
Recasting Higgs Data

Béranger Dumont (LPSC Grenoble)

Implications of the 125 GeV Higgs Boson March 19, 2013

Why should we do fits?

- experimental collaborations are already testing the coupling structure of the new particle
- scaling factors κ parametrize deviations from the SM Higgs couplings (follows the interim recommendations from the LHC Higgs XS WG)

but:

- we want to combine the information from ATLAS, CMS and Tevatron
- we want to study the implications on various BSM models, use different parametrizations
- → fits from theorists are necessary to fully exploit the LHC Higgs results

Starting a fit

$$\chi^2 = \sum_k \frac{(\mu_k - \mu_k^{\text{exp}})^2}{\Delta \mu_k^2}$$

- most simple fit: χ²
- $\mu_k^{\text{exp}} = (N_{\text{observed}} N_{\text{background}}) / N_{\text{SM}}$
- but what exactly should we take from the experimental papers?

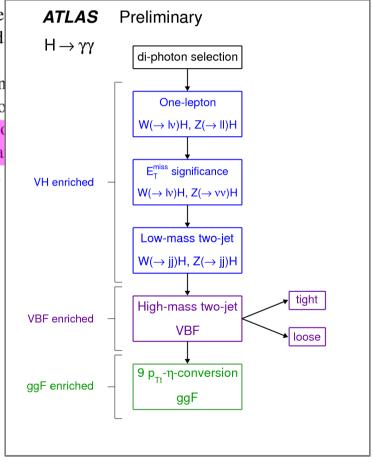
What do we have in the conf note?

[ATLAS-CONF-2013-012]

Abstract

Measurements of the mass and couplings of the Higgs-like boson in the two photon decay channel with the ATLAS detector at the LHC are presented. The proton-proton collision datasets used correspond to integrated luminosities of 4.8 fb⁻¹ collected at $\sqrt{s} = 7$ TeV and 20.7 fb⁻¹ collected at $\sqrt{s} = 8$ TeV. The updated measurements benefit from an increased data sample and an improved analysis. The measured value of the mass of the Higgs-like boson is $126.8\pm0.2(\text{stat})\pm0.7(\text{syst})$ GeV and the fitted number of signal events is found to be $1.65\pm0.24(\text{stat})^{+0.25}_{-0.18}(\text{syst})$ times the value predicted by the Standard Model. Measurements of the signal strengths in different production processes and a fiducial cross section for the observed particle are also presented.

What do we have in the conf note?


[ATLAS-CONF-2013-012]

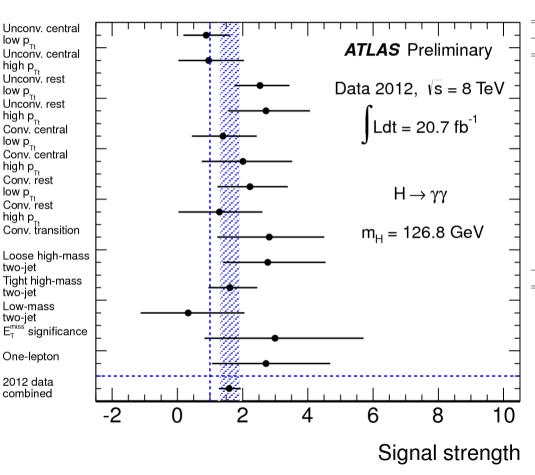
Abstract

Measurements of the mass and couplings of the Higgs-like cay channel with the ATLAS detector at the LHC are presented datasets used correspond to integrated luminosities of 4.8 fb⁻¹ 20.7 fb⁻¹ collected at $\sqrt{s} = 8$ TeV. The updated measuremen data sample and an improved analysis. The measured value oboson is $126.8\pm0.2(\text{stat})\pm0.7(\text{syst})$ GeV and the fitted number of $1.65\pm0.24(\text{stat})^{+0.25}_{-0.18}(\text{syst})$ times the value predicted by the Sta of the signal strengths in different production processes and a observed particle are also presented.

...but this is the combination of several sub-categories with different sensitivity to the various production mechanism

and New Physics modifies both production and decay of the Higgs!

Ok, so let's have a look at the 14 sub-categories!


[ATLAS-CONF-2013-012]

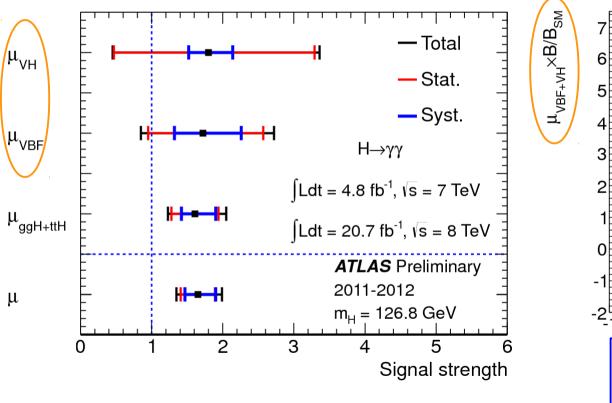
Unconv. central low $p_{_{\mathrm{Tt}}}$	ГТ	1 1		-2// /-	1 1		T T			. .	T]
Unconv. central				<u> 200</u>			AT	LAS	Preli	minar	у 🗌
$\begin{array}{l} \text{high p}_{_{\text{Tt}}} \\ \text{Unconv. rest} \\ \text{low p}_{_{\text{Tt}}} \end{array}$	-			<i></i>			Data	2012	2. √s	s = 8 T	ēV -
Unconv. rest				<i>700</i>		_	-	•	, .		
high p _{⊤t} Conv. central	_			<u> </u>				Ldt =	20.	7 fb ⁻¹	}
low p _{⊤t} Conv. central	L			<i>-</i> 700			J				_
high p_	Ė		7	<i>***</i> **							
Conv. rest low p _{Tt}	-			₩•				Н	$\rightarrow \gamma'$	٧	-
Conv. rest			;	<i>-</i> ////					1	•	7
high p _{Tt} Conv. transition	Ł			<u> </u>			n	n., = 1	26.8	3 GeV	, =
Loose high-mass	F			77/			•	H			
two-jet	L			#	•						
Tight high-mass two-jet	F		÷	////-							-
Low-mass											
two-jet E _T significance	-		Ĭ	<i>-</i>							-
	L		7	7//	•						ュ
One-lepton	-			-##	•						-
2012 data combined	- ,		,				1 1	<u> </u>	, l		
	-2	()	2		4		6	8	3	10
								Sia	nal	strei	nath

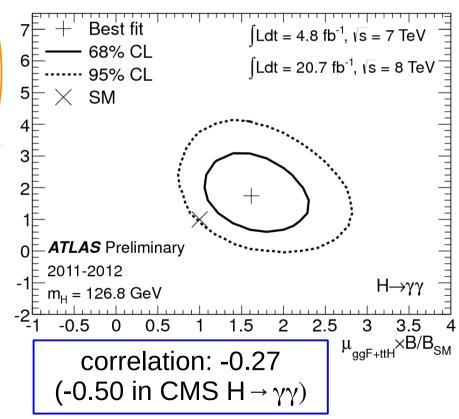
\sqrt{s}	8 TeV								
Category	N_D	N_S	$gg \to H [\%]$	VBF [%]	WH [%]	ZH [%]	ttH [%]		
Unconv. central, low p_{Tt}	10900	51.8	93.7	4.0	1.4	0.8	0.2		
Unconv. central, high p_{Tt}	553	7.9	79.3	12.6	4.1	2.5	1.4		
Unconv. rest, low p_{Tt}	41236	107.9	93.2	4.0	1.6	1.0	0.1		
Unconv. rest, high p_{Tt}	2558	16.0	78.1	13.3	4.7	2.8	1.1		
Conv. central, low p_{Tt}	7109	33.1	93.6	4.0	1.3	0.9	0.2		
Conv. central, high p_{Tt}	363	5.1	78.9	12.6	4.3	2.7	1.5		
Conv. rest, low p_{Tt}	38156	97.8	93.2	4.1	1.6	1.0	0.1		
Conv. rest, high p_{Tt}	2360	14.4	77.7	13.0	5.2	3.0	1.1		
Conv. transition	14864	40.1	90.7	5.5	2.2	1.3	0.2		
Loose high-mass two-jet	276	5.3	45.0	54.1	0.5	0.3	0.1		
Tight high-mass two-jet	136	8.1	23.8	76.0	0.1	0.1	0.0		
Low-mass two-jet	210	3.3	48.1	3.0	29.7	17.2	1.9		
$E_{\mathrm{T}}^{\mathrm{miss}}$ significance	49	1.3	4.1	0.5	35.7	47.6	12.1		
One-lepton	123	2.9	2.2	0.6	63.2	15.4	18.6		
All categories (inclusive)	118893	395.0	88.0	7.3	2.7	1.5	0.5		

Ok, so let's have a look at the 14 sub-categories!

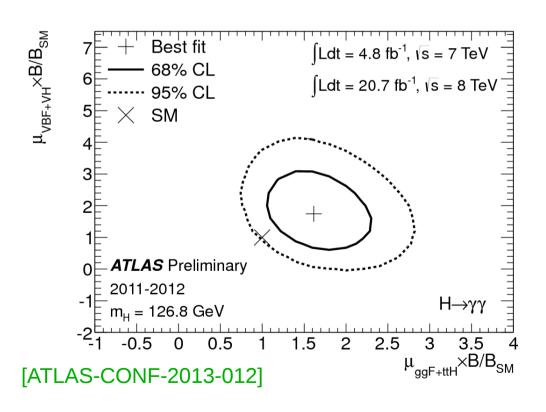
[ATLAS-CONF-2013-012]

\sqrt{s}	8 TeV								
Category	N_D	N_S	$gg \to H [\%]$	VBF [%]	WH [%]	ZH [%]	ttH [%]		
Unconv. central, low p_{Tt}	10900	51.8	93.7	4.0	1.4	0.8	0.2		
Unconv. central, high p_{Tt}	553	7.9	79.3	12.6	4.1	2.5	1.4		
Unconv. rest, low p_{Tt}	41236	107.9	93.2	4.0	1.6	1.0	0.1		
Unconv. rest, high p_{Tt}	2558	16.0	78.1	13.3	4.7	2.8	1.1		
Conv. central, low p_{Tt}	7109	33.1	93.6	4.0	1.3	0.9	0.2		
Conv. central, high p_{Tt}	363	5.1	78.9	12.6	4.3	2.7	1.5		
Conv. rest, low p_{Tt}	38156	97.8	93.2	4.1	1.6	1.0	0.1		
Conv. rest, high p_{Tt}	2360	14.4	77.7	13.0	5.2	3.0	1.1		
Conv. transition	14864	40.1	90.7	5.5	2.2	1.3	0.2		
Loose high-mass two-jet	276	5.3	45.0	54.1	0.5	0.3	0.1		
Tight high-mass two-jet	136	8.1	23.8	76.0	0.1	0.1	0.0		
Low-mass two-jet	210	3.3	48.1	3.0	29.7	17.2	1.9		
$E_{\rm T}^{\rm miss}$ significance	49	1.3	4.1	0.5	35.7	47.6	12.1		
One-lepton	123	2.9	2.2	0.6	63.2	15.4	18.6		
All categories (inclusive)	118893	395.0	88.0	7.3	2.7	1.5	0.5		


...but what about the correlations between sub-channels? (not given by the experiments)

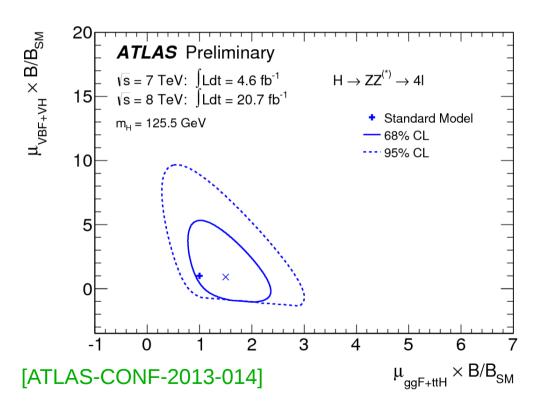

can we safely neglect them? probably not...

Hmm... is there anything else in this conf note?


[ATLAS-CONF-2013-012]

In a second step, signal strength parameters for different Higgs boson production modes are introduced to characterise their contributions to the observed excess. To further enhance the sensitivity, the

I want to use this one!



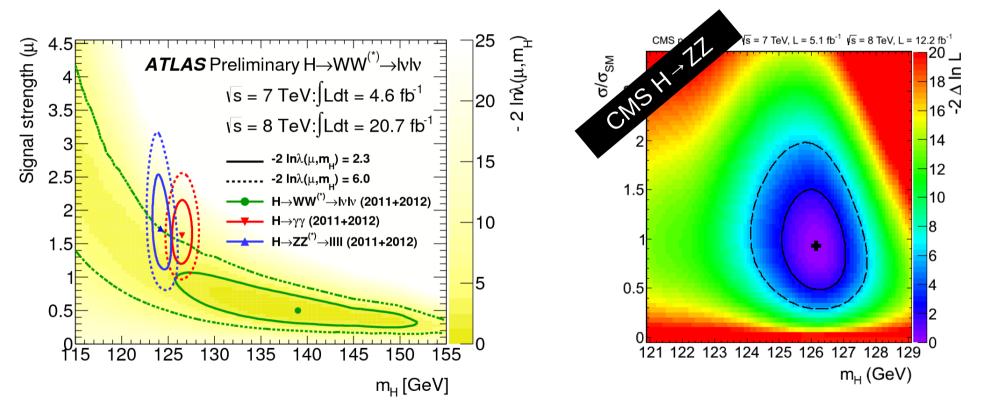
But we only have contours...

simplest option: fit Gaussian measurements from one contour

is it a good approximation? maybe...

I want to use this one!

But we only have contours...


simplest option: fit Gaussian measurements from one contour

is it a good approximation? maybe...

or maybe not

The Higgs mass

- we would like to treat the Higgs mass as a nuisance parameter in our fit
- a priori important for the two high resolution channels (H \rightarrow ZZ and H $\rightarrow\gamma\gamma$)

we would like to combine this information with the previous one...

My conclusion

- ($\mu_{ggF+ttH}$, μ_{VBF+VH}) plots are very useful and should be generalized The 2D likelihood in addition to the 68% and 95% CL contours would be valuable in order to get rid of the Gaussian approximation
- However...
 - not suitable to test custodial symmetry
 - not appropriate once ttH measurements become precise
 - it is for a fixed Higgs mass
- note: also e.g. VH \rightarrow bb results could be presented in the plane (μ_{WH} , μ_{ZH})
- Our theorist dream would be to have the full likelihood in the 6D plane (m $_{_{H}}$, $\mu_{_{ggF}}$, $\mu_{_{ttH}}$, $\mu_{_{VBF}}$, $\mu_{_{WH}}$, $\mu_{_{ZH}}$) for each channel

What We Need to do a \mathcal{G} ood \mathcal{J} ob

What we need: Information on

- Signal strengths separately for 7 and 8 TeV.
 [For Nov12 data updates of 7 TeV analyses, but not publically available.]
- Separately for the individual subchannels.
- Separately for the various Higgs boson masses;
 ideally in form of "blue band" signal strength plots as function of the mass.
- State clearly for each subchannel the composition of the production mechanisms, which has been used by the experiments.
- \diamond Correlations among the channels: in terms of a simple correlation matrix on the signal strengths. Theory-Exp cross talk on basis of signal strengths with clear errors and correlations ($\rightarrow e.g.$ EWPD)
- Include theory errors in the correlations would be good

\mathcal{F} urther

More specific requests:

- $\diamond WW$ subchannel compositions 0, 1, 2 jets (gg and VBF breakup) from ATLAS
- \diamond ATLAS $\gamma\gamma$ broken up in many pieces \leadsto correlations high priority
- \diamond CMS: $\tau\tau$ sub-channels as function of mass as blue band plots.
- \diamond Mutually exclusive signal strength classes for dijet tagged $\gamma\gamma$ events and for "everything else"

What we do Not want:

- Complicated, hard to use multidimensional likelihood given in a complex form.
- Too exclusive subchannels.
- \diamond Multidimensional μ fits with only one best fit point in the 2-dimensional space.

Helful for us:

- Boil down information into simple form with maximum transparency
- \diamond E.g. plot with μ as function of mass (not 2-dim contours of μ versus mass).