |H|^{2} \, H \bar{\tau}_{L} \tau_{R}$$

these operators cannot be generated at tree-level within a perturbative UV theory

Scenario I) democratic HDOs


→ all operators on equal footing

Scenario II) loop suppressed \mathcal{O}_{FF} 's compared to the other operators FF = WW, WB, BB, GG

Experimental constraints

Higgs properties:
 all measurements up-to-date (incl. limits on h → Zγ)
 → implemented as in the Higgs couplings fits

electroweak precision observables:
 Peskin–Takeuchi S & T parameters

• measurements of the Triple Gauge Vertices (TGV) WW γ , WWZ:

$$\kappa_{\gamma} = 0.973^{+0.044}_{-0.045} \; , g_1^Z = 0.984^{+0.022}_{-0.019}$$
 [LEPEWWG/TGC/2005-01]

Bayesian inference & MCMC

in a model M, having:

- parameters of interest φ,
- other parameters ψ ,

the posterior probability on ϕ given the experimental data is:

$$p(\phi|d,M) \propto \int L(\phi,\pmb{\psi}) \, \pi(\phi,\pmb{\psi}|M) \, d\pmb{\psi}$$
 marginal posterior on the parameters of interest
$$\text{with } L = L_{\text{Higgs}} \times L_{S,T} \times L_{\text{TGV}}$$

$$\pi(\alpha_i) = \pi(\beta_i) = 1 \text{ (uniform prior)}$$

we sample the posterior probability distribution using Markov Chain Monte Carlo (MCMC)

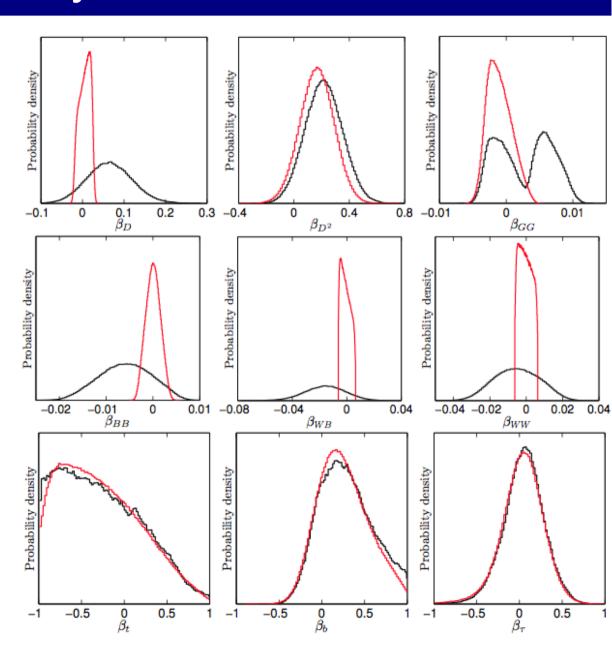
Setup of the analysis

scan ranges for the 2 scenarios we consider:

	I) Democratic HDOs	II) Loop-suppressed \mathcal{O}_{FF} 's
Λ	$4\pi v$	$4\pi v$
β_{FF}	[-1, 1]	$[-1/16\pi^2, 1/16\pi^2]$
Other β	[-1,1]	[-1,1]

where
$$\beta_i = \alpha_i v^2 / \Lambda^2$$

 $FF = WW, WB, BB, GG$

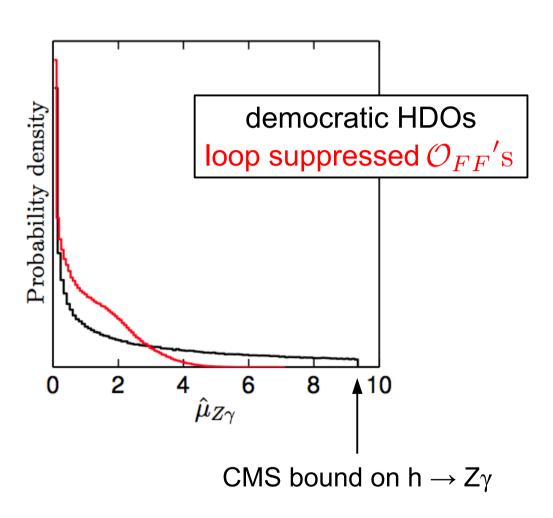

we fix $\Lambda = 4\pi v \approx 3~{\rm TeV}$ but the dependence in Λ is mild \rightarrow results remain valid for TeV-scale New Physics

Results 1D probability distributions

- black line
 - → democratic HDOs
- red line
 - \rightarrow loop suppressed \mathcal{O}_{FF} 's
- β_{FF} are $\mathcal{O}(0.01)$ FF = WW, WB, BB, GG
- β_f can go up to $\mathcal{O}(1)$

where
$$\beta_i = \alpha_i v^2 / \Lambda^2$$

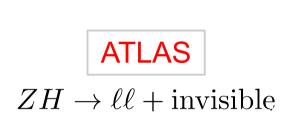
$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_i \frac{\alpha_i}{\Lambda^{n_i}} \mathcal{O}_i$$

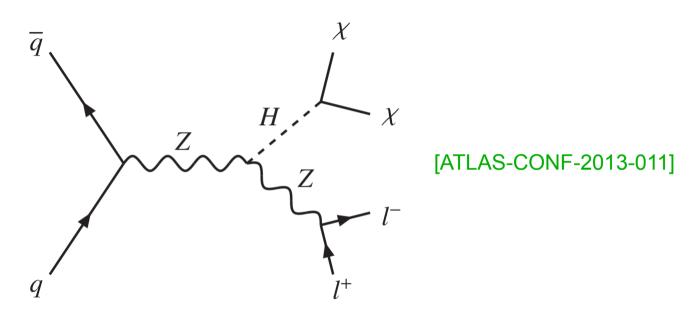


Results associated production

- tensorial couplings → sizeable change in the rescaling of WH and ZH
- we plead for a clear separation of WH and ZH in the LHC Higgs results

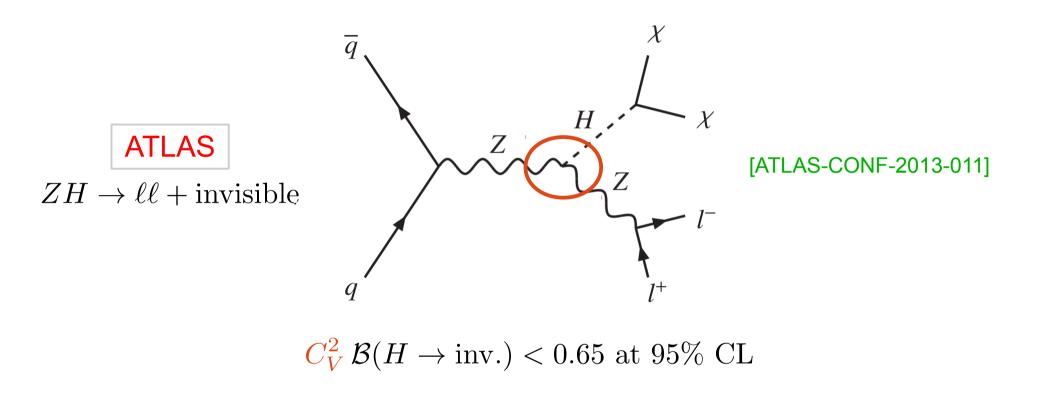
Results $h \rightarrow Z\gamma$

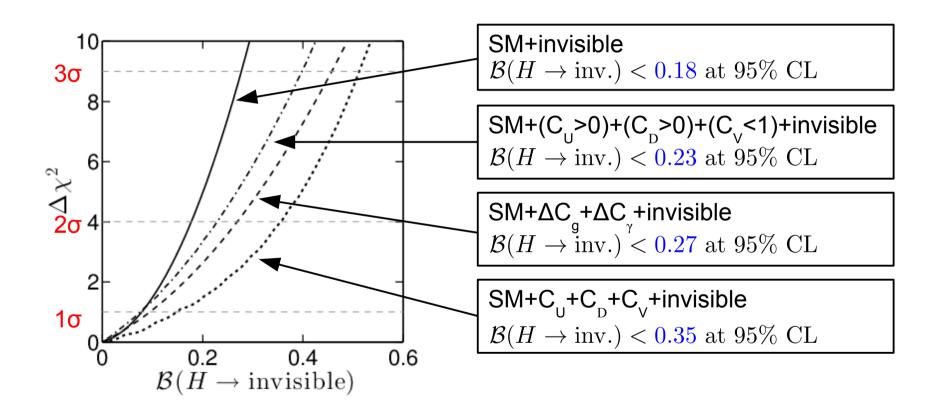



- possible large deviations from the SM value: comes from tensorial coupling $\zeta_{Z\gamma}$
- future measurements of
 h → Zγ
 ⇒ important constraints on our
 HDO parameters

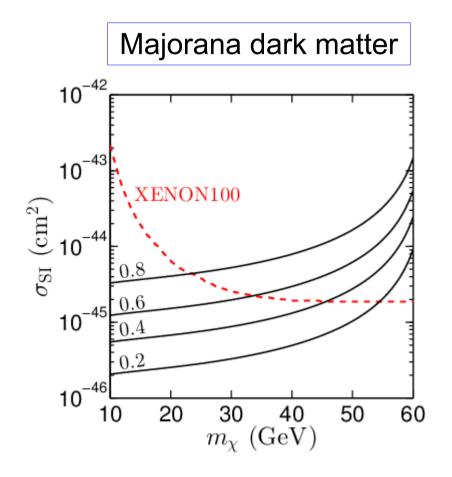
Conclusion

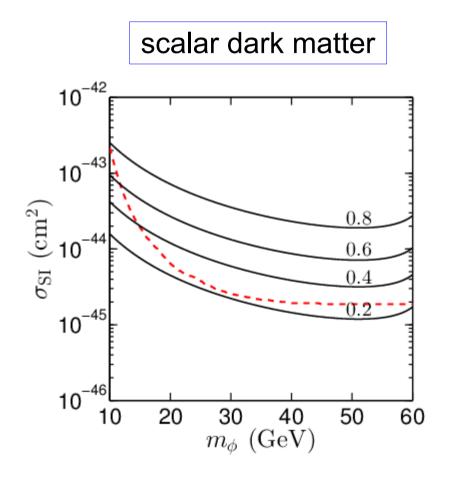
- overall, the observed Higgs boson seems very SM-like (but still waiting for updates, especially in fermionic channels)
- precision era in Higgs physics has only just begun however Higgs results are already a unique probe of New Physics
- model-independent studies as a first step in the study of the implications of the new boson
 - → time has come to fully explore the consequences for BSM models


Searches for invisible decays of the Higgs boson


$$\mathcal{B}(H \to \text{inv.}) < 0.65 \text{ at } 95\% \text{ CL}$$

Searches for invisible decays of the Higgs boson


see also earlier studies based on *e.g.* monojet searches [Djouadi *et al.* '12] ...but so far global fits are more constraining


Invisible decays of the Higgs boson

Invisible decays of the Higgs boson and dark matter

if invisible = dark matter: interplay between direct searches and H→invisible

Tensorial couplings and kinematic distributions

The amplitude associated to a hVV vertex (with the V's possibly off-shell) is in general

$$\mathcal{M}(hVV)^{\lambda_1,\lambda_2} = e_{\lambda_1}^{\mu(*)} e_{\lambda_2}^{\nu(*)} \left(ia_V \lambda_V^{SM} g^{\mu\nu} - i2\zeta_V q_1.q_2 \left[g^{\mu\nu} - \frac{q_1^{\mu} q_2^{\nu}}{q_1.q_2} \right] \right) , \tag{4.1}$$

Experimental data we use ATLAS

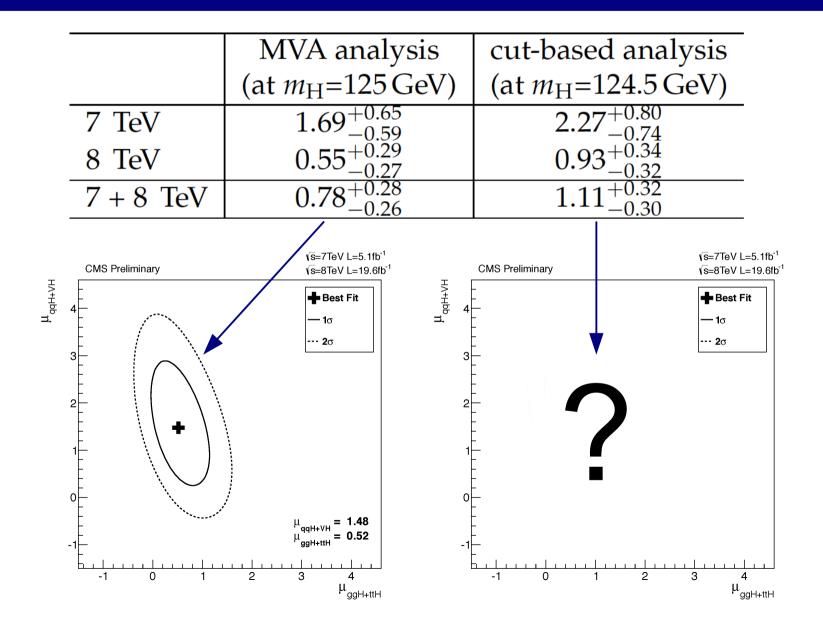
Channel	Signal strength μ	$m_H \; ({ m GeV})$	Production mode			9	
			ggF	VBF	VH	ttH	
$H \rightarrow \gamma \gamma$ (4.8 fb ⁻¹ at 7 TeV + 20.7 fb ⁻¹ at 8 TeV) [1, 2]							
$\mu(\mathrm{ggF}+\mathrm{ttH},\gamma\gamma)$	1.60 ± 0.41	125.5	100%	_	_	_	
$\mu(VBF + VH, \gamma\gamma)$	1.94 ± 0.82	125.5	_	60%	40%	-	
$H \rightarrow ZZ$ (4.6 fb ⁻¹ at 7 TeV + 20.7 fb ⁻¹ at 8 TeV) [3, 2]							
$\mu(\text{ggF} + \text{ttH}, ZZ)$	1.50 ± 0.50	125.5	100%	_	_	_	
$\mu({ m VBF}+{ m VH},ZZ)$	1.50 ± 2.52	125.5	_	60%	40%	-	
$H \to WW \ (4.6 \text{ fb}^{-1} \text{ at } 7 \text{ TeV} + 20.7 \text{ fb}^{-1} \text{ at } 8 \text{ TeV}) \ [4, 5]$							
$\mu(\mathrm{ggF}+\mathrm{ttH},WW)$	0.79 ± 0.35	125.5	100%	_	_	_	
$\mu({ m VBF}+{ m VH},WW)$	1.71 ± 0.76	125.5	_	60%	40%	-	
$H \to b\bar{b} \ (4.7 \text{ fb}^{-1} \text{ at } 7 \text{ TeV} + 13.0 \text{ fb}^{-1} \text{ at } 8 \text{ TeV}) \ [6, 2]$							
VH tag	-0.39 ± 1.02	125.5	_	_	100%	_	
$H \to \tau \tau \ (4.6 \text{ fb}^{-1} \text{ at } 7 \text{ TeV} + 13.0 \text{ fb}^{-1} \text{ at } 8 \text{ TeV}) \ [2]$							
$\mu(ggF + ttH, \tau\tau)$	2.31 ± 1.61	125.5	100%	_	_	_	
$\mu({ m VBF} + { m VH}, au au)$	-0.20 ± 1.06	125.5	_	60%	40%	_	

Table 1: ATLAS results, as employed in this analysis. The following correlations are included in the fit: $\rho_{\gamma\gamma} = -0.27$, $\rho_{ZZ} = -0.46$, $\rho_{WW} = -0.18$, $\rho_{\tau\tau} = -0.49$.

Experimental data we use CMS

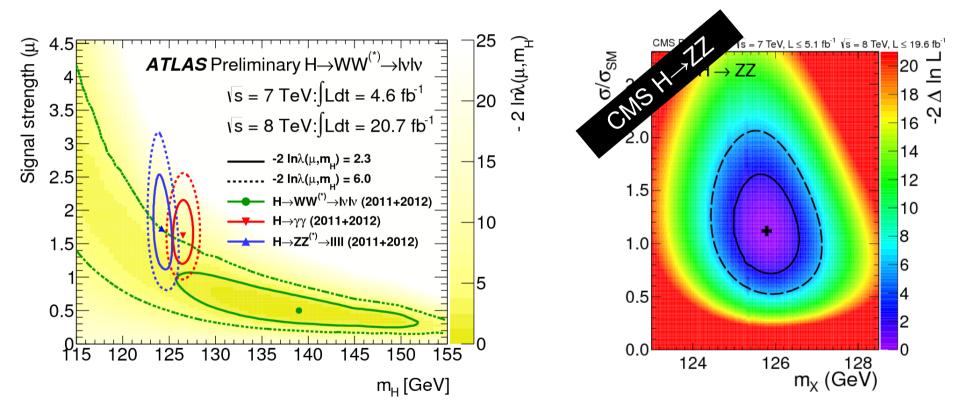
Channel	Signal strength μ	$m_H \; ({ m GeV})$	Production mode			le		
			ggF	VBF	VH	ttH		
$H o \gamma \gamma$	at 8 Te	V) [7, 8	3]					
$\mu({ m ggF}+{ m ttH},\gamma\gamma)$	0.46 ± 0.40	125.7	100%	_	_	_		
$\mu(ext{VBF} + ext{VH}, \gamma\gamma)$	1.68 ± 0.87	125.7	_	60%	40%	_		
$H \to ZZ \text{ (5.1 fb}^{-1} \text{ at 7 TeV} + 19.6 \text{ fb}^{-1} \text{ at 8 TeV) [9]}$								
$\mu({ m ggF}+{ m ttH},ZZ)$	0.98 ± 0.46	125.8	100%	_	_	_]		
$\mu({ m VBF}+{ m VH},ZZ)$		125.8	_	60%	40%	-		
$H \to WW \text{ (up to } 4.9 \text{ fb}^{-1} \text{ at } 7 \text{ TeV} + 19.5 \text{ fb}^{-1} \text{ at } 8 \text{ TeV}) [10, 11, 12, 8]$								
$\mu({ m ggF}+{ m ttH},WW)$	0.78 ± 0.23	125.7	100%	_	_	_		
$\mu({ m VBF}+{ m VH},WW)$	0.33 ± 0.70	125.7	_	60%	40%	_		
$H \to b\bar{b} \text{ (up to 5.0 fb}^{-1} \text{ at 7 TeV} + 12.1 \text{ fb}^{-1} \text{ at 8 TeV) } [13, 14, 8]$								
VH tag	$1.31^{+0.68}_{-0.61}$	125.7	_	_	100%	_		
ttH tag	$-0.15_{-2.90}^{+2.82}$	125.7	_	_	_	100%		
$H \to \tau \tau \ (4.9 \text{ fb}^{-1} \text{ at } 7 \text{ TeV} + 19.4 \text{ fb}^{-1} \text{ at } 8 \text{ TeV}) \ [15, 8]$								
$\mu({ m ggF}+{ m ttH}, au au)$	0.67 ± 0.79	125.7	100%	_	_	_		
$\mu({ m VBF} + { m VH}, au au)$	1.59 ± 0.83	125.7	_	60%	40%	_		

Table 2: CMS results, as employed in this analysis. The following correlations are included in the fit: $\rho_{\gamma\gamma} = -0.48$, $\rho_{ZZ} = -0.73$, $\rho_{WW} = -0.21$, $\rho_{\tau\tau} = -0.47$.


Experimental data we use Tevatron

Channel	Signal strength μ	$m_H \; ({ m GeV})$	Production mode			
			ggF	VBF	VH	ttH
$H \to \gamma \gamma \ [17]$						
Combined	$5.97^{+3.39}_{-3.12}$	125	78%	5%	17%	_
$H \rightarrow WW$ [17]						
Combined	$0.94^{+0.85}_{-0.83}$	125	78%	5%	17%	_
$H o b ar{b} \ [17]$						
VH tag	$1.59^{+0.69}_{-0.72}$	125	_	_	100%	_

Table 3: Tevatron results for up to 10 fb⁻¹ at $\sqrt{s} = 1.96$ TeV, as employed in this analysis.


- Tevatron H→ττ is omitted (large uncertainties)
- $H \rightarrow \gamma \gamma$ and $H \rightarrow WW$ are approximated as inclusive searches (ratio of inclusive cross sections for $p\overline{p}$ collisions at 2 TeV)

A word on CMS $H\rightarrow \gamma\gamma$

Dependence on m_H

- we would like to treat the Higgs mass as a nuisance parameter
- a priori important for the two high resolution channels ($H\rightarrow ZZ$ and $H\rightarrow \gamma\gamma$)

unfortunately impossible to use together with the 2D μ information