Higgs couplings after Moriond

Béranger Dumont (LPSC Grenoble)

based on: G. Belanger, BD, U. Ellwanger, J. F. Gunion, and S. Kraml [JHEP02(2013)053, arXiv:1212.5244] and [arXiv:1302.5694]

> Implications of the 125 GeV Higgs Boson March 18, 2013

The Higgs boson has been found

- previous updates at HCP2012 in Kyoto (in November) and at the open session of the CERN Council (in December)
- and now Moriond!
- Tevatron is very competitive for $H \rightarrow bb$ and results are not yet final

What we know about it before Moriond

$$\mu_i = \frac{\left[\sum_j \sigma_{j \to h} \times \operatorname{Br}(h \to i)\right]_{observed}}{\left[\sum_j \sigma_{j \to h} \times \operatorname{Br}(h \to i)\right]_{SM}}$$

Higgs Implications

Béranger Dumont

What we know about it before Moriond

$$\mu_i = \frac{\left[\sum_j \sigma_{j \to h} \times \operatorname{Br}(h \to i)\right]_{observed}}{\left[\sum_j \sigma_{j \to h} \times \operatorname{Br}(h \to i)\right]_{SM}}$$

Higgs Implications

Béranger Dumont

What we know about it after Moriond EW

Béranger Dumont

Tevatron results

Tevatron (HCP2012)

How can we go beyond this information to understand what is in the data?

How well do we know the Higgs couplings?

Béranger Dumont

Deviations from the SM Higgs

• We first need to specify a Lagrangian. Our choice:

$$\mathcal{L} = g \left[C_V \left(m_W W_\mu W^\mu + \frac{m_Z}{\cos \theta_W} Z_\mu Z^\mu \right) - C_U \frac{m_t}{2m_W} \bar{t}t - C_D \frac{m_b}{2m_W} \bar{b}b - C_D \frac{m_\tau}{2m_W} \bar{\tau}\tau \right] H$$

Scaling factors C parametrize deviations from the SM

- We calculate $\overline{C_g}$ (for gluon-gluon fusion) and $\overline{C_\gamma}$ (for $H \rightarrow \gamma \gamma$) from C_U , C_D , C_V and we allow for additional particles in the loop: ΔC_g and ΔC_γ $\rightarrow C_g = \overline{C_g} + \Delta C_g$ and $C_\gamma = \overline{C_\gamma} + \Delta C_\gamma$
- Total Higgs width: a priori not accessible at the LHC
 → we can in general only determine ratio of couplings
 … or fix an invisible/undetected Higgs width

Fitting procedure

• simple
$$\chi^2$$
 fit: $\chi^2 = \sum_k \frac{(\mu_k - \mu_k^{\exp})^2}{\Delta \mu_k^2}$

- when we use $(\mu_{_{ggF+ttH}},\,\mu_{_{VBF+VH}})$ information we take into account correlations
- we take into account the different efficiencies for the various production mechanisms

 \rightarrow discussion on Higgs Fits and Likelihoods tomorrow morning

- μ_{k} : rescaling of the SM prediction (given by the LHC Higgs XS WG)
- when showing contours of $\Delta \chi^2$: we profile the likelihood over the unseen parameters

A word on $H \rightarrow \gamma \gamma$

- contribution from the W is 5 times larger than from the top quark and with opposite sign
- small contributions from bottom and lighter quarks
- new particles in the loop could change the Hγγ rate (e.g. charged Higgses, charginos, staus, ...)

 $(I) \Delta C_{g}, \Delta C_{\chi}$ fit

- we assume $C_U = C_D = C_V = 1 \Delta C_g$ and ΔC_{γ} are free to vary \rightarrow new physics as additional particles in the loops
- relevant in the context of Universal Extra Dimensions, VLQ, ...

- SM: 2.2σ away from best fit due to the excess in H→γγ
- Observed gluon-gluon fusion rate well compatible with the SM

II) C_{U} , C_{D} , C_{V} fit

- we assume $\Delta C_g = \Delta C_{\gamma} = 0$ C_U , C_D and C_V are free to vary \rightarrow modified Higgs sector + no new particles in the loops
- can arise with extended Higgs sectors (e.g. 2HDM with heavy H⁺)

- SM: 1.6σ away from best fit due to the excess in H→γγ
- C_U<0 (sign opposite to C_V)
 ⇒ constructive interference with W preferred at the level of 1.8σ
- C_D compatible with the SM (up to a minus sign)

II) C_{II} , C_{D} , C_{V} fit

• C_v tend to be larger for $C_v > 0$

Strong correlation between C_y and C_y

Single top production in association with a Higgs boson could soon discriminate $C_{U} > 0$ and $C_{U} < 0$ [Biswas, Gabrielli and Mele '12; Farina et al. '12]

III) C_{U} , C_{D} , C_{V} , ΔC_{g} , ΔC_{γ} fit

- encompasses a very broad class of models (incl. Higgs sector made of any number of doublets + singlets)

Béranger Dumont

III) C_{U} , C_{D} , C_{V} , ΔC_{g} , ΔC_{γ} fit

- encompasses a very broad class of models (incl. Higgs sector made of any number of doublets + singlets)

Béranger Dumont

III) C_{U} , C_{D} , C_{V} , ΔC_{g} , ΔC_{γ} fit

• the determination of C_v is robust

- SM: 1.4 σ away from best fit due to the excess in $H \rightarrow \gamma \gamma$
- balance between C_{II} and ΔC_{J}

Higgs Implications

Béranger Dumont

Goodness-of-fit

Fit	Standard Model	$\Delta C_{\gamma}, \Delta C_g$	C_U, C_D, C_V	$C_U, C_D, C_V, \Delta C_{\gamma}, \Delta C_g$
$\chi^2_{\rm min}$	22.1	15.1	16.2	14.4
$\chi^2_{\rm min}/{\rm d.o.f.}$	0.96	0.72	0.81	0.80
dominant	ATLAS $\gamma\gamma$	ATLAS ZZ	ATLAS ZZ	ATLAS ZZ
contributions	${ m CMS} \ \gamma\gamma$	CMS WW VBF	Tevatron $\gamma\gamma$	CMS WW VBF
to $\chi^2_{\rm min}$	Tevatron $\gamma\gamma$	Tevatron $\gamma\gamma$	CMS $\gamma\gamma$	Tevatron $\gamma\gamma$

- significant improvement of $\chi^2/d.o.f.$ (hence the *p*-value) when allowing for an enhanced Hyy rate
- no amelioration of the fit from 2 to 5 parameters

...and after Moriond QCD?

Béranger Dumont

New CMS $H \rightarrow \gamma \gamma$

Higgs Implications

Béranger Dumont

New CMS $H \rightarrow \gamma \gamma$

Higgs Implications

Béranger Dumont

I) ΔC_{g} , ΔC_{γ} fit after Moriond

Higgs Implications

Béranger Dumont

March 18, 2013

20

II) C_{U} , C_{D} , C_{V} fit after Moriond

Higgs Implications

Béranger Dumont

March 18, 2013

21

Goodness-of-fit after Moriond

Fit	Standard Model	$\Delta C_{\gamma}, \Delta C_g$	C_U, C_D, C_V
$\chi^2_{ m min}$	21.6	20.1	19.9
$\chi^2_{ m min}/ m d.o.f.$	0.90	0.91	0.94
dominant	ATLAS $\gamma\gamma$	ATLAS ZZ	ATLAS $\gamma\gamma$
contributions	Tevatron $\gamma\gamma$	${ m CMS} \ \gamma\gamma$	CMS WW VBF
to $\chi^2_{\rm min}$	ATLAS ZZ	ATLAS $\gamma\gamma$	Tevatron $\gamma\gamma$

• no improvement of $\chi^2/d.o.f.$ (hence the *p*-value) when allowing for additional freedom

Conclusion

- first step in the study of the implications of the new boson
- pre-Moriond data indicates that better fit to the data are possible with enhanced $H{\rightarrow}\gamma\gamma$
- enhanced $H \rightarrow \gamma \gamma$ can be accommodated with:
 - $C_{\mu} \approx -C_{\nu}$ (difficult to achieve in a realistic model)
 - $\Delta C > 0$ (light non-SM electrically charged particles)
- but Higgs seems very SM-like with CMS $H \rightarrow \gamma \gamma$ MVA what about CMS $H \rightarrow \gamma \gamma$ cut-based?

Invisible decays of the Higgs boson before Moriond EW

it needs to be updated with the Moriond results already shown, but not only...

Searches for invisible decays of the Higgs boson

 $\mathcal{B}(H \to \text{inv.}) < 0.65 \text{ at } 95\% \text{ CL}$

Searches for invisible decays of the Higgs boson

see also earlier studies based on e.g. monojet searches [Djouadi et al. '12]

Invisible decays of the Higgs boson after Moriond EW

if invisible = dark matter: interplay between direct searches and $H \rightarrow$ invisible (see backup)

Invisible decays of the Higgs boson and dark matter

Higgs Implications

Béranger Dumont

Pre-Moriond experimental data we use ATLAS

29

Pre-Moriond experimental data we use CMS

Channel	Signal strength μ	$M_H (\text{GeV})$	F	Product	ion mod	le]	CMS Preliminary $\sqrt{s} = 7$ TeV, L ≤ 5.1 fb ⁻¹ $\sqrt{s} = 8$ TeV, L ≤ 12.2 fb ⁻¹
			ggF	VBF	VH	ttH	[⊥]	$- H \rightarrow \tau \tau$
$H \to \gamma^{\prime}$	γ (5.1 fb ⁻¹ at 7 TeV	$V + 5.3 \text{ fb}^{-1}$ a	at 8 TeV	(2,5,	12]		Т Ц Ц	8 H → WW
$\mu(\mathrm{ggF} + \mathrm{ttH}, \gamma\gamma)$	0.95 ± 0.65	125.8	100%	_	_	_		-
$\mu(\text{VBF} + \text{VH}, \gamma\gamma)$	3.77 ± 1.75	125.8	—	60%	40%	_ `	\searrow	6 H→bb
$H \to Z$	$ZZ (5.1 \text{ fb}^{-1} \text{ at } 7 \text{ Te})$	$V + 12.2 \text{ fb}^{-1}$	at 8 T	eV) [7,	12]			$\mathbf{O}_{\mathbf{H}} \qquad \qquad \mathbf{H} \rightarrow \gamma \gamma \qquad \qquad \mathbf{H}$
Inclusive	$0.81^{+0.35}_{-0.28}$	125.8	87%	7%	5%	1%		
$H \to WW$ (u	up to 4.9 fb^{-1} at 7 T	eV + 12.1 fb	$^{-1}$ at 8	TeV) [1	10, 12, 52	2]		4
0/1 jet	$0.77^{+0.27}_{-0.25}$	125.8	97%	3%	_	_		
VBF tag	$-0.05^{+0.74}_{-0.55}$	125.8	17%	83%	_	_		
VH tag	$-0.31^{+2.22}_{-1.94}$	125.8	_	—	100%	—		
$H \to b\bar{b} \ (up)$	to 5.0 fb^{-1} at 7 Te	$V + 12.1 \text{ fb}^{-1}$	at 8 T	eV) [12	, 53, 54]			
VH tag	$1.31\substack{+0.65\\-0.60}$	125.8	—	_	100%	_		
ttH tag	$-0.80^{+2.10}_{-1.84}$	125.8		_	—	100%		
$H \to \tau \tau (up)$	to 5.0 fb ^{-1} at 7 Te	$eV + 12.1 \text{ fb}^-$	1 at 8 T	eV) [12	2, 55, 56]			
0/1 jet	$0.85^{+0.68}_{-0.66}$	125.8	76%	16%	7%	1%] .	-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VBF tag	$0.82^{+0.82}_{-0.75}$	125.8	19%	81%	_	_		μ _{ggH+ttH}
VH tag	$0.86^{+1.92}_{-1.68}$	125.8	_	_	100%	_		

Béranger Dumont

Pre-Moriond experimental data we use Tevatron

Channel	Signal strength μ	$M_H (\text{GeV})$	Production mode					
			ggF	VBF	VH	ttH		
$H \to \gamma \gamma \ [59]$								
Combined	$6.14^{+3.25}_{-3.19}$	125	78%	5%	17%	_		
$H \to WW$ [59]								
Combined	$0.85^{+0.88}_{-0.81}$	125	78%	5%	17%	—		
$H \to b\bar{b}$ [14]								
VH tag	$1.56^{+0.72}_{-0.73}$	125	_		100%	_		

II) C_{U} , C_{D} , C_{V} fit

Béranger Dumont

Two Higgs Doublet Model

- Model-dependent study: 2HDM type I and II
- 2 parameters (angles): α and β

	Type I and II	Г	Type I	Type II		
Higgs	VV	up quarks down quarks &		up quarks	down quarks &	
		leptons			leptons	
h	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	
Н	$\cos(\beta - \alpha)$	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	
A	0	\coteta	$-\cot\beta$	$\cot eta$	aneta	

- in both cases we have:
 - $-|C_V| < 1$
 - $-|C_U| < 1.4 \text{ if } \tan \beta > 1$
- both h and H could be the 125.5 GeV observed state

Two Higgs Doublet Model results

34