Invisible Higgs at LHC

Kirtimaan Mohan

Centre for High Energy Physics Indian Institute of Science Bangalore India

March 2013

Invisible decays of the Higgs

Within SM the decay of the Higgs to invisible final states $\sim 1\%$ of total width.

Discovering a sizeable invisible BR is clear indication of BSM physics.

What can be done at LHC to put bounds on

 $R_{inv} = BR(h \rightarrow invisible) imes rac{\sigma^{BSM}}{\sigma^{SM}}$?

 $\frac{2}{3}R_{inv}(ggF) + \frac{1}{3}R_{inv}(VBF)$ Highest production cross-section at LHC Look for events with

```
 \begin{array}{l} p_t \mbox{ jet } (> 110 \mbox{ GeV}) \\ p_T > 200 \mbox{ GeV} \\ R_{inv} > 1.3 \mbox{ exclusion at } 95\% \mbox{CL } (4.7 \mbox{ fb}^{-1}) \\ R_{inv} > 0.9 \mbox{ for } 15 \mbox{ fb}^{-1} \mbox{ luminosity } ^1 \end{array}
```

 $0.15 imes R_{inv}(ggF) + 0.85 imes R_{inv}(VBF)$ Look for

dijets with large invariant mass and rapidity gap

 $p_T > 100 \, GeV$

Most promising channel: for $20 fb^{-1}$ data Exclusion of $R_{inv}>0.33$ at 95% CL for 8 TeV LHC can be probed 2

However large systematic uncertainties

Small cross-section Very complicated final state Full hadronic: both tops decay hadronic, > 6 jets, 2b-jets Semi leptonic:one top decays leptonically, > 4 jets 2b-jets 1 lepton Large systematics and combinatoric background $R_{inv} < 0.6$ at 95% CL for $30 f b^{-1}$ LHC 14 TeV³

³ATL-COM-PHYS-2003-016

Cleanest channel Statistically limited due to low cross-section. Look for

dileptons that reconstruct Z

large $p_T > 100 GeV$

Exclusion of $R_{inv} > 0.55$ at 95% for $20fb^{-1}$ data at 8 TeV Possibility to use $Z \rightarrow b\bar{b}$ final states as well Exclusion of $R_{inv} > 1.0$ for $20fb^{-1}$ luminosity at 8 TeV , using both normal jet reconstruction and jet-substructure⁴ WH, is not feasible : large irreducible backgrounds from inclusive W production.

ATLAS Results

Possibility of $H \rightarrow AA$ $A \rightarrow qq, gg, ...$ or partially invisible final states. Difficult to detect at LHC: Large luminosity needed to place strong constraints. However an in important BSM search.