Experiences from Tesla cavities module operation in CW and Long Pulse modes at CMTB

<u>W.Cichalewski</u>, J.Branlard, W.Jalmuzna, A.Piotrowski, K.Przygoda, J.Szewinski, J.Sekutowicz Experiences from Tesla cavities module operation in CW and Long Pulse modes at CMTB 4th RF-tech Workshop Annecy, 25.03.2013

Overview

- > Pulsed systems
- > Motivations for CW
- > Challenges

> Tests setup

> HP hardware
> LLRF hardware – UTCA
> firmware/software algorithms

Continuous WaveLong Pulse

Outlook and future work

Introduction – pulsed system

European Xray Free Electron Laser

- Total Length 3.4 km
- Depth of tunnels 6-38 m
- > Cost ~1.15 bilion Euro
- > Consists of superconducting linear acc.
- > Accelerator length 1.7 km
- Number of modules 101
- Laser wavelength 0.05-6 nm
- > Max. bunch per second 27k
- > Peek brilliance 5*10^33
- > Average brilliance 1,6*10^25

Introduction – pulsed system

XFEL facts :

Nominal Energy	GeV	14.5 → 17.5
Beam pulse length	ms	0.60
Repetition rate	Hz	10
Max. # of bunches per pulse		2700
Min. bunch spacing	ns	200
Bunch charge	nC	1
Bunch length, σz	μm	< 30
Emittance (slice) at undulator	µm*rad	< 1.4
Energy spread (slice) at undulator	MeV	1

Introduction - motivation for CW

> X-FEL beam parameters can be even more attractive

- Flexibility in bunch patterns shaping,
- Higher efficiency → much more photon bursts per second (from 10b/s to eq. ~90 b/s @ 1kHz rep rate),
- Relaxing bunch-bunch distance to some u-seconds → less technical demanding detectors,
- Increasing photon burst repetition rate (few kHz) → less expensive lasers can be used.

The superconducting cavities are/can be operate in CW mode but current accelerator systems parameters are not fully suitable for Long Pulse / Continuous Wave operation,

> Changes are required for:

- Cryogenic plant,
- Superconducting RF gun,
- RF High Power delivery,
- LLRF control system.

Introduction – challenges – cryogenic plant

- > Dynamic heat losses are caused by cavities walls heating (by RF power),
- Operating temperature reduction can benefit in cavity gradient increase for the same losses level (eq. ~40% higher gradient for 1.8 K instead of 2 K operation)
- > With assumption of heat load limit of 20W/module

	Short-pulse operation (2K)		Near-cw operation (1.8K)	
T range	Capacity (116 CM) [W]	Heat Load (83 CM) [W]	Capacity (83 CM) [W]	Heat Load (83 CM) [W]
2 K (1.8)	2450	1204	3137	2091
5-8 K	4000	2880	5120	3413
40-80 K	30000	12556	38440	25625

Estimation by B. Petersen

 \rightarrow means for 1.8K operation around 30% higher system capacity is required.

Introduction – challenges – SRF GUN

HZB (BESSY), JLab, INS, Max Born and DESY are involved in the RF gun preparation.

Wavelength	QE
213 nm	2.7E-03
258 nm	4.8E-04

Parameter	Unit	Value
Spot radius	[mm]	1.5
Nominal <i>Ecath</i> at cathode	[MV/m]	~50
Emittance (slice) for 1 nC	µmrad	< 1.4

Laser parameters for 55000 bunches (1 nC)			
Wavelength	Pulse energy [ຟ]	Power [W]	
213 nm	2.1	0.12	
258 nm	10.0	0.55	

Courtesy J.Sekutowicz DESY

Introduction – challenges – RF high power

- Current 10MW klystrons not suitable for CW and LP operation nominal pulse length ~1,6 ms
- > IOT has been designed and tested to provide LP and CW operation possibility

Parameter	Unit	Spec	Measured at CPI and (DESY)
F	[MHz]	1300	1300
Output P	[kW]	60-120	85 (80)
Gain	[dB]	>21	22.3
Efficiency	[%]	>60	54
Voltage	[kV]	36-50	45-48

> Prototype device (by CPI) has been used during CMTB tests

Introduction – challenges – control loop performance

> The two assumptions – derived from system limitations:

+1.0E+07 +1.5E+07 +2.0E+07

10

Maximum cryogenic heat load <20W</p>

5

10

8

6

4

2

0

0

Ppeak/cavity [kW]

 Maximum average power per cavity input coupler <1.45 kW (design limitation)

20

25

Wojciech CICHALEWSKI | Experiences from Tesla cavities module operation in CW and LP modes at CMTB | 25.03.2013 | Page 10

15

Introduction – challenges – control loop performance

Operation duty factor (DF) limitation has to be introduced in order to satisfy mean input coupler power limitation

Introduction – challenges – control loop performance

- > LLRF system has been originally design for short pulse operation:
 - control algorithms (PID, MIMO controllers, learning Feed Forward, etc.),
 - cavity parameters identification (QI, detuning, etc),
 - data acquisition and data analysis methods.
- > Cavity parameters for CW \rightarrow gradient up to 13 MV/m and QI = 2e7
 - Gradient level is considered as a moderate,
 - High loaded quality factor implies lower cavity bandwidth → more effective control over the microphonics influence is a must.

Test setup – CryoModule Test Bench

- > PFWD equally distributed
- > All cavities on resonance
- > QL = 1.5 * 10^7

Test setup – HP system

Klystron

THALES 1.3 GHz 10MW klystron

Inductive Output Tube (IOT)

Power

- Klystrons: MW pulsed
- IOTs: kW CW
- Efficiency
 - Klystron < IOT
- Cost
 - Klystron > IOT
- Lifetime
 - Klystron < IOT
- Sensitivity to HV fluctuations
 - Klystron > IOT

CPI 1.3 GHz 20 kW IOT

Reference: "Comparison of Klystron and Inductive Output Tube (IOT) Vacuum-Electron Devices for RF Amplifier Service in Free-Electron Laser", A.Zolghari et. al. EPAC 2004

Test setup – HP system

> IOT has been installed in the CMTB hall and tested for output power up to 20 kW.

Test Setup – UTCA system

Test Setup – LLRF controller configuration

Test Setup – Cavity fine tuning piezo feedback

Test setup – firmware and software modifications

> Firmware modifications:

- Controller works with full speed (81.25 MHz),
- Control tables size has not been changed (16k samples),
- Samples spacing has been increased (to cover 1s operation),
- Data acquisition for CW operation was at the level of 65kHz for 1s long waveforms (higher resolution - up to 9MHz data acquisition possible for defined timing window),
- Cavities forward and probe signals phase transmission to uTC,
- PI controller realization for Piezo
- > Front-end server and tools modifications:
 - Functionality extension for piezo feedback management,
 - Different data buffer acquisition and visualization

Results – Continuous Wave

Operations at 3MV/m

- 8 cavities at 3MV/m
- Problem with HOM cav 7 → detune

Operations at 5MV/m

- 7 cavities at 5MV/m (~ 1 kW from IOT)
- Cryo losses ~ 2.5 W
- LLRF FB
- Cavity tuning using slow tuner + piezo static tuning
- Stable operations over 20 hrs (on resonance)

In-loop Regulation performance

- Amplitude: $\Delta A/A = 6x10-5$ (RMS)
- Phase: Δφ = 0.0098° (RMS)

> IOT prototype HV rise transient:

Results – long pulse operation

> IOT prototype HV rise transient – compensated by LLRF feedback

Results – long pulse operation

Test Results, cont.:

2. Stability of the VS for 7 cavities operating in lp mode was find to be the same as for the cw operations. Below is an example at $\langle E_{acc} \rangle = 3.5$ MV/m, DF=43%, flat top 390 ms, filling time 110 ms, RF-pulse rep. rate 1 Hz, piezo bias on and the RF-feedback **on**.

 The same stability was observed for higher gradients, <E_{acc}> = 6.5 MV/m, and slightly shorter flat-top of 356 ms.

Courtesy J. Sekutowicz

Results – long pulse – piezo perfromance

- Piezo feedback operates well for cavities at 8MV/m gradients,
- Cavities were in resonance with static error of about 2%
- Compensation of Lorentz Force Detuning was possible during cavity fill time
- Still some field for improvement → optimization of feedback parameters,
- Parasitic ~50 Hz oscillations (most probably form cryo pumps) has not been completely suppressed,
- Piezo feedback and LLRF feedback cooperation is still an issue to be solved

Results – measured Heat Load

Results – measured Heat Load

> Successful

- Long Pulse and CW operation with gradients up to 8-9MV/m (fulfilled XFEL specs – in-loop measurement),
- Well performing piezo loop for keeping cavity in resonance,
- The measured heat load below assumed limit,

> Still to be improved:

- Piezo feedback parameters optimization (higher gradients more demanding control – keep in mind 80 Hz cavity bandwidth),
- IOT reveals high nonlinear behavior (nonlinear transfer characteristics) that might limit feedback performance – linearization algorithms will be implemented,
- LLRF system performance cross check with former VME based control system (out of the loop results for confirmation).

Outlook and future

Future activities (April-May 2013)

Courtesy M.Wiencek

Thank You

Acknowledgments to all involved with the CW test:

V. Ayvazyan, J. Branlard, M. Ebert, N. Engling, J. Eschke, T. Feldmann, A. Goessel,
W. Jalmuzna, D. Kostin, M. Kudla, F. Mittag, W. Merz, C. Müller, R. Onken,
A. Piotrowski, K. Przygoda, I. Sandvoss, J. Sekutowicz

